
A Broader Impact and Ethical Consideration

Removal of spurious or sensitive concepts is an important problem to ensure that machine learning
classifiers generalize better to new data and are fair towards all groups. We found multiple limitations
with current removal methods and recommend caution against the use of these methods in practice.

B Probing and Main Classifier Failure Proofs

B.1 Notation and Setup: Max-margin Classifier

We assume that encoder h : X → Z, mapping the input to latent representation is frozen/non-
trainable. Thus for every input xi in the dataset D, we have a corresponding latent representation
zi which is fixed. Also, the latent representation Z is disentangled i.e z = [zm, zp] where zm are
the main task features, i.e., causally derived from the main task label and zp are the concept-causal
features, causally derived from the concept label. Let cp(z) = wp · zp + wm · zm be the linear
probing classifier which we train using max-margin objective. The hyperplane cp(z) = 0 is the
decision boundary of this linear classifier. The points which fall on one side of the decision boundary
(cp(z) > 0) are assigned one label (say positive label 1) and the rest are assigned another label (say
negative label -1). The margin Mcp of this probing classifier (cp(z)) is the distance of the closest
latent representation (z) from the decision boundary. The points which are closest to the decision
boundary are called the margin points. The distance of a given latent representation zi having class
label yi, where yi ∈ {−1, 1}, from the decision boundary is given by

Mcp(z
i) :=

mcp(z
i)

∥w∥
=
yip · cp(zi)

∥w∥
=
yip · (w · zi + b)

∥w∥
(1)

where ∥w∥ is the L2 norm of parameters w = [wp,wm] of the probing classifier cp(z).

Max-Margin (MM): Then the max-margin classifier is trained by optimizing the following objec-
tive:

argmax
w,b

{
min
i

Mcp(z
i)
}

(2)

For ease of exposition we convert this objective into multiple equivalent forms. To do this we observe
that scaling the parameters of cp(z) by a positive scalar γ i.e w → γw and b→ γb does not change
the distance of the point (Mcp(z

i)) from the decision boundary.

MM-Denominator Version: We can use this freedom of scaling the parameters to set mcp(z
i) = 1

for the closest point of any given probing classifier cp(z) , thus all the data points will satisfy the
constraint,

mcp(z
i) = yi · cp(zi) ≥ 1 (3)

giving us the final max-margin objective:

argmax
w

{ 1

∥w∥

}
(4)

under the constraint mcp(z
i) ≥ 1 corresponding to all the points in the dataset.

MM-Numerator Version: Alternatively, one can choose γ such that ∥w∥ = c where c ∈ R is
some constant value. The the modified objective becomes:

argmax
w,b

{
mcp(z

i)
}

(5)

under constraint ∥w∥ = c which is usually set to 1.

We will use one of these formulations in our proofs based on the ease of exposition and give a clear
indication when we do so. One can refer to Chapter 7, Section 7.1 of [5] for further details about
max-margin classifiers and different formulations of the max-margin objective.
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B.2 Problem with learning a clean main-task classifier

In this section, we will restate the assumptions and results of Lemma 3.1 for the main-task classifier
(instead of the probing classifier) and show that the same results will hold.

Assm 3.1 remains the same since it is made on the latent-representation being disentangled and
frozen/non-trainable. Next, parallel to Assm 3.2, we show that even when main-task feature is 100%
predictive of main-task and is linearly separable, the trained main-task classifier will also use the
concept-causal features. Formally,
Assumption B.1 (main-task feature Linear Separability). The main-task features (zm) of the latent
representation (z) for every point are linearly separable/fully predictive for the main-task labels ym,
i.e yim · (ϵ̂m · zi

m + bm) > 0 for all datapoints (xi, yim) for some ϵ̂m ∈ Rdm and bm ∈ R. For the
case of zero-centered latent space, we have bm = 0.

Next similar to Assm 3.3, we define the spurious correlation between main-task and concept label: a
function using only zp may also be able to classify correctly on some non-empty subset of points
w.r.t. main-task label (ym).
Assumption B.2 (Main-Task Spurious Correlation). For a subset of training points S ⊂ Dm, main-
task label ym is linearly separable using zp i.e yim · (ϵ̂p ·zi

p+ bp) > 0 for some ϵ̂p ∈ Rdp and bp ∈ R.
For the case of zero-centered latent space we have bp = 0.

Next we rephrase Lemma 3.1 which shows that for only a few special points if the concept-causal
features zp are linearly-separable w.r.t. to main task classifier ym (Assm B.2), then the main-task
classifier cm(z) will use those features.
Lemma B.1 (Sufficient Condition for Main-task Classifier). Let the latent representation be frozen
and disentangled such that z = [zm, zp] (Assm 3.1), where main-task-features zm be fully predictive
(Assm B.1). Let c∗m(z) = wm · zm be the desired/clean linear main-task classifier trained using
max-margin objective (§B.1) which only uses zm for its prediction. Let zp be the spurious feature
s.t. for the margin points of c∗m(z), zp be linearly-separable w.r.t. task label ym (Assm B.2). Then,
assuming the latent space is centered around 0 (i.e. bm = 0 and bp = 0), the main-task classifier
trained using max-margin objective will be of form cm(z) = wm · zm +wp · zp where wp ̸= 0.

The proof of Lemma B.1 is identical to Lemma 3.1 and is provided in §B.3.

B.3 Proof of Sufficient Condition: Lemma 3.1 and Lemma B.1

Lemma 3.1. Let the latent representation be frozen and disentangled such that z = [zm, zp]
(Assm 3.1), and concept-causal features zp are fully predictive for the concept label yp (Assm 3.2). Let
c∗p(z) = wp · zp where wp ∈ Rdp be the desired clean linear classifier trained using the max-margin
objective (§B.1) that only uses zp for its prediction. Let zm be the main task features, spuriously
correlated s.t. zm are linearly-separable w.r.t. probing task label yp for the margin points of c∗p(z)
(Assm 3.3). Then, assuming a zero-centered latent space (bp = 0), a concept-probing classifier cp
trained using the max-margin objective will use spurious features, i.e., cp(z) = wp · zp +wm · zm
where wm ̸= 0 and wm ∈ Rdm .

In this section we prove that, given the assumption in Lemma 3.1 is satisfied, they are sufficient
for a probing classifier cp(z) to use the spuriously correlated main-task feature zm. See §B.1 for
detailed setup and max-margin training objective. Also, we could use the same line of reasoning to
prove a similar result for the main-task classifier i.e. when conditions in Lemma B.1 are satisfied, the
main-task classifier will use the spuriously correlated concept-causal feature zp. To keep the proof
general for both the lemmas, we prove the result for a general classifier c(z) trained to predict a task
label y. Here the latent representation z be of form z = [zinv, zsp] where zinv are the features which
are causally-derived from the task concept (“invariant” features) and zsp be the features spuriously
correlated to the task label y. With respect to probing classifier cp(z) in Lemma 3.1 zinv := zp and
zsp := zm. Similarly, for the main-task classifier in Lemma B.1, zinv := zm and zsp := zp. For
ease of exposition, we define two categories of classifiers based on which features they use:
Definition B.1 (Purely-Invariant Classifier). A linear classifier of form c(z) = winv · zinv +wsp ·
zsp + b is called "purely-invariant" if it does not use the spurious features zsp i.e., wsp = 0.
Definition B.2 (Spurious-Using Classifier). A linear classifier of form c(z) = winv · zinv +wsp ·
zsp + b is called "spurious-using" if it uses the spurious features zsp i.e. wsp ̸= 0.
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Proof of Lemma 3.1 and B.1. Let cinv(z) = winv · zinv be the clean/purely-invariant classifier
trained using the max-margin objective using the MM-Denominator formulation given in Eq. 4 such
that winv ̸= 0. The classifier cinv(z) is 100% predictive of the task labels y (from Assm 3.2 for the
probing task or Assm B.1 for the main-task). Here the bias term b = 0 since we assume the latent
representation z is zero-centered. The norm of this classifier (cinv(z)) is ∥winv∥ and the distance of
each input latent representation (zi) with class label yi (yi ∈ {−1, 1}) from the decision boundary
(cinv(z) = 0) is given by Eq. 1 i.e.:

Minv(z
i) =

minv(z
i)

∥winv∥
=
yi · cinv(zi)

∥winv∥
=
yi · (winv · zi

inv)

∥winv∥
(6)

Since we have used the MM-Denominator version of max-margin to train cinv(z), from Eq. 3 we have
minv(z

i) = 1 for the margin-points and greater than 1 for rest of the points. Next we will construct a
new classifier parameterized by α ∈ [0, 1] by perturbing the clean/purely-invariant classifier cinv(z)
such that:

cα(z) = α
(
winv · zinv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zsp

)
(7)

where ϵ̂sp ∈ Rdsp is a unit vector in spurious subspace of features, dsp is the dimension of the
spurious feature subspace (zsp). We observe that the norm of this perturbed classifier cα(z) is also
∥winv∥, which is same as the clean/purely-invariant classifier cinv(z). Thus from Eq. 1, the distance
of any input zi with class label yi from the decision boundary of this perturbed classifier cα(z) is
given by:

Mα(z
i) =

mα(zi)

∥winv∥
=
yi · cα(zi)

∥winv∥
(8)

The perturbed classifier will be spurious-using i.e use the spurious feature zsp when α ∈ [0, 1)

since wsp = (∥winv∥
√
1− α2) ̸= 0 for these setting of α. Thus to show that there exist a

spurious-using classifier which has a margin greater than the margin of the purely-invariant classifier,
we need to prove that there exist an α ∈ [0, 1) such that cα(z) has bigger margin than cinv(z) i.e.
minz Mα(z) > minz Minv(z). Since norm of parameters of both the classifier is same, substituting
the expression of Mα and Minv from Eq. 6 and 8, we need to show mα(z

i) > 1 for all zi. We
have:

mα(z
i) = yi ·

(
α
(
winv · zi

inv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

))
(9)

= α ·minv(z
i) + yi∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

)
(10)

Let Sm
y denote the set of margin-points of purely-invariant classifier cinv(z) with class label y having

minv(z) = 1 and Sr
y contain rest of points (non-margin points) having minv(z) > 1 with the class

label y. Here “m” stands for margin-point in superscript of S and “r” stands for rest of point with
label y. In rest of the proof, first we will show that for margin-points zm ∈ (Sm

y=1 ∪ Sm
y=−1), we

need the assumption that spurious feature (zm
sp) be linearly separable with respect to class label y

(Assm 3.3 for probing task or B.2 for main-task) for having mα(z
i) > 1. But for all non-margin

points zr ∈ (Sr
y=1 ∪ Sr

y=−1), we can always choose α ∈ [0, 1) such that mα(z
i) > 1. Below we

handle margin and non-margin of points separately.

Case 1 : Margin Points (Sm
y=1 ∪ Sm

y=−1): For the margin-points in latent space, zm ∈ Sm
y we

have minv(z
m) = 1 and we need to show that there exists α ∈ [0, 1) such that mα(z

m) > 1 for all
zm ∈ Sm

y . From Eq. 10 we have:

mα(z
m) = α · 1 + y∥winv∥

√
1− α2

(
ϵ̂sp · zm

sp

)
> 1 (11)(

∥winv∥
√

1− α2
)
y
(
ϵ̂sp · zm

sp

)
> 1− α (12)

From Assm 3.3 for probing task or B.2 for the main-task, we know that spurious-feature zm
sp of

margin-points zm are linearly-separable w.r.t to task label y. Since ϵ̂sp ∈ Rdsp used in the perturbed
classifier cα(z) is arbitrary, let’s set it to be an unit vector such that y

(
ϵ̂sp · zm

sp

)
> 0 for all

zm ∈ Sm
y (guaranteed by Assm 3.3 or B.2). Also since α ∈ [0, 1) and ∥winv∥ > 0, we have

(∥winv∥
√
1− α2) > 0. Hence the left hand side of Eq. 12 is > 0 for such ϵ̂sp. If Assm 3.3 or
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B.2 (corresponding to the task) wouldn’t have been satisfied then the above equation might have
been inconsistent since right hand side is always > 0; since we need to find a solution to Eq. 12
when α ∈ [0, 1) thus (1 − α) > 0, but left hand side wouldn’t have been always greater than 0.
This shows the motivation why we need Assm 3.3 or B.2 for proving this lemma. Continuing, let
β := (y

(
ϵ̂sp · zm

sp

)
), then squaring both sides and cancelling (1− α) since we need to find a solution

to Eq. 12 when α ∈ [0, 1) =⇒ (1− α) > 0, we get:

∥winv∥2����(1− α)(1 + α)

(
y
(
ϵ̂sp · zm

sp

))2

>����(1− α)(1− α) (13)

∥winv∥2(1 + α)β2 > (1− α) (14)

∥winv∥2β2 + α∥winv∥2β2 > 1− α (15)

α

(
1 + ∥winv∥2β2

)
>

(
1− ∥winv∥2β2

)
(16)

After substituting back the value of β and rearranging we get:

α >

1− ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2

1 + ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2
:= αlb1

y (zm) (17)

Lets define αlb1
y := maxzm∈Sm

y
(αlb1

y (zm)). Since ∥winv∥2 ·
(
y
(
ϵ̂sp · zm

sp

))2

> 0, the right hand

side of above equation αlb1
y (zm) < 1 for all zm ∈ Sm

y =⇒ αlb1
y < 1, which sets a new lower

bound on allowed value of α for which Eq. 12 is satisfied. Thus when α ∈ (αlb1
y , 1), mp(z

m) > 1
for all zm ∈ Sm

y . That is, the perturbed probing classifier cα(z) has larger margin than purely-
invariant/clean classifier cinv(z) for the margin points zm ∈ Sm

y .

Case 2: Non-Margin Points (Sr
y=1 ∪ Sr

y=−1): For the non-margin points zr ∈ Sr
y in the latent

space we have minv(z
r) > 1. Let γ := minzr∈Sr

y

(
minv(z

r)
)

thus we also have γ > 1. Let α ̸= 0
and we choose α such that:

1

α
< γ (18)

α >
1

γ
(19)

Substituting the value of γ we get:

α >
1

minzr∈Sr
y

(
minv(zr)

) = αlb2
y (20)

Since γ > 1, thus right hand side in above equation αlb2
y < 1, which sets a new lower bound on

allowed values of α. Since minv(z
r) ≥ γ > 1

α for all zr ∈ Sr
y for α ∈ (αlb2

y , 1) (Eq. 20), we can
write minv(z

r) = 1
α + η(zr) where η(zr) := (minv(z

r)− 1
α ) > 0 for all zr ∈ Sr

y . Now we need
to show that there exist an α ∈ (αlb2

y , 1) such that mα(z
r) > 1 for all zr ∈ Sr

y . Thus from Eq. 10
we need:

mα(z
r) = α ·minv(z

r) + ∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zr

sp

))
> 1 (21)

α · ( 1
α
+ η(zr)) + ∥winv∥

√
1− α2

(
y
(
ϵ̂sp · zr

sp

))
> 1 (22)

∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zr

sp

))
> −

(
α · η(zr)

)
(23)

Since α ∈ (α2
lb, 1), we have (α · η(zr)) > 0 and ∥winv∥

√
1− α2 > 0. Let’s define δ(zr) :=

y
(
ϵ̂sp · zr

sp

)
. Thus for the latent-points zr ∈ Sr

y which have δ(zr) ≥ 0, Eq. 23 is always satisfied
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since left side of inequality is greater than or equal to zero and right side is always less than zero. For
the points for which δ(zr) < 0 we have:

∥winv∥
√

1− α2 · (−1) · |δ(zr)| > −
(
α · η(zr)

)
(24)

∥winv∥
√

1− α2|δ(zr)| <
(
α · η(zr)

)
(25)

∥winv∥2
(
1− α2

)
δ(zr)2 <

(
α · η(zr)

)2
(26)

∥winv∥2δ(zr)2 < α2 ·
(
η(zr)2 + ∥winv∥2δ(zr)2

)
(27)

α >

√
∥winv∥2δ(zr)2

η(zr)2 + ∥winv∥2δ(zr)2
= αlb3

y (zr) (28)

Now different zr will have different η(zr) which will give different lower bound of α. Since the
mα(z

r) > 1 has to be satisfied for every point in zr ∈ Sr
y we will choose the maximum value of

αlb3
y (zr) which will give tightest lower bound on value of α. Lets define αlb3

y := maxzr∈Sr
y
(zr),

then for mα(z
r) > 1, we need α > αlb3

y . Also, since for all zr ∈ Sr
y , η(zr) > 0 we have

αlb3
y (zr) < 1 =⇒ αlb3

y < 1.

Finally, combining all the lower bound of α from Eq. 17, Eq. 20 and Eq. 28 let the overall lower
bound of α be αlb given by:

αlb = max{αlb1
y=1, α

lb1
y=−1, α

lb2
y=1, α

lb2
y=−1, α

lb3
y=1, α

lb3
y=−1, } (29)

This provides a way to construct a spurious-using classifier: given any purely-invariant classifier, we
can always choose α ∈ (αlb, 1) and construct a perturbed spurious-using classifier from Eq. 7 which
has a bigger margin than purely-invariant. Thus, given all the assumptions, there always exists a
spurious-using classifier which has greater margin than the purely-invariant classifier.

B.4 Proof of necessary condition

In this section we will show that Assm 3.3 is also a necessary condition for the probing classifier to
use the spuriously correlated main task features (zm) when the dimension of concept-causal feature
dp = 1. That is, the probing classifier will use the spurious features if and only if spurious features
satisfy Assm 3.3 for the margin points of the clean/purely-invariant (Def B.1) probing classifier when
the concept-causal feature is 1-dimensional. Also, same line of reasoning will hold for the main-task
classifier where we will show that main-task classifier will use the spurious feature (zp) iff spurious
feature satisfies Assm B.2 for the margin point of clean main-task classifier. Formally:
Lemma B.2 (Necessary Condition for concept-Probing Classifier). Let the latent representation be
frozen and disentangled (Assm 3.1) such that z = [zm, zp] where zp is the concept-causal feature
which is 1-dimensional scalar and fully predictive (Assm 3.2) and zm ∈ Rdm . Let c∗p(z) = wp · zp
be the desired clean/purely-invariant probing classifier trained using max-margin objective which
only uses zp for prediction. Then the probing classifier trained using max-margin objective will be
spurious-using i.e. cp(z) = wp · zp +wm · zm where wm ̸= 0 iff the spurious feature zm is linearly
separable w.r.t to probing task label yp for the margin point of c∗p(z) (Assm 3.3).
Lemma B.3 (Necessary Condition for Main-task Classifier). Let the latent representation be frozen
and disentangled (Def 3.1) such that z = [zm, zp] where zm is the main-task feature which is
1-dimensional scalar and fully predictive (Assm B.1) and zp ∈ Rdp . Let c∗m(z) = wm · zm be the
desired clean/purely-invariant main-task classifier trained using max-margin objective which only
uses zm for prediction. Then the main-task classifier trained using max-margin objective will be
spurious-using i.e. cm(z) = wm · zm +wp · zp where wp ̸= 0 iff the spurious feature zp is linearly
separable w.r.t to main task label ym for the margin point of c∗m(z) (Assm B.2) .

Since proof of both Lemma B.2 and B.3 follows same line of reasoning, hence for brevity, following
§B.3, we will prove the lemma for a general classifier c(z) trained using max-margin objective to
predict the task-label y. Let the latent representation be of form z = [zinv, zsp] where zinv ∈ R is
the feature causally derived from the task concept and zsp ∈ Rd

sp is the feature spuriously correlated
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to task label y. With respect to probing classifier cp(z) in Lemma B.2 zinv := zp and zsp := zm.
Similarly, for the main-task classifier in Lemma B.3, zinv := zm and zsp := zp.

Proof of Lemma B.2 and B.3. Our goal is to show that Assm 3.3 for probing classifier or Assm B.2
for the main-task classifier is necessary for obtaining a spurious-using classifier for the case when
zinv is one-dimensional. We show this by assuming that optimal classifier is spurious-using even
when Assm 3.3 or B.2 breaks and then show that this will lead to contradiction.

Contradiction Assumption: Formally, let’s assume that Assm 3.3 or B.2 is not satisfied for probing or
main task respectively, and the optimal classifier for the given classification task is spurious-using
c∗(z), where:

c∗(z) = w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp) (30)

where ∥w∗
sp∥ ≠ 0 and ŵ∗

sp ∈ Rdsp is a unit vector in spurious-feature subspace with dimension dsp.

Let cinv(z) = winv · zinv be the optimal purely-invariant classifier. Let both c∗(z) and cinv(z) be
trained using the max-margin objective using MM-Denominator formulation in Eq. 4. Thus from the
constraints of this formulation (Eq. 3), for all z we have:

m∗(z) = y · c∗(z) = y · (w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp)) ≥ 1 ,& (31)

minv(z) = y · cinv(z) = y · (winv · zinv) ≥ 1 (32)

From Assm 3.2 or B.1, the invariant feature zinv is 100% predictive and linearly separable w.r.t task
label y. Then without loss of generality let’s assume that:

zinv > 0, when y = +1 (33)
zinv < 0, when y = −1 (34)

From Eq. 33 and 34 we have y · zinv > 0 thus from Eq. 32 we get:

winv ≥ 0 (35)

Also, from our contradiction-assumption the max-margin trained classifier is spurious-using, thus the
norm of parameters of c∗(z) is less or equal to cinv(z) (Eq. 4). Thus we have:√

(w∗
inv)

2 + (∥w∗
sp∥)2 ≤ |winv| (36)

=⇒ |w∗
inv| < |winv| (∥w∗

sp∥ ≠ 0) (37)

=⇒ |w∗
inv| < winv (winv ≥ 0, Eq. 35) (38)

=⇒ w∗
inv < winv (39)

Form our contradiction-assumption, Assm 3.3 for concept-probing task or Assm B.2 for the main-task
breaks by one of the following two ways:

1. Opposite Side Failure: This occurs when the spurious part of margin points (of cinv(z))
on opposite sides of decision-boundary of the optimal task classifier (c∗(z) = 0) are
not linearly-separable with respect to task label y. Formally, there exist two datapoints,
Pm+ := [zm+

inv , z
m+
sp ] and Pm− := [zm−

inv , z
m−
sp ] such that they are margin points of purely-

invariant classifier cinv(z) where Pm+ has class label y = +1 and Pm− has class label
y = −1 and ∀ϵ̂sp ∈ Rdsp , the spurious feature zsp of both the points lies on same side of
ϵ̂sp i.e: (

(ϵ̂sp · zm+
sp ) · (ϵ̂sp · zm−

sp )
)
≥ 0 (40)

2. Same Side Failure: This occurs when the spurious part of margin points (of cinv(z)) on
same side of decision-boundary (c∗(z) = 0) are linearly-separable. Formally, there exist
two datapoints, Pm1

y := [zm1
inv, z

m1
sp ] and Pm2

y := [zm2
inv, z

m2
sp ] such that they are margin

points of purely-invariant classifier cinv(z) and both points have same class label y and
∀ϵ̂sp ∈ Rdsp , w.l.o.g we have:(

(ϵ̂sp · zm1
sp ) · (ϵ̂sp · zm2

sp )
)
≤ 0. (41)
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We will use the following two lemma to proceed with our proof:
Lemma B.4. If Assm 3.3 or B.2 breaks by opposite-side failure mode, it leads to contradiction.
Lemma B.5. If Assm 3.3 or B.2 breaks by same-side failure mode, it leads to contradiction.

This implies that our contradiction-assumption which said that the max-margin trained optimal
classifier is spurious-using even when Assm 3.3 or B.2 breaks, is wrong. Thus Assm 3.3 for concept-
probing task or Assm B.2 for main-task is necessary for the optimal max-margin classifier to be
spurious-using. This completes our proof.

Proof of Lemma B.4. We have two points, Pm+ := [zm+
inv , z

m+
sp ] and Pm− := [zm−

inv , z
m−
sp ], which

break the Assm 3.3 or B.2. From Eq. 33, zinv > 0 for all the points with label y = 1, thus we have
zm+
inv > 0 and using Eq. 39 (w∗

inv < winv) we get:

w∗
inv < winv (42)

w∗
inv · zm+

inv < winv · zm+
inv (43)

w∗
inv · zm+

inv < 1 (44)

where the right hand side winv · zm+
inv = 1 since Pm+ is the margin-point of cinv(z) (Eq. 32).

Similarly from Eq. 34, zinv < 0 for all the points with label y = −1, thus we have zm−
inv < 0 and

using Eq. 39 (w∗
inv < winv) we get:

w∗
inv < winv (45)

(−1) · w∗
inv · zm−

inv < (−1) · winv · zm−
inv (46)

(−1) · w∗
inv · zm−

inv < 1 (47)

where the right hand side (−1) · (wp
inv ·z

m−
inv ) = 1 since Pm− is the margin-point of cinv(z) (Eq. 32).

Next from Eq. 31 we have m∗(z) ≥ 1 for all z hence it is also true for Pm+ with y = 1 and Pm−

with y = −1. Then:

m∗(P
m+) = y · c∗(Pm+) = 1 ·

{
w∗

invz
m+
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm+
sp

)}
≥ 1 (48)

=⇒ w∗
invz

m+
inv + ∥w∗

sp∥ · βm+ ≥ 1 (49)

=⇒ w∗
invz

m+
inv ≥ 1− ∥w∗

sp∥ · βm+ (50)

where βm+ =
(
ŵ∗

sp · zm+
sp

)
. Also we have:

m∗(P
m−) = y · c∗(Pm−) = −1 ·

{
w∗

invz
m−
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm−
sp

)}
≥ 1 (51)

=⇒ −w∗
invz

m−
inv − ∥w∗

sp∥ · βm− ≥ 1 (52)

=⇒ −w∗
invz

m−
inv ≥ 1 + ∥w∗

sp∥ · βm− (53)

where βm− =
(
ŵ∗

sp ·zm−
sp

)
. From Eq. 40 we have

(
(ϵ̂sp ·zm+

sp ) ·(ϵ̂sp ·zm−
sp )

)
≥ 0 for all ϵ̂sp ∈ Rdsp

which states the opposite-side failure of Assm 3.3 or B.2. Thus:

βm+ · βm− ≥ 0 (54)

Now we will show that Eq. 44, 47, 50 and 53 cannot be satisfied simultaneously for any allowed
value of βm+ and βm− (given by Eq. 54) which are:

1. βm+ > 0 and βm− > 0: From Eq. 53 we have −w∗
invz

m−
inv > 1 since ∥w∗

sp∥ ̸= 0 and
βm− > 0. But from Eq. 47 we have −w∗

invz
m−
inv < 1 which is a contradiction.

2. βm+ < 0 and βm− < 0: From Eq. 50 we have w∗
invz

m+
inv > 1 since ∥w∗

sp∥ ≠ 0 and
βm+ < 0. But from Eq. 44 we have w∗

invz
m+
inv < 1 which is a contradiction.

3. βm+ = 0 and βm− ∈ R: From Eq. 50 we have w∗
invz

m+
inv ≥ 1 but from Eq. 44 we have

w∗
invz

m+
inv < 1 which is a contradiction.
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4. βm+ ∈ R and βm− = 0: From Eq. 53 we have −w∗
invz

m−
inv ≥ 1 but from Eq. 47 we have

−w∗
invz

m−
inv < 1 which is a contradiction.

Thus we have a contradiction for all the possible values βm+ and βm− could take, completing the
proof of this lemma.

Proof of Lemma B.5. We have two margin-points, Pm1
y := [zm1

inv, z
m1
sp ] and Pm2

y := [zm2
inv, z

m2
sp ],

which break Assm 3.3 or B.2. From Eq. 33 and Eq. 34 we have y · zm1
inv > 0 and y · zm2

inv > 0. Using
Eq. 39 (w∗

inv < winv) we get:
w∗

inv < winv (55)

w∗
inv · (y · z

mj
inv) < winv · (y · zmj

inv) (56)

y · (w∗
inv · z

mj
inv) < 1 (57)

where j ∈ {1, 2} and right hand side winv · (y · zmj
inv) = 1 since Pmj

y is the margin point of
purely-invariant classifier cinv(z) (Eq. 32).

From Eq. 31 we have m∗(z) ≥ 1 for all z thus also true for Pm1
y and Pm2

y . Then:

m∗(P
m1
y ) = y · c∗(Pm1

y ) = y ·
{
w∗

invz
m1
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm1
sp

)}
≥ 1 (58)

=⇒ y · (w∗
invz

m1
inv) + y · (∥w∗

sp∥ · βm1) ≥ 1 (59)

=⇒ y · (w∗
invz

m1
inv) ≥ 1− y · (∥w∗

sp∥ · βm1)
(60)

where βm1 =
(
ŵ∗

sp · zm1
sp

)
. Also we have:

m∗(P
m2
y ) = y · c∗(Pm2

y ) = y ·
{
w∗

invz
m2
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm2
sp

)}
≥ 1 (61)

=⇒ y · (w∗
invz

m2
inv) + y · (∥w∗

sp∥ · βm2) ≥ 1 (62)

=⇒ y · (w∗
invz

m2
inv) ≥ 1− y · (∥w∗

sp∥ · βm2)
(63)

where βm2 =
(
ŵ∗

sp · zm2
sp

)
. Now from Eq. 41 we have

(
(ϵ̂sp · zm1

sp ) · (ϵ̂sp · zm2
sp )

)
≤ 0 for all unit

vectors ϵ̂sp ∈ Rdsp which states the same-side failure mode of Assm 3.3 or B.2. Thus we have:

βm1 · βm2 ≤ 0 (64)

Now we will show that for all allowed values of βm1 and βm2, Eq. 57, 60 and 63 will lead to a
contradiction. Following are the cases for different allowed values of βm1 and βm2:

1. βm1 = 0 and βm2 ∈ R: Substituting βm1 = 0 in Eq. 60 we get y · (w∗
invz

m1
inv) ≥ 1, but

from Eq. 57 we have y · (w∗
invz

m1
inv) < 1. Thus we have a contradiction.

2. βm1 ∈ R and βm2 = 0: Substituting βm2 = 0 in Eq. 63 we get y · (w∗
invz

m2
inv) ≥ 1, but

from Eq. 57 we have y · (w∗
invz

m2
inv) < 1. Thus we have a contradiction.

3. The only case which is left now is when both βm1 and βm2 is non-zero but of opposite sign.
Without loss of generality, let βm1 > 0, βm2 < 0 and y = (+1): Substituting βm2 < 0 and
y = (+1) in Eq. 63 we get y · (w∗

invz
m2
inv) ≥ 1, but from Eq. 57 we have y · (w∗

invz
m2
inv) < 1.

Thus we have a contradiction.

4. βm1 > 0, βm2 < 0 and y = (−1): Substituting βm1 > 0 and y = (−1) in Eq. 60 we
get y · (w∗

invz
m1
inv) ≥ 1, but from Eq. 57 we have y · (w∗

invz
m1
inv) < 1. Thus we have a

contradiction.

Thus we have a contradiction for all the possible values βm1, βm2 and y could take, completing the
proof of this lemma.
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C Null-Space Removal Failure: Setup and Proof of Theorem 3.2

C.1 Null-Space Setup

As described in §3, the given main-task classifier have an encoder h : X → Z mapping the input
X to latent representation Z. Post that, the main-task classifier cm : Z → Ym is used to predict the
main-task label yim from latent representation zi for every input xi. Given this (pre) trained main-task
classifier the goal of a post-hoc removal method is to remove any undesired/sensitive/spurious concept
from the latent representation Z without retraining the encoder h or main-task classifier cm(z).

The null space method [32, 13], henceforth referred to as INLP, is one such post-hoc removal method
that removes a concept from latent space by projecting the latent space to a subspace that is not
discriminative of that attribute. First, it estimates the subspace in the latent space discriminative
of the concept we want to remove by training a probing classifier cp(z) → yp, where yp is the
concept label. [32] used a linear probing classifier (cp(z)) to ensure that the any linear classifier
cannot recover the removed concept from modified latent representation z′ and hence the main task
classifier (cm(z′)), which is also a linear layer, become invariant to removed attribute. Let linear
probing classifier cp(z) be parametrized by a matrix W , and null-space of matrix W is defined as
space N(W ) = {z|Wz = 0}. Give the basis vectors for the N(W ) we can construct the projection
matrix PN(W ) such that W (PN(W )z) = 0 for all z. This projection matrix is defined as the guarding
operator g := PN(W) (estimated by cp(z)), when applied on the z will remove the features which
are discriminative of undesired concept from z. For the setting when Yp is binary we have:

PN(W ) = I − ŵŵT (65)

where I is the identity matrix and ŵ is the unit vector in the direction of parameters of classifier
cp(z) ([32]). Also, the authors recommend running this removal step for multiple iterations to ensure
that the unwanted concept is removed completely. Thus after S steps of removal, the final guarding
function is:

g :=

S∏
i=1

P i
N(W ) (66)

where P i
N(W ) is the projection matrix at ith removal step. Amnesic Probing ([13]) builds upon this

idea for testing whether concept is being used by a given pre-trained classifier or not. The core
idea is to remove the concept we want to test from the latent representation. If the prediction of the
given classifier is influenced by this removal then the concept was being used by the given classifier
otherwise not.

C.2 Null-Space Removal Failure : Proof of Theorem 3.2

Theorem 3.2. Let cm(z) be a pre-trained main-task classifier where the latent representation
z = [zm, zp] satisfies Assm 3.1 and 3.2. Let cp(z) be the probing classifier used by INLP to remove
the unwanted features zp from the latent representation. Under Assm 3.3, Lemma 3.1 is satisfied for
the probing classifier cp(z) such that cp(z) = wp · zp +wm · zm and wm ̸= 0. Then,

1. Damage in the first step of INLP. The first step of linear-INLP will corrupt the main-task features
and this corruption is non-invertible with subsequent projection steps of INLP.

(a) Mixing: If wp ̸= 0, the main task zm and concept-causal features zp will get mixed such that
zi(1) = [g(zi

m, z
i
p), f(z

i
p, z

i
m)] ̸= [g(zi

m), f(zi
p)] for some function “f” and “g”. Thus, the

latent representation is no longer disentangled and removal of concept-causal features will
also lead to removal of main task features.

(b) Removal: If wp = 0, then the first projection step of INLP will do opposite of what is
intended, i.e., damage the main task features zm (in case zm ∈ R, it will completely remove
zm) but have no effect on the concept-causal features zp.

2. Removal in the long term: The L2-norm of the latent representation z decreases with every projec-
tion step as long as the parameters of probing classifier (wk) at a step “k” does not lie completely
in the space spanned by parameters of previous probing classifiers, i.e., span(w1, . . . ,wk−1),
zi(k−1), zi(0) and zi(0) in direction of wk is not trivially zero. Thus, after sufficiently many steps,
INLP can destroy all information in the representation s.t. zi(∞) = [0,0].
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The proof of Theorem 3.2 proceeds in following steps:

1. First using Lemma 3.1, we show that even under very favourable conditions probing classifier
will not be clean i.e will also use other features in addition to concept-causal feature for it’s
prediction. Then, for the more likely case when probing classifier uses both main-task and
concept-causal feature, we show that after first step of null-space projection (INLP), both
the main-task features and concept-causal features get mixed.

2. Next, for the extreme case when probing classifier uses only main-task feature, the first step
of INLP will do opposite of what is intended. It will damage the main-task feature but will
have no effect on the concept-causal feature which we wanted to remove from latent space
representation.

3. In addition, we also show that the damage or mixing of latent space after first step of
INLP projection cannot be corrected in subsequent step since the projection operation is
non-invertible.

4. Next, we show that the projection operation is lossy, i.e removes the norm of latent repre-
sentation under some conditions. Hence after sufficient steps, INLP could destroy all the
information in latent representation.

Proof of Theorem 3.2. First Claim (1a). Let cp(z) = wpzp+wmzm be the linear probing classifier
trained to predict the concept label yp from the latent representation z. Since all the assumptions of
Lemma 3.1 are satisfied for the probing classifier cp(z), it is spurious using, i.e., wm ̸= 0 and for the
claim 1(a) we have wp ̸= 0. Since the concept label yp is binary, the projection matrix for the first
step of INLP removal is defined as P 1

N(W ) = I − ŵŵT where ŵT = [ŵm, ŵp], ŵm and ŵp are the
unit norm parameters of cp(z) i.e wm and wp respectively. On applying this projection on the latent
space representation zi we get new projected representation zi(1) s.t.:[

z
i(1)
m

z
i(1)
p

]
=

(
I −

[
ŵm

ŵp

]
[ŵm ŵp]

)[
zi
m

zi
p

]
(67)

=

[
zi
m

zi
p

]
− ĉp(z

i) ·
[
ŵm

ŵp

]
define ĉp(zi) := ŵm · zi

m + ŵp · zi
p (68)

=

[
zi
m − ĉp(z

i)ŵm

zi
p − ĉp(z

i)ŵp

]
(69)

=

[
g(zi

m, z
i
p)

f(zi
m, z

i
p)

]
(70)

Next, we will show that the main task features and probing features get mixed after projection. To
do so, we first show that g(zi

m, z
i
p) ̸= g(zi

m) for some function g i.e projected main task features

z
i(1)
m = g(zi

m, z
i
p) are not independent of probing features zi

p. From Eq. 69, we have:

zi(1)
m = g(zi

m, z
i
p) (71)

= zi
m − (ŵm · zi

m + ŵp · zi
p)ŵm (72)

= (I − ŵmŵT
m)zi

m − (ŵp · zi
p)ŵm (73)

In this case we are given wp ̸= 0 and wm ̸= 0. Since zi
p can take any value (subject to Assm 3.2),

ŵp · zi
p is not trivially zero for all zi

p =⇒ (ŵp · zi
p)ŵm ̸= 0. Thus g(zi

m, z
i
p) is not independent of

zi
p.

Next, we will show that f(zi
m, z

i
p) ̸= f(zi

p) for some function f i.e projected probing feature

z
i(1)
p = f(zi

m, z
i
p) is not independent of the main task feature zi

m. From Eq. 69, we have:

zi(1)
p = f(zi

m, z
i
p) (74)

= zi
p − (ŵm · zi

m + ŵp · zi
p)ŵp (75)

= (I − ŵpŵ
T
p )z

i
p − (ŵm · zi

m)ŵp (76)
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Again, in this case we are given wp ̸= 0 and wm ̸= 0. Since zi
m can take any value (subject to

Assm 3.3), ŵm · zi
m is not trivially zero for all zi

m =⇒ (ŵm · zi
m)ŵp ̸= 0. Thus f(zi

m, z
i
p) is not

independent of zi
m. Hence both concept-feature zp and the main-task feature zm got mixed after the

first step of projection.

Next, we will show that this mixing of the main task and concept-causal feature cannot be corrected in
subsequent steps of null-space projection. Formally, the following Lemma C.1 proves that the above
projection matrix (P 1

N(W )) which resulted in mixing of features is non-invertible. The subsequent
steps of INLP applies projection transformation which can be combined into one single matrix
P>1
N(W ) =

∏
j>1 P

j
N(W ). In order for mixing to be reversed, we need P>1

N(W ) × P 1
N(W ) = I , thus

we need P>1
N(W ) = (P 1

N(W ))
−1 which is not possible from Lemma C.1. Hence the mixing of the

main-task feature and the concept-causal feature which happened after the first step of projection
cannot be corrected in the subsequent steps of INLP thus completing the first claim of our proof.
Lemma C.1. The projection matrix P j

N(W ) at any projection step of INLP is non invertible.

Proof of Lemma C.1. The projection matrix for binary target case is defined as P := P j
N(W ) = I−A

where A = ŵŵT be a n × n matrix and w is the parameter vector of the probing classifier cp(z)
trained at jth-step of INLP. We can see that A is a symmetric matrix. Every symmetric matrix
is diagonalizable (Equation W.9 in [11]), hence we can write A = QΛQT , where Q is a some
orthonormal matrix such that QQT = I and Λ = diag(λ1, . . . , λn) be a n × n diagonal matrix
where the diagonal entries (λ1 . . . λn) are the eigen-values of A. Since QQT = I we can write
P = I − A = QQT −QΛQT = Q(I − Λ)QT . Next, for the projection matrix P to be invertible
P−1 should exist. We have:

P−1 =
(
Q(I − Λ)QT

)−1

(77)

= (QT )−1(I − Λ)−1Q−1 (78)

= Q(I − Λ)−1QT (79)

So projection matrix is only invertible when (I − Λ) is invertible. We will show next that (I − Λ) is
not invertible thus completing our proof. We have I − Λ = diag(1− λ1, . . . , 1− λn), hence:

(I − Λ)−1 = diag(
1

1− λ1
, . . . ,

1

1− λ2
) (80)

Now, if one of the eigenvalues of A is 1, then the diagonal matrix (I − Λ) is not invertible. If one
of the eigenvalues of A is 1, then there exist an eigenvector x such that Ax = ŵŵT × x = 1× x.
The vector x = ŵ is the eigenvector of A with eigenvalue 1: Aŵ = ŵŵT × ŵ = 1 × ŵ since
ŵT × ŵ = 1 as it is a unit vector. Hence the projection matrix is not invertible.

First Claim (1b). For a probing classifier of form c
(1)
p (z) = wp · zp +wm · zm for the first step of

INLP projection —denoted by superscript (1)— trained to predict concept label yp and Assm 3.1,3.2
and 3.3 of Lemma 3.1 is satisfied then we have wm ̸= 0 i.e main task feature zm will be used by
probing classifier along with the concept feature zp. For this second case, we are given that wp = 0
i.e probing classifier will not use concept feature at all. This is only possible when the main-task
feature is fully predictive of the concept label i.e Assm 3.3 is satisfied for all the points in the dataset,
otherwise optimal probing classifier will use the concept-causal feature to achieve better margin and
accuracy. Moreover, even if we assume Assm 3.3 is satisfied for all the points in the dataset, to have
wp = 0, the margin achieved by probing classifier using only main task feature (zm) should be
bigger than any other classifier i.e one using both the main-task feature and probing feature or using
probing feature alone. Thus, it is very unlikely that the optimal probing classifier will have wp = 0.

Having said this, even in the case when we have wp = 0, we show that the first projection step of
INLP will do something unintended, i.e., damage the main-task features while having no effect on
concept-causal features which we intended to remove. First, we will show that main-task features
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will get damaged. From Eq. 73 we have:

zi(1)
m = (I − ŵmŵT

m)zi
m − (ŵp · zi

p)ŵm (81)

= zi
m − (ŵm · zi

m)ŵm − 0 (since wp = 0) (82)

Since wm ̸= 0 and zi
m can take any value (subject to Assm 3.3), ŵm · zi

m is not trivially zero for all
the zi

m =⇒ (ŵm · zi
m)ŵm ̸= 0. Thus, projected main-task feature z

i(1)
m ̸= zi

m. In case zm ∈ R,
we have ŵm = ẑi

m, thus (ŵm · zi
m)ŵm = zi

m. Consequently, zi(1)
m = zi

m − zi
m = 0. Thus, first

projection step of INLP leads to complete removal of main-task feature zm when zm ∈ R. Also,
from Lemma C.1, this projection step is non-invertible and hence the main-task feature cannot be
recovered back in the subsequent projection step.

Next, we will show the first projection step has no effect on the concept-causal features which we
wanted to remove in the first place. From Eq. 76, we have:

zi(1)
p = (I − ŵpŵ

T
p )z

i
p − (ŵm · zi

m)ŵp (83)

= zi
p − 0− 0 (since wp = 0) (84)

Thus the first step of projection has no effect on the concept-causal feature we wanted to remove. In
the next step of projection, if we again have wp = 0, then this same case will repeat. Otherwise if
Assm 3.3 still holds for main-task feature for the margin points of optimal probing classifier c∗(2)p (z)
for this second step of projection, then we will have both wm ̸= 0 and wp ̸= 0 and the first case of
this theorem will apply.

Second Claim. Now for proving the second statement, we will make use of the following lemma.
The proof of the lemma is given below the proof of this theorem.
Lemma C.2. After every projection step of INLP, the norm of every latent representation zi decreases,
i.e., ∥zi(k)∥ < ∥zi(k−1)∥ for step k and k−1, if (1) zi(k−1) ̸= 0, (2) zi(0)

ŵk ̸= 0 and (3) the parameters
of probing classifier in step “k” i.e ŵk don’t lie in the space spanned by parameters of previous
probing classifier, span(ŵ1, . . . , ŵk−1).

Next, we will show that starting from the first step, at every kth-step of projection either we will have
zi(k) = 0 or the norm will decrease after projection. Once we reach a step when zi(k) = 0, then
after every subsequent projection we will have zi(k+1) = 0 =⇒ ∥zi(k+1)∥ = 0 since:

zi(k+1) = PN(wk)z
i(k) = PN(wk)0 = 0 (85)

where PN(wk) is the projection matrix at step "k". Since ∥·∥ ≥ 0 and ∥zi(k)∥ is decreasing with
every stey, thus with large number of zi(∞) → 0.

We will start with the first step of projection. In the second statement of this Theorem 3.2, we are
given that zi(0) is not trivially zero in direction of w0 i.e z

i(0)
w0 ̸= 0 (satisfying Assm(2) of above

Lemma C.2). We are also given that zi(0) ̸= 0 (satisfying Assm(1) of above lemma) and since this is
the first step of projection Assm(3) of above Lemma C.2) is also satisfied. Thus from Lemma C.2, we
have ∥zi(1)∥ < ∥zi(0)∥. Now, either zi(1) = 0, which will imply that ∥zi(1)∥ = 0 and will remain 0
for all subsequent step (from Eq. 85). Otherwise if zi(1) ̸= 0, it satisfies the Assm(1) of Lemma C.2,
for next step of projection. Since Assm (2) and (3) are already satisfied (from the assumption in the
second claim of Theorem 3.2), again we will have ∥zi(2)∥ < ∥zi(1)∥ and the same idea will repeat
eventually making zi(k) = 0 at some step-k, thus completing our proof.

Proof of Lemma C.2. After (k − 1)-steps of INLP let the latent space representation zi be denoted
as zi(k−1). Let ŵk be the parameters of classifier cp(zk−1) trained to predict the concept label yp
which we want to remove at step k. Then prior to the projection step in the kth iteration of the INLP,
we can write zi(k−1) as:

z
i(k−1)
B = z

i(k−1)

ŵk ŵk + z
i(k−1)

N(ŵk)
N(ŵk) (86)
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where B = {ŵk, N(ŵk)} is the basis set and N(ŵk) is the null-space of ŵk . The parameter ŵk in
this new basis is:

ŵk
B = Iŵkŵk + 0N(ŵk) (87)

where Iŵk is identity matrix with dimension dŵk × dŵk . Now, in the new basis when we project the
zk−1 to the null space of ŵi(k) we have:

zi(k) = PN(ŵk)z
i(k−1) (88)

z
i(k)
B =

(
I − ŵk

B(ŵ
k
B)

T )
)
z
i(k−1)
B (89)

=

(
I −

[
Iŵk

0

]
[Iŵk 0]

)[
z
i(k−1)

ŵk

z
i(k−1)

N(ŵk)

]
(90)

=

[
z
i(k−1)

ŵk

z
i(k−1)

N(ŵk)

]
−
[
z
i(k−1)

ŵk

0

]
(91)

=

[
0

z
i(k−1)

N(ŵk)

]
(92)

Thus the norm of ∥zi(k)∥ =
√

∥zi(k−1)

N(ŵk)
∥+ 0 is less than ∥zk−1∥ =

√
∥zi(k−1)

ŵk ∥2 + ∥zi(k−1)

N(ŵk)
∥2 if

z
i(k−1)

ŵk ̸= 0. Next we will show that zi(k−1)

ŵk cannot be zero. From assumption (2) in C.2 z
i(0)

wk ̸= 0

i.e z
i(0)

wk is not trivially zero in the given latent representation zi(0) before any projection from INLP,

thus zi(k−1)

ŵk is not trivially zero from beginning. Also, from Eq. 92, we observe that at any step “k”

INLP removes the part of the representation from zi(k−1) which is in the direction of ŵk i.e. zi(k−1)

ŵk .
Consequently, a sequence of removal steps with parameters ŵ1, . . . , ŵk−1 will remove the part of
z which lies in the span(ŵ1, . . . , ŵk−1). Thus zi(k−1)

ŵk = 0 if ŵk lies in the span of parameters of
previous classifier i.e span(ŵ1, . . . , ŵk−1) which violates the assumption (3) in Lemma C.2. Thus
z
i(k−1)

ŵk is neither trivially zero from the beginning nor it could have been removed in the previous
steps of projection as long as the assumption in Lemma C.2 is satisfied, which completes our proof of
the lemma.

Remark. The following lemma from [32] tells us some of the sufficient conditions when the parame-
ters of the probing classifier at the current iteration will not be same as the previous step.
Lemma C.3 (Lemma A.1 from [32]). If the concept-probing classifier is being trained using SGD
(stochastic gradient descent) and the loss function is convex, then parameters of the probing classifier
at step k, wk, are orthogonal to parameters at step k − 1, wk−1.

We conjecture that Lemma C.3 will be true for any loss since after k − 1 steps of projection, the
component of z in the direction of span(w1, . . . ,wk−1) will be removed. Hence the concept-probing
classifier at step k should be orthogonal to span(w1, . . . ,wk−1) in order to have non-random guess
accuracy on probing task.

D Adversarial Removal: Setup and Proof

D.1 Adversarial Setup

As described in §3.3, let h : X → Z be an encoder mapping the input x to latent representation z.
The main task classifier cm : Z → Ym is applied on top of z to predict the main task label ym for
every input x. As described in §3.3, the goal of an adversarial removal method, henceforth referred
as AR, is to remove any undesired/sensitive/spurious concept from the latent representation z. Once
the concept is removed from the latent representation, any (main-task) classifier using the latent
representation Z will not be able to use it [15, 48, 12]. These methods jointly train the main-task
classifier cm(z) and the probing classifier cp : Z → Yp. The probing classifier is adversarially
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trained to predict the concept label yip from latent representation zi. Hence, AR methods optimize
the following two objectives simultaneously:

argmin
cp

L(cp(h(x)), yp) (93)

argmin
h,cm

{
L(cm(h(x), ym)− L(cp(h(x), yp)

}
(94)

Here L(·) is a loss function which estimates the error given the ground truth ym/yp and corresponding
prediction cm(z)/cp(z). The above adversarial objective between the encoder and probing classifier
is a min-max game. The encoder wants to learn a latent representation z s.t. it maximize the loss
of probing classifier but at the same time probing classifier tries to minimize it’s loss. The desired
solution and simultaneously a valid equilibrium point of the above min-max objective is an encoder h
such that it removes all the features from latent space that are useful for prediction of yp while keeping
intact other features causally derived from the main task prediction. In practice, the optimization to
above objective is performed using a gradient-reversal (GRL) layer ([15]). It introduces an additional
layer gλ between the latent representation h(z) and the adversarial classifier cp(z). The gλ layer acts
as an identity layer (i.e., has no effect) during the forward pass but scales the gradient by (−λ) when
back-propagating it during the backward pass. Thus resulting combined objective is:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + L(cp(gλ(h(z))), yp)

}
(95)

Setup for theoretical result: As stated in Theorem 3.3, for our theoretical result showing the
failure mode of adversarial removal, we assume that the encoder is divided into two sub-parts. The
first encoder i.e h1 : X → Z is frozen (non-trainable) and maps the input xi to intermediate latent
representation zi which is frozen and disentangled (Assm 3.1). The second encoder h2 : Z → ζ is a
linear transformation mapping the intermediate latent representation zi to final latent representation
ζi and is trainable. On top of this final latent representation ζi, we train the main task classifier
cm(ζi) and probing classifier cp(ζi). Thus the training objective from Eq. 93 and 94 becomes:

argmin
cp

L(cp(h2(z)), yp) (96)

arg min
h2,cm

{
L(cm(h2(z), ym)− L(cp(h2(z), yp)

}
(97)

D.2 Adversarial Proof

For a detailed discussion of adversarial training objective and specific setup for our theoretical result
refer §D.1.

We formally state the new assumption made in the second statement of Theorem 3.3. This assumption
imposes constraints on strength of correlation between main task label and concept-causal feature i.e
it requires the concept-causal feature to be more predictive of main task label than for probing task.
Assumption D.1 (Strength of Correlation). Let ŵp ∈ Rdp be the unit vector s.t. zp is linearly
separable for concept-label yp (see Assm 3.2) and let h∗2(z) be the desired encoder which is successful
in removing the concept-causal features zp from ζ. Then, concept-causal features zM

p of any margin
point zM of cm(h∗2(·)) is more predictive of the main task than concept-causal features zP

p of any
margin-point zP of cp(h∗2(·)) for probing task by a factor of |β| ∈ R where |β| is the norm of
parameter of probing classifier cp(h∗2(·)) i.e ym(ŵp · zM

p ) > |β|yp(ŵp · zP
p ).

Theorem 3.3. Let the latent representation z satisfy Assm 3.1 and be frozen, h2(z) be a linear
transformation over Z s.t. h2 : Z → ζ, the main-task classifier be cm(ζ) = wcm · ζ, and the
adversarial probing classifier be cp(ζ) = wcp · ζ. Let all the assumptions of Lemma B.1 be satisfied
for main-classifier cm(·) when using z directly as input and Assm 3.2 be satisfied on z w.r.t. the
adversarial task. Let h∗2(z) be the desired encoder which is successful in removing zp from ζ. Then
there exists an undesired/incorrect encoder hα2 (z) s.t. hα2 (z) is dependent on zp and the main-task
classifier cm(hα2 (z)) has bigger margin than cm(h∗2(z)) and has,

1. Accuracy(cp(hα2 (z)), yp) = Accuracy(cp(h
∗
2(z)), yp); when adversarial probing classifier

cp(·) is trained using any learning objective like max-margin or cross-entropy loss. Thus, the
undesired encoder hα2 (z) is indistinguishable from desired encoder h∗2(z) in terms of adversarial
task prediction accuracy but better for main-task in terms of max-margin objective.
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2. Lh2

(
cm(hα2 (z)), cp(h

α
2 (z))

)
< Lh2

(
cm(h∗2(z)), cp(h

∗
2(z))

)
; when Assm 3.4 is satisfied and

concept-causal features zM
p of any margin point zM of cm(h∗2(z)) are more predictive of the

main task label than zP
p of any margin point zP of cp(h∗2(z)) is predictive for the probing label

(Assm D.1). Thus, undesired encoder hα2 (z) is preferable over desired encoder h∗2(z) for both
main and combined adversarial objective. Here Lh2

= L(cm(·)) − L(cp(·)) is the combined
adversarial loss w.r.t. to h2 and L(c(·)) is the max-margin loss for a classifier “c” (see §D.1).

Proof of Theorem 3.3. Let the main classifier be of the form cm(ζ) = wcm · ζ where wcm and ζ are
dζ dimensional vectors. Since both parameters wcm and ζ are learnable, for ease of exposition we
constrain wcm to be [1, 0, . . . , 0]. This constraint on wcm is w.l.o.g. since wcm makes the prediction
for main-task by projecting ζ into one specific direction to get a scalar (wcm · ζ). We constrain that
direction to be the first dimension of ζ. Since the encoder h2(z) : Z → ζ is trainable it could learn
to encode the scalar (wcm · ζ) in the first dimension of ζ. Thus, effectively a single dimension of the
representation ζ encodes the main-task information. As a result, the main classifier is effectively of
the form cm(ζ) = w

(0)
cm × ζ(0) = 1× ζ(0) where w

(0)
cm and ζ(0) are the first elements of wcm and ζ

respectively and w
(0)
cm = 1. We can now write the goal of the adversarial method as removing the

information of zp from ζ(0) because the other dimensions are not used by the main classifier. Also,
the adversarial probing classifier can be written effectively as cp(ζ) = β × ζ(0) where β ∈ R is a
trainable parameter. Since both the main and adversarial classifier are using only ζ(0), the second
encoder, with a slight abuse of notation, can be simplified as ζ := ζ(0) := h2(z) = wm ·zm+wp ·zp
, where ζ ∈ R and wm and wp are the weights that determine the first dimension of ζ. Also, let
the desired (correct) second encoder which is successful in removing the concept-causal feature zp
from ζ be ζ∗ := ζ∗(0) := h∗2(z) = w∗

m · zm. Thus using Eq. 96 and 97, our overall objective for
adversarial removal method becomes:

argmin
β
L(cp(h2(z)), yp) (98)

argmin
h2

{
L(cm(h2(z), ym)− L(cp(h2(z), yp)

}
(99)

1. First claim. The ideal main classifier with desired encoder can be written as, cm(ζ∗) =
1× h∗2(z) = w∗

m · zm. Therefore, it can be trained using the MM-Denominator formulation of the
max-margin objective and would satisfy the constraint in Eq. 3:

m(cm(ζ∗i)) = m(h∗2(z
i)) = yim · h∗2(zi) ≥ 1 (100)

for all the points xi with latent representation zi and m(·) is the numerator of the distance of point
from the decision boundary of classifier (Eq. 1).

However, the main task classifier which does not use the desired encoder is of the form, cm(ζ) =
1×hα2 (z) = wm ·zm+wp ·zp. Since this main task classifier is trained using max-margin objective
by MM-Denominator formulation, it would satisfy the constraint in Eq. 3:

m(cm(ζi)) = m(hα2 (z
i)) = yim · hα2 (zi) ≥ 1 (101)

Since in our case, main task classifier is the same as the encoder i.e cm(ζ) = 1 × hα2 (z) =
wm ·zm+wp ·zp, and the latent representation z satisfies the Assm 3.1, B.1 and B.2, from Lemma B.1
the main-task classifier is spurious-using i.e zp ̸= 0. Hence there exists an undesired/incorrect
encoder hα2 (z) such that the main classifier cm(ζ) = hα2 (z) has bigger margin than cm(ζ∗) = h∗2(z).

Next, we show that the accuracy of the adversarial classifier remains the same irrespective of whether
the desired (h∗2(z)) or undesired encoder hα2 (z) is used. The accuracy of the adversarial classifier
cp(ζ) = β × ζ, using the desired/correct encoder ζ = h∗2(z) is given by:

Accuracy(cp(ζ
∗), yp) =

∑N
i=1 1

(
sign

(
β · h∗2(zi)

)
== yip

)
N

(102)

where 1(·) is an indicator function which takes the value 1 if the argument is true otherwise 0, and
sign(γ) = +1 if γ ≥ 0 and −1 otherwise. Combining Eq. 100 and Eq. 101, since yim ∈ {−1, 1},
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we see that whenever hα2 (z
i) > 1 we also have h∗2(z

i) > 1 and similarly whenever hα2 (z
i) < −1,

we have h∗2(z
i) < −1. Thus,

hα2 (z) · h∗2(z) > 0 (103)

From Eq. 103, h∗2(z
i) and hα2 (z

i) has the same sign for every input zi =⇒ sign(β · h∗2(zi)) =
sign(β · hα2 (zi)). Thus we can replace h∗2(z

i) with hα2 (z
i) in the above equation and we have:

Accuracy(cp(ζ
∗), yp) =

∑N
i=1 1

(
sign

(
β · hα2 (zi)

)
== yip

)
N

Accuracy(cp(h
∗
2(z

i)), yp) = Accuracy(cp(h
α
2 (z

i)), yp)

thus completing the first part our proof.

2. Second claim. Since we are training both the main task and the probing classifier with a max-
margin objective (see MM-Numerator version at Eq. 5), we can effectively write the adversarial
objective (from 98 and 99) as:

argmax
β

(P (β)) := argmax
β

{
min
zi

mcp(h2(z
i))
}

(104)

argmax
h2

(E(h2)) := argmax
h2

{
min
zi

mcm(h2(z
i))−min

zi
mcp(h2(z

i))
}

(105)

where mcm(h2(z)) and mcp(h2(z)) are the numerator of margin of a point (Eq. 1). Next, our goal is
to show that the desired encoder h∗2 is not an equilibrium point of the above adversarial objective. To
do so, we will create an undesired/incorrect encoder hα2 (z) by perturbing h∗2 by small amount and
showing that the combined encoder objective E(hα2 ) > E(h∗2) (Eq. 105) irrespective of choice of β
chosen by the probing objective P (β) (Eq. 104).

Construction of the undesired/incorrect encoder. We have h∗2(z) = ∥wm∥(ŵ∗
m · zm) where

ŵ∗
m ∈ Rdm is a unit vector. We will perturb this desired encoder by parameterizing with α ∈ [0, 1)

s.t.:
hα2 (z) = α∥w∗

m∥(ŵ∗
m · zm) +

√
1− α2∥w∗

m∥(ϵ̂p · zp) (106)

where ϵ̂p ∈ Rdp is a unit vector. The clean main-task classifier is defined as c∗m(h∗2(z)) = h∗2(z). The
main-task classifier cm when using the incorrect encoder takes form cm(hα2 (z)) = hα2 (z). As stated
in the theorem statement, all the assumptions of Lemma B.1 are satisfied. Since Assm B.2 (one of the
assumptions of Lemma B.1) are satisfied, there exists a unit-vector in Rd

p such that concept-causal
features of margin points of the main task classifier using encoder h∗2 are linearly separable w.r.t
main-task label. Let ϵ̂p in our constructed undesired encoder hα2 (Eq. 106) be set to that unit vector
such that:

yMm · (ϵ̂p · zM
p ) > 0 (107)

where zM
p is the concept-causal feature of margin point zM of the main-task classifier when using

encoder h∗2. Now since all the assumption of Lemma B.1 is satisfied, the margin of main-task
classifier when using undesired encoder hα2 (z) is bigger than when desired encoder h∗2 is used for
some α ∈ (α1

lb, 1). Consequently, we have:

mcm(hα2 (z
M )) > mcm(h∗2(z

M )) (108)

where zM is the margin point of cm(h∗2). Since Assm 3.2 is satisfied, we have a fully predictive
concept-causal feature zp for prediction of adversarial label yp such that for some unit vector
ŵp ∈ Rdp we have:

yip
(
ŵp · zi

p

)
> 0 ∀(zi, yip) (109)

Next, since Assm 3.4 is also satisfied for this second part of theorem, we have yip = yim for every
margin point of the desired/correct main-task classifier using the desired/correct encoder h∗2(z). Thus
we can assign ϵ̂p := ŵp which satisfies the inequality in Eq. 107. Hence, our incorrect encoder
hα2 (z) take the following form:

hα2 (z) = α∥w∗
m∥
(
ŵ∗

m · zm
)
+
√
1− α2∥w∗

m∥
(
ŵp · zp

)
(110)

Note that when α = 1, we recover back the correct encoder h∗2. Thus to perturb the h∗2, we set α
close to but less than 1.
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Showing h∗2 is not the equilibrium point. From Eq. 105, we want to show that for some α ∈ [0, 1)
s.t. α → 1 (α close to but less than 1), the undesired encoder hα2 has bigger combined objective
than desired encoder h∗2. Since the combined adversarial objective for encoder h2(z) (E(h2(z))
in Eq. 105) is evaluated on the margin points of main-task and probing task classifier. We use the
following lemma to show that for small perturbation of the optimal encoder (α → 1), the margin
point of main-task classifier and probing classifier when using perturbed encoder hα2 remains same or
is a subset of margin points when using desired encoder h∗2. The proof of the lemma below is given
after the proof of the current theorem.
Lemma D.1. There exist an α2

lb ∈ [0, 1) s.t. when α > α2
lb we have: (i) margin points of probing

classifier when using perturbed encoder hα2 is same or is a subset of margin points when using desired
encoder h∗2. (ii) margin points of main-task classifier when using perturbed encoder hα2 is same or is
a subset of margin points when using desired encoder h∗2.

Let zM∗ be one of the margin point of main-task classifier cm and zP∗ be one of the margin point
of probing classifier cp when using the correct encoder h∗2. Let zMα be one of the margin point of
main-task classifier cm and zPα be one of the margin point of probing classifier cp when using the
perturbed encoder hα2 . Thus we want to show that for all (zM∗ , zP∗ , zMα , zPα) tuple, there exists
some α close to but less than 1 s.t. we have:

E(hα2 ) > E(h∗2) (111)

mcm(hα2 (z
Mα))−mcp(h

α
2 (z

Pα)) > mcm(h∗2(z
M∗))−mcp(h

∗
2(z

P∗)) (112)

mcm(hα2 (z
Mα))−mcm(h∗2(z

M∗)) > mcp(h
α
2 (z

Pα))−mcp(h
∗
2(z

P∗)) (113)

For β < 0 . From Lemma D.1, both zPα and zP∗ are the margin point of probing classifier when
using the desired encoder h∗2. Thus we have:

mcp(h
∗
2(z)

Pα) = mcp(h
∗
2(z

P∗)) (114)

yPα
p β(w∗

m · zPα
m ) = yP∗

p β(w∗
m · zP∗

m ) (115)

Also, since α ∈ [0, 1), from above equation we have:

yPα
p βα(w∗

m · zPα
m ) < yP∗

p β(w∗
m · zP∗

m ) (116)

From Eq. 109 we have yPα
p (ŵp · zPα

p ) > 0. Since β < 0 and α ∈ [0, 1), we have√
1− α2β∥w∗

m∥yPα
p (ŵp · zPα

p ) < 0. Adding this to LHS of the above equation we get:

yPα
p βα(w∗

m · zPα
m ) +

√
1− α2β∥w∗

m∥yPα
p (ŵp · zPα

p ) < yP∗
p β(w∗

m · zP∗
m ) (117)

yPα
p β

{
α(w∗

m · zPα
m ) +

√
1− α2∥w∗

m∥(ŵp · zPα
p )
}
< yP∗

p β(w∗
m · zP∗

m ) (118)

yPα
p βhα2 (z

Pα) < yP∗
p β(w∗

m · zP∗
m ) (119)

mcp(h
α
2 (z

Pα)) < mcp(h
∗
2(z

P∗)) (120)

From Eq. 120 the RHS of Eq. 113 is less than zero. Also, from Eq. 108, for α ∈ (α1
lb, 1) we

have mcm(hα2 (z
Mα))−mcm(h∗2(z

M∗)) > 0 where value of α1
lb is given by Lemma B.1. Thus the

LHS of Eq. 113 is greater than 0. Thus the inequality in 113 is always satisfied when β < 0 and
α ∈ (max{α1

lb, α
2
lb}, 1). The constraint α > α1

lb is enforced by Lemma B.1 when constructing
the perturbed encoder and α > α2

lb is enforced by Lemma D.1 which ensures zPα is also a margin
point of probing classifier when using desired encoder h∗2. Hence, we have shown that when β < 0,
h∗2 is not the equilibrium point since there exist a perturbed undesired encoder hα2 such that the
combined encoder objective is greater in Eq. 105 and consequently the optimizer will try to move
away from/change h∗2.

For β > 0 . Next we have to show that there exist α ∈ [0, 1) s.t. when α → 1 we have Eq. 113
satisfied. Thus we solve for allowed values of α:{

mcm(hα2 (z
Mα))−mcm(h∗2(z

M∗))
}
>
{
mcp(h

α
2 (z

Pα))−mcp(h
∗
2(z

P∗))
}

(121){
ymh

α
2 (z

Mα)− ymh
∗
2(z

M∗)
}
>
{
yp(β · hα2 (zPα))− yp(β · h∗2(zP∗))

}
(122)

32



From the second statement from Lemma D.1, zMα and zM∗ both are margin point of main-task
classifier using the desired encoder h∗2. Thus we have mcm(h∗2(z

Mα)) = mcm(h∗2(z
M∗)) =⇒

yMα
m h∗2(z

Mα) = yM∗
m h∗2(z

M∗) =⇒ yMα
m (w∗

m · zMα
m ) = yM∗

m (w∗
m · zM∗

m ). Substituting this
observation in LHS of Eq. 121 we get mcm(hα2 (z

Mα))−mcm(h∗2(z
M∗)) =

= yMα
m

{
α(w∗

m · zMα
m ) +

√
1− α2∥w∗

m∥(ŵp · zMα
p )

}
− yM∗

m

{
(w∗

m · zM∗
m )

}
(123)

= yMα
m

{
α(w∗

m · zMα
m ) +

√
1− α2∥w∗

m∥(ŵp · zMα
p )

}
− yMα

m

{
(w∗

m · zMα
m )

}
(124)

= (α− 1)yMα
m

{
∥w∗

m∥(ŵ∗
m · zMα

m )
}
+
√
1− α2yMα

m

{
∥w∗

m∥(ŵp · zMα
p )

}
(125)

= (α− 1)yMm

{
∥w∗

m∥(ŵ∗
m · zM

m )
}
+
√

1− α2yMm

{
∥w∗

m∥(ŵp · zM
p )
}

(126)

where for ease of exposition we have defined M := Mα. Now again for RHS of Eq. 121, from
Lemma D.1, zPα and zP∗ both are margin point of probing classifier using the desired encoder
h∗2. Thus we have mcp(h

∗
2(z

Pα)) = mcp(h
∗
2(z

P∗)) =⇒ yPα
p βh∗2(z

Pα) = yP∗
p βh∗2(z

P∗) =⇒
yPα
p (w∗

m · zPα
m ) = yP∗

p (w∗
m · zP∗

m ). Substituting this observation in RHS of Eq. 121 we get
mcp(h

α
2 (z

Pα))−mcp(h
∗
2(z

P∗)) =

= yPα
p

{
αβ(w∗

m · zPα
m ) +

√
1− α2∥w∗

m∥β(ŵp · zPα
p )
}
− yP∗

p

{
β(w∗

m · zP∗
m )
}

(127)

= yPα
p

{
αβ(w∗

m · zPα
m ) +

√
1− α2∥w∗

m∥β(ŵp · zPα
p )
}
− yPα

p

{
β(w∗

m · zPα
m )
}

(128)

= (α− 1)yPα
p

{
∥w∗

m∥β(ŵ∗
m · zPα

m )
}
+
√

1− α2yPα
p

{
∥w∗

m∥β(ŵp · zPα
p )
}

(129)

= (α− 1)yPp

{
∥w∗

m∥β(ŵ∗
m · zP

m)
}
+
√
1− α2yPp

{
∥w∗

m∥β(ŵp · zP
p )
}

(130)

where for ease of exposition we have defined P := Pα. Substituting RHS (Eq. 130) and LHS
(Eq. 126) back in Eq. 121 and rearranging we get:

√
1− α2

{
yMm (ŵp · zM

p )− yPp β(ŵp · zP
p )
}
> (1− α)

{
yMm (ŵ∗

m · zM
m )− yPp β(ŵ

∗
m · zP

m)
}
(131)

Now, since Assm B.1 is satisfied, the main task feature zM
m is linearly separable w.r.t main-task label

yMm . Thus we have yMm (ŵ∗
m · zM

m ) > 0.

Case 1: Main-task feature is not fully predictive of probing label (∃z s.t. yp(ŵ∗
m · zm) < 0).

Since main-task feature is not fully predictive of the probing label yp, there will be some points
which will be misclassified (will be on the opposite side of decision boundary) when probing
classifier uses desired encoder cp(h∗2(z)) = βh∗2(z) = w∗

m · zm. Thus margin for those points
will be negative and one of them will be the margin point zP of the probing classifier. That is,
mcp(h

∗
2(z

P )) = yPp β(ŵ
∗
m · zP

m) < 0. Then the term
(
yMm (ŵ∗

m · zM
m )− yPp β(ŵ

∗
m · zP

m)
)
> 0 in the

above Eq. 131. Hence, rewriting the above equation we have:{
yMm (ŵp · zM

p )− yPp β(ŵp · zP
p )
}

{
yMm (ŵ∗

m · zM
m )− yPp β(ŵ

∗
m · zP

m)
} >

1− α√
1− α2

(132)

Next, from Lemma D.1 both zM := zMα and zP := zPα are also the margin point of main-task and
probing classifier respectively when the classifiers use the desired encoder hα2 . Then, since Assm D.1
is satisfied the numerator in LHS of above equation

(
yMm (ŵp · zM

p )− yPp β(ŵp · zP
p )
)
> 0. Thus,
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the whole LHS in the above equation is greater than zero. Denoting the LHS by γ(zM , zP ) gives us:

γ(zM , zP ) >
1− α√
1− α2

(133)

γ2(zM , zP ) >
����(1− α)(1− α)

����(1− α)(1 + α)
(134)

γ2(zM , zP ) + αγ2(zM , zP ) > 1− α (135)(
1 + γ2(zM , zP )

)
α > 1− γ2(zM , zP ) (136)

α >
1− γ2(zM , zP )

1 + γ2(zM , zP )
= α3

lb(z
M , zP )) (137)

Since γ2(zM , zP ) > 0, α3
lb(z

M , zP )) < 1. Let α3
lb = max(zM ,zP )(α

3
lb(z

M , zP ))) which is < 1

gives us the tight lower-bound on α such that Eq. 113 is satisfied for any pair of margin point zM

and zP .

Case 2: Main-task is fully predictive of probing label. (∀z, yp(ŵ∗
m · zm) > 0). Since

Assm B.1 (from Lemma B.1) is satisfied, we have that main-task features are fully predictive
of main-task label i.e ym(ŵ∗

m · zm) > 0 for all z. Thus for this case ym(ŵ∗
m · zm) > 0 and

yp(ŵ
∗
m · zm) > 0 =⇒ ym = yp for all z. Also, for this case, there will be no misclassified points

for the probing classifier when using the desired encoder h∗2. Thus the margin point for both the main
and the probing classifier is same i.e zM = zP . Since Assm D.1 is satisfied, ym = yp for all z,
yp(ŵp · z) > 0 for all z from Assm 3.2 and zP = zM we have:

yMm (ŵp · zM
p ) > yPp β(ŵp · zP

p ) (Assm D.1) (138)

1 ·
�������
(yPp (ŵp · zP

p )) > β
�������
(yPp (ŵp · zP

p )) (139)

β < 1 (140)

Thus, in this case the RHS in Eq. 131, could be simplified to : yMm (ŵ∗
m · zM

m )− yPp β(ŵ
∗
m · zP

m) =

yMm (ŵ∗
m ·zM

m )−βyMm (ŵ∗
m ·zM

m ) = (1−β)yMm (ŵ∗
m ·zM

m ) > 0 since 0 < β < 1 from above Eq. 140
and ym(ŵ∗

m · zM
m ) > 0 from Assm B.1. Thus we can rewrite Eq. 131 as:{

yMm (ŵp · zM
p )− yPp β(ŵp · zP

p )
}

{
yMm (ŵ∗

m · zM
m )− yPp β(ŵ

∗
m · zP

m)
} >

1− α√
1− α2

(141)

Again, from Lemma D.1 both zM := zMα and zP := zPα are also the margin point of main-task and
probing classifier respectively when the classifiers use the desired encoder hα2 . Thus from Assm D.1,
we have numerator of LHS in above equation greater than 0, thus we can follow the same steps from
Eq. 133 to 137 to get the α3

lb for this case.

So far, we have three lower bounds on α needed for this proof, so lets define αlb =
max{α1

lb, α
2
lb, α

3
lb}, where α1

lb is enforced by Lemma B.1 on undesired encoder hα2 construction,
α2
lb is enforced by Lemma D.1 and α3

lb is enforced by Eq. 113. Thus, when α ∈ (αlb, 1] we have a
bigger combined objective (Eq. 105) for hα2 than h∗2. Thus, we can always perturb the desired encoder
hα2 by choosing α ∈ (αlb, 1] close to but less than 1 to create hα2 which will have better combined
encoder objective. Hence any optimizer will prefer to change the desired encoder h∗2 and it is not an
equilibrium solution to the overall adversarial objective.

Proof of Lemma D.1. First, we will prove the statement for the probing classifier. Let zM be one of
the margin points of the probing classifier when using the desired encoder h∗2 and let zR be any other
(non-margin) points. Then we have to show that the margin-point of the probing classifier when using
perturbed encoder hα2 cannot be zR. This will imply that the margin points for probing classifier when
using hα2 has to be the same or a subset of margin points when using h∗2. Since norm of parameters
of both cp(hα2 (z)) = βhα2 (z) and cp(h∗2(z)) = βh∗2(z) is the same and margin-point of a classifier
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is the point which have minimum margin, we have to show that mcp(hα
2 )(z

R) > mcp(hα
2 )(z

M ) for
some α ∈ [0, 1). We have:

mcp(hα
2 )(z) = αyp

{
β(w∗

m · zm)
}
+
√
1− α2∥w∗

m∥yp
{
β(ŵp · zp)

}
(142)

= αmcp(h∗
2)
(z) +

√
1− α2∥w∗

m∥yp
{
β(ŵp · zp)

}
(143)

Thus we have to find an α ∈ [0, 1) s.t.:

αmcp(h∗
2)
(zR) +

√
1− α2∥w∗

m∥yRp
{
β(ŵp · zR

p )
}
>

αmcp(h∗
2)
(zM ) +

√
1− α2∥w∗

m∥yMp
{
β(ŵp · zM

p )
}

Rearranging we get:

α
{
mcp(h∗

2)
(zR)−mcp(h∗

2)
(zM )

}
>
√

1− α2∥w∗
m∥β

{
yMp (ŵp · zM

p )− yRp (ŵp · zR
p )
}

(144)

Since zM is the margin point of the probing classifier when using h∗2, we have mcp(h∗
2)
(zR) >

mcp(h∗
2)
(zM ). Now, if β

{
yMp (ŵp · zM

p ) − yRp (ŵp · zR
p )
}

≤ 0, then above equation is trivially
satisfied for all values of α ∈ (0, 1), since RHS of above equation is greater than 0 and LHS is less
than 0. For the case when β

{
yMp (ŵp · zM

p )− yRp (ŵp · zR
p )
}
> 0 we need:

α√
1− α2

>
∥w∗

m∥β
{
yMp (ŵp · zM

p )− yRp (ŵp · zR
p )
}

{
mcp(h∗

2)
(zR)−mcp(h∗

2)
(zM )

} := γ(zM , zP ) > 0 (145)

α2

1− α2
> γ2(zM , zP ) (146)

α2(1 + γ2(zM , zP )) > γ2(zM , zP ) (147)

α >

√
γ2(zM , zP )

1 + γ2(zM , zP )
:= αp

lb(z
M , zP ) (148)

Since we have γ > 0 =⇒ αp
lb(z

M , zP ) < 1. Lets define αp
lb := max(zM ,zP )(α

p
lb(z

M , zP )) < 1,
which gives the tightest lower bound on α s.t. when α ∈ (αp

lb, 1), the margin point of the probing
classifier when using the perturbed encoder is same or is a subset of margin point when using desired
encoder h∗2. This completes the first part of the proof.

Next, we prove the second part of this lemma for the main-task classifier. Let zM be one of the
margin points of the main-task classifier when using the desired encoder h∗2 and let zR be any other
(non-margin) point. Then we have to show that the margin-point of the main-task classifier when
using perturbed encoder hα2 cannot be zR. Since norm of parameter of both cm(hα2 (z)) = hα2 (z)
and cm(h∗2(z)) = h∗2(z) is same and margin-point of a classifier is the point which have minimum
margin, we have to show that mcm(hα

2 )(z
R) > mcm(hα

2 )(z
M ) for some α ∈ [0, 1). We have:

mcm(hα
2 )(z) = αym

{
(w∗

m · zm)
}
+
√
1− α2∥w∗

m∥ym
{
(ŵp · zp)

}
(149)

= αmcm(h∗
2)
(z) +

√
1− α2∥w∗

m∥ym
{
(ŵp · zp)

}
(150)

Thus we have find an α s.t.:

αmcm(h∗
2)
(zR) +

√
1− α2∥w∗

m∥yRm
{
(ŵp · zR

p )
}
>

αmcm(h∗
2)
(zM ) +

√
1− α2∥w∗

m∥yMm
{
(ŵp · zM

p )
}

Rearranging we get:

α
{
mcm(h∗

2)
(zR)−mcm(h∗

2)
(zM )

}
>
√
1− α2∥w∗

m∥
{
yMm (ŵp · zM

p )− yRm(ŵp · zR
p )
}

(151)
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Since zM is the margin point of the probing classifier when using h∗2, we have mcm(h∗
2)
(zR) >

mcm(h∗
2)
(zM ). We notice that, apart from yp being set to ym and β being set to 1, the above equation

is identical to Eq. 144. Since our argument (from Eq. 144 to 148) to derive the allowed value of α
doesn’t depend on yp and β, we could follow the same argument to get a lower bound αm

lb s.t. the
main-task classifier has the same or subset of the margin points when using the perturbed encoder as
it has when using the desired encoder.

Let us define α2
lb = max{αp

lb, α
m
lb }. Thus when α ∈ (α2

lb, 1), both the statements of this lemma are
satisfied thus completing our proof.

E Experimental Setup

E.1 Dataset Description

As described in §4, we demonstrate the failure of Null-Space Removal (§4.2) and Adversarial
Removal (§4.3) in removing the undesired concept from the latent representation on three real-
world datasets: MultiNLI [46], Twitter-PAN16 [31] and Twitter-AAE [6]; and a synthetic dataset,
Synthetic-Text. The detailed generation and evaluation strategies for each dataset are given below.

MultiNLI Dataset. In the MultiNLI dataset, given two sentences—premise and hypothesis—the
main task is to predict whether the hypothesis entails, contradicts or is neutral to the premise. As
described in §4, we simplify it to a binary task of predicting whether a hypothesis contradicts the
premise. The binary main-task label, ym = 1 when a given hypothesis contradicts the premise
otherwise it is -1. That is, we relabel the MNLI dataset by assigning label ym = 1 to examples
with contradiction labels and ym = −1 to the example with neutral or entailment label. It has been
reported that the contradiction label is spuriously correlated with the negation words like nobody, no,
never and nothing[16]. Thus, we created a ‘negation’ concept denoting the presence of these words
in the hypothesis of a given (hypothesis, premise) pair. The concept-label yp = 1 when the negation
concept is present in the hypothesis otherwise it is −1.

The standard MultiNLI dataset 1 has approximately 90% of data points in the training set, 5% as
publicly available development set and the rest of 5% in a separate held-out validation set accessible
through online competition leader-board not accessible to the public. Thus, we create our own train
and test split by subsampling 10k examples from the initial training set, converting it into binary
contradiction vs. non-contradiction labels, labeling the negation-concept label, and splitting them into
80-20 train and test split. For pre-training a clean classifier that does not use the spurious-concept,
we create a special training set following the method described in §E.2. For evaluating the robustness
of both null-space and adversarial removal methods, we create multiple datasets with different
predictive-correlation as described in §E.3 .

Twitter-PAN16 Dataset. In Twitter-PAN16 dataset [31], following [12], given a tweet, the main
task is to predict whether it contains a mention of another user or not. The dataset contains manually
annotated binary Gender information (i.e Male or Female) of 436 Twitter users with at least 1k tweets
each. The Gender annotation was done by assessing the name and photograph of the LinkedIn profile
of each user [12]. The unclear cases were discarded in this process. We consider “Gender” as a
sensitive concept that should not be used for main-task prediction. The dataset contains 160k tweets
for training and 10k tweets for the test. We merged the full dataset, subsampled 10k examples, and
created an 80-20 train and test split. For pre-training a clean classifier, we create a special training set
following the method described in §E.2. To generate datasets with different predictive correlation, we
follow the method from E.3. The dataset is acquired and processed using the code2 made available
by the [12]. According to Twitter’s policy, one has to download tweets from a personal account
using Twitter Academic Research access and cannot be released to the public or used for commercial
purposes. We also adhere to this policy and don’t release any data to the public or use it elsewhere.

1MultiNLI dataset and its license could be found online at: https://cims.nyu.edu/~sbowman/
multinli/

2The code for Twitter-PAN16 and Twitter-AAE dataset acquisition is available at: https://github.com/
yanaiela/demog-text-removal
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Twitter-AAE Dataset. In Twitter-AAE dataset [6], again following [12], the main task is to predict
a binary sentiment (Positive or Negative) from a given tweet. The dataset contains 59.2 million tweets
by 2.8 million users. Each tweet is associated with “race” information of the user which is labeled
based on both words in the tweet and the geo-location of the user. We consider “race” as the sensitive
concept which should not be used for the main task of sentiment prediction. We use the AAE (African
America English) and SAE (Standard American English) as a proxy for non-Hispanic blacks and
non-Hispanic whites automatically labeled using code made available by [12]. Again, we subsampled
10k examples with 80-20 split from the dataset and followed the method described in §E.2 and E.3
to generate a clean dataset for pre-training a clean classifier and datasets with different predictive
correlation respectively. The dataset is made publicly available online3 only for research-purpose.

Synthetic Dataset. To accurately evaluate the whether a classifier is using the spurious concept
or not, we introduce a Synthetic-Text dataset where it is possible to change the text input based on
the change in concept (thus implementing Def 2.1). The main-task is to predict whether a sentence
contains a numbered word (e.g. one, fifteen etc) or not, and the spurious concept is the length of the
sentence which is correlated with the main task label. To create a sentence with numbered words, we
randomly sample 10 words from the following set and combine them to form the sentence.

Numbered Words = one, two, three, four, five, six, seven, eight,
nine, ten, eleven, twelve, thirteen, fourteen,
fifteen, sixteen, seventeen, eighteen, twenty,
thirty, forty, fifty, sixty, seventy, eighty,
ninety, hundred, thousand

Otherwise, a sentence is created by adding 10 non-numbered words randomly sampled from the
following set.

Non-Numbered Words = nice, device, try, picture, signature, trailer,
harry, potter, malfoy, john, switch, taste,
glove, balloon, dog, horse, switch, watch,
sun, cloud, river, town, cow, shadow,
pencil, eraser

Next, we introduce the spurious concept (length) by increasing the length of the sentences which
contain numbered words. We do so by adding a special word “pad” 10 times. In our experiments, we
use 1k examples created using the above method and create an 80-20 split for the train and test set.
Again, we follow the method described in §E.2 and E.3 to generate a clean dataset for training a clean
classifier and to generate datasets with different predictive correlations respectively. To simulate a
real-world setting, we also introduce noise in the main-task and the probing label. To introduce noise
(denoted by n = x) in the labels, we randomly flip 100x% of the main-task and probing label in the
dataset. Wherever applicable, we will explicitly mention the amount of noise we add in the labels.

E.2 Creating a “clean” dataset with no spurious correlation with main-label

Unless otherwise specified, to construct a new dataset with no spurious correlation between the
main-task and the concept label, we subsample only those examples from the the given dataset which
have a fixed value of the spurious-concept label (yp). Thus, if we train main-task classifier using this
dataset, it cannot use the spurious-concept since they are not discriminative of the main task label
[35].

In MultiNLI dataset, we select only those examples which have no negation words in the sentence for
creating a clean dataset. Similarly, for Twitter-PAN16 dataset, we only select those examples which
have gender label yp = −1 (Female) in the processed dataset. And for Twitter-AAE dataset, we only
select those examples which have non-Hispanic whites race label.

3TwitterAAE dataset could be found online at: http://slanglab.cs.umass.edu/TwitterAAE/
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E.3 Creating datasets with spurious correlated main and concept label

In our experimental setup, both the main-task label (ym) and concept label (yp) are binary (−1
or 1). This creates 2 × 2 subgroups for each combination of (ym, yp). In MultiNLI dataset, the
contradiction label (ym = 1) is correlated with the presence of negation words yp = 1, this implies
that the not-contradiction label ym = −1 is also correlated with absence of negation words in the
sentence yp = −1. Thus, the input example with (ym = 1, yp = 1) and (ym = −1, yp = −1)
form the majority group, henceforth referred as Smaj while groups (ym = 1, yp = −1) and
(ym = −1, yp = 1) forms the minority group Smin. To evaluate the robustness of the removal
methods, we create multiple datasets with different predictive correlation (κ) between the two labels
ym and yp where κ = P (ym · yp) > 0 as defined in §4. In other words, to create a dataset with a
particular predictive correlation κ, we vary the size of Smaj and Smin. More precisely, the predictive
correlation can be equivalently defined in terms of the size of the these groups as:

κ =
|Smaj |

|Smaj |+ |Smin|
(152)

Similarly for Twitter-PAN16, Twitter-AAE, and Synthetic-Text datasets, we create datasets with
different levels of spurious correlation between ym and yp by creating the Smaj and Smin to have
the desired predictive correlation (κ).

E.4 Encoder for real datasets

For all the experiments on real datasets in §4 we used RoBERTa as default encoder h. In §F, we
report the results when using BERT instead of RoBERTa as input encoder.

RoBERTa We use the Hugging Face[47] transformers implementation of RoBERTa[25] roberta-
base model, starting with pretrained weights for encoding the text-input to latent representation. We
use a default tokenizer and model configuration in our experiment.

BERT We use the Hugging Face[47] transformers implementation of BERT[10] bert-base-uncased
model, starting with pretrained weights for encoding the text-input to latent representation. We use a
default tokenizer and model configuration in our experiment.

For both BERT and RoBERTa, the parameters of the encoder were fine-tuned as a part of training the
main-task classifier for null-space removal and then frozen. For adversarial removal, the encoder,
main-task classifier and the adversarial probing classifier are trained jointly. For both BERT and
RoBERTa, we use the pooled output ([CLS] token for BERT) from the the model, as the latent
representation and is given to main-task and probing classifier. Main-task and probing classifier are
a linear transformation layer followed by a softmax layer for prediction. We use a batch size of 32
samples for all training procedures that use BERT or RoBERTa for encoding the input.

E.5 Encoder for synthetic Dataset

nBOW: neural Bag of Word. For Synthetic-Text dataset, we use sum of pretrained-GloVe
embedding[30] of the words in the sentence to encode the sentence into latent representation. We used
Gensim [36] library for acquiring the 100-dimensional GloVe embedding (glove-wiki-gigaword-100).
Throughout all our experiments, the word embedding was not trained. Post encoding, the latent
representation were further passed through hidden layers consisting of a linear transformation layer
followed by ReLU non-linearity. We will specify how many such hidden layers were used when
discussing specific experiments in §F. The hidden layer dimensions were fixed to 50 dimensional
space. We use a batch size of 32 samples for all training procedures that use nBOW for encoding the
input.

E.6 Null-Space Removal Experiment Setup

For null-space removal (INLP) experiment on both real and synthetic dataset the following procedure
is followed:

1. Pretraining Phase: A clean pretrained main-task classifier is trained using the clean dataset
obtained by method described in §E.2. This is to ensure that the main-task classifier does not

38



use the spurious feature, so that the INLP method doesn’t have any effect on the main-task
classifier. The main-task classifier is a linear-transformation on the latent-representation
provided by encoder followed by softmax layer for prediction. Both the encoder and
main-task classifier is fine-tuned during this process.

2. Removal Phase: Both the encoder and main-task classifier is frozen (made non-trainable).
Next, a probing classifier is trained from the latent representation of the encoder (refer §E.4
and E.5 for more details about encoder). The probing classifier is also a linear transformation
layer followed by softmax layer for prediction. For experiments on real-world datasets
using BERT or RoBERTa as encoder, we train the the probing classifier for 1 epoch (one
full pass though the probing dataset) before each projection step. For experiment on the
Synthetic-Text dataset, we train the probing classifier for 10 epochs before each projection
step. Note that, we also experiment with the setting when the main task classifier is also
trained after every step of INLP projection (see §F.2 and Fig. 9 for results). The main task
classifier is a linear transformation layer followed by a softmax layer for prediction trained
using cross-entropy objective to predict the main task label. The main task classifier is
trained for 1 epoch for the real-world datasets and 10 epochs for the Synthetic-Text dataset
for the setting when we train the main task classifier in INLP removal phase. The encoder
is frozen for both the setting (with or without main task classifier training) though-out the
INLP removal phase.

The main-task classifier and encoder in the pretraining phase and the probing classifier in the removal
phase is trained using cross-entropy loss for both real and synthetic datasets. For the real dataset, a
fixed learning rate of 1× 10−5 is used when RoBERTa is used as encoder and 5× 10−5 when using
BERT as encoder. For synthetic experiments, a fixed learning rate of 5× 10−3 is used when training
both the nBOW encoder and main-task classifier in the pretraining stage and probing classifier in
removal stage.

E.7 Adversarial Removal Experiment Setup

For adversarial removal (AR) experiment, for both real and synthetic datasets, first the input text is
encoded to latent representation using the encoder (§E.4 and E.5). Then for the main-task classifier,
a linear transformation layer followed by a softmax layer is applied for the main-task prediction.
The same latent representation output from the encoder is given to the probing classifier which is
a separate linear transformation layer followed by a softmax layer. All components of the model,
encoder, main-task classifier, and probing classifier are trained using the following modified objective
from Eq. 95:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + λL(cp(g−1(h(z))), yp)

}
where h is the encoder, cm is the main task classifier, cp is the probing classifier, g−1 is the gradient
reversal layer with fixed reversal strength of −1. The first term in the objective is for training the
main task classifier and the second term is the adversarial objective for training the probing classifier
using gradient reversal method [15, 12] . The hyperparameter λ controls the strength of the adver-
sarial objective. In our experiment we very λ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 2.0}.
When describing the experimental results in §F.3 we choose the λ which performs the best for all
datasets with different predictive correlation κ in removing the undesired concept from the latent
representation.

E.8 Metrics Description

Analogous to spuriousness score (Def 3.1) for main-task classifier we define the score for probing
classifier below.
Definition E.1 (Probe Spuriousness Score). Given a dataset, Dm,p = Smin ∪ Smaj with binary task
label and binary concept, letAccf (Smin) be the minority group accuracy of a given probing classifier
(f ) and Acc∗(Smin) be the minority group accuracy of a clean probing classifier that does not use
the main-task feature. Then spuriousness score of f is: ψ(f) = |1−Accf (Smin)/Acc

∗(Smin)|.

For simplicity, in all our experiments we assume that both the main and the correlated attribute labels
are binary. We measure the degree of spuriousness using the following two metrics:
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1. Spuriousness Score: As defined in §3.4, this metric help us quantify, how much a classifier
is using the spurious feature (see Def 3.1 and E.1).

2. ∆ Probability: In Synthetic-Text dataset as described in E.1, we have the ability to change
the input corresponding to the change in concept label (thus implementing Def 2.1) . Thus
we could measure if the main-classifier is using the spurious-concept by changing the
concept in the input and measuring the corresponding change in the main-task classifier’s
prediction probability. The Higher the change in prediction probability higher the main-task
classifier is dependent on spurious-concept.

E.9 Compute and Resources

We used an internal cluster of Nvidia P40 and P100 GPUs for all our experiment. Each experiment
setting was run on three random seed and mean results with variance are reported in all the experiment.

F Additional Results

F.1 Probing classifier Quality

Fig. 5 shows different failure modes of the probing classifier. In Fig. 5a and 5b, a clean main-task
classifier which doesn’t use the concept feature is trained on Synthetic-Text and MultiNLI dataset
respectively using the method described in §E.2. Thus the latent representation doesn’t have the
concept feature. Then, to test the presence of concept-causal feature in the latent representation we
train a probing classifier to predict concept-label. The first row show the accuracy of the probing
classifier for testing the presence of concept in latent space. When κ = 0.5 i.e no correlation between
the main-task and the concept label, the probing accuracy is approximately 50% which correctly
shows the absence of the concept-causal feature in the latent representation. The accuracy increases
as the correlation κ between the main and concept-causal feature increases in dataset. This shows that
even when concept-causal feature is not present in the latent representation, probing classifier will still
claim presence of concept-causal feature if any correlated feature (main-task feature in this case) is
present in the latent space. In Fig. 5c, the latent space contains the concept-causal feature as shown by
accuracy of approximately 94.5% when κ = 0.5. But as κ increases the probing classifier’s accuracy
increases in the presence of correlated main-task feature which falsely increases the confidence of
presence of the concept-causal feature. The second row shows the spuriousness-score of concept-
probing classifier is increasing as the correlation between the main-task and concept-causal feature
increases which implies that the probing classifier is using relatively large amount of correlated
main-task feature for concept-label prediction in all settings.

For all the experiments in this section (§F.1) with Synthetic-Text dataset, we didn’t introduce any
noise in the probing label (i.e. n=0.0) and have 1 hidden layer when training the encoder (see §E.5
for details). For the experiment on MultiNLI dataset, we use RoBERTa as the default encoder and
rest of setup is same as described in §E.4.

F.2 Extended Null-Space Removal Results

Fig. 6 and 7, shows the failure mode of null-space removal (INLP) in the real dataset when using
RoBERTa and BERT as encoders respectively. Different columns of the figure are for three different
real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE respectively. The x-axis from steps 8-26
is different INLP removal steps. The y-axis shows different metrics to evaluate the main task and
probing classifier. Different colored lines show the spurious correlation (κ) in the probing dataset
used by INLP for the removal of spurious-concept. The pretrained classifier is clean, i.e., does not
use the spurious concept-causal feature; hence INLP shouldn’t have any effect on main-classifier
when removing concept-causal feature from the latent space. The first row shows that as the INLP
iteration progresses, the norm of latent representation, which is being cleaned of concept-causal
feature, decreases. This indicates that some features are being removed. However, the results are
against our expectation from the second statement of Theorem 3.2, which states that the norm of
the classifier will tend to zero as the INLP removal progresses. The possible reason is that from
Theorem 3.2 the norm of latent representation will go to zero when the latent representation only
contains the spurious concept-causal feature and the other features correlated to it. But, the encoder
representation could have other features which are not correlated with concept-label and hence not
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Figure 5: Failure Modes of Probing classifier: The first row in Fig. 5a and 5b shows that even when
the latent representation doesn’t contain the probing concept-causal feature, the probing classifier
is still has >50% accuracy when other correlated feature is present. The accuracy increases as the
correlation κ between the probing concept-causal feature and other correlated features increases. The
first row Fig. 5c shows that presence of correlated features could increase the probing classifier’s
accuracy thus increasing the confidence in the presence of concept-causal feature in latent representa-
tion. The second row of all the figures shows that the probing classifier is getting more spurious as
the κ increases thus implying that the probing classifier is using some other correlated feature than
concept-causal feature. For more discussion see §F.1.

removed. Since, the pretrained classifier given for INLP was clean (using method described in §E.2),
we do not expect the INLP to have any effect on the main-task classifier.

The second row in Fig. 6 and 7 shows that the main classifier accuracy drops to random guess i.e
50% except for the case when probing dataset have κ = 0.5 i.e no correlation between the main
and concept label. Thus INLP method corrupted a clean classifier and made it useless. The reason
behind this could be observed from the fourth and fifth rows. The fourth row shows the accuracy
of the probing classifier before the projection step. We can see that at step 8 on the x-axis κ = 0.5,
the probing classifier correctly has an accuracy of 50% showing that the concept-causal feature is
not present in the latent representation. But for other values of κ, the probing classifier accuracy is
proportional to the value of κ implying that the probing classifier is using the main-task feature for
its prediction. Hence at the time of removal, it removes the main-task feature which leads drop in
the main-task accuracy. This can also be verified from the last row of Fig. 6 and 7, which shows
that the spuriousness score of probing classifier is high; thus it is using the main-task feature for its
prediction. We observe similar results for Synthetic-Text dataset when using INLP in Fig. 8. For all
the INLP experiment on Synthetic-Text dataset, there were no hidden layers after the nBOW encoder
(see §E.5).

So far, we have kept the main-task classifier frozen when performing INLP removal. Note that, we
also experiment with the setting when the main task classifier is trained after every projection step
of INLP (see §E.6 for experimental setup and Fig. 9 for a result description). We observe a similar
drop in the main-task accuracy with prolonged removal using INLP and early stopping leads to an
even higher reliance on the spurious concept-causal feature than it had at the beginning of INLP. The
rest of the experimental configurations were kept the same as the other INLP experiments described
above.

F.3 Extended Adversarial Removal Results

Adversarial removal failure in real-world datasets. Fig. 10 shows the failure mode of adversarial
removal AR on real-world datasets. In the x-axis we vary the predictive correlation κ between the
main and the concept-label in different datasets and measure the performance of AR on different
metrics on the y-axis. The second row shows the spuriousness score of the main-task classifier after
AR as we vary κ on the x-axis. When using RoBERTa as the encoder, the orange curve in second
row shows the spuriousness score of the main-task classifier when trained using the ERM loss. The
spuriousness score describes how much unwanted concept-causal feature the main-task classifier
is using. The blue curve shows that the AR method reduces the spuriousness of main-task though
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Figure 6: Failure of Null Space Removal when using RoBERTa as encoder: Different columns
of the figure are for three different real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE
respectively. The x-axis from steps 8-26 is different INLP removal steps. The y-axis shows different
metrics to evaluate the main task and probing classifier. Different colored lines show the spurious
correlation (κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained
classifier is clean i.e. doesn’t use the spurious concept-causal feature, hence INLP shouldn’t have any
effect on main classifier when removing concept-causal feature from the latent space. Against our
expectation, the second row shows that the main-task classifier’s accuracy is decreasing even when it
is not using the concept-feature. The main reason for this failure to learn a clean concept-probing
classifier. This can be verified from the last row which shows that the concept-probing classifier
has a high spuriousness score thus implying that it is using the main-task feature for concept label
prediction and hence during the removal step, wrongly removing the main-task feature which leads to
a drop in main-task accuracy. For more discussion see §F.2.

cannot completely remove it. The reason for this failure can be attributed to probing classifier. Even
when AR has successfully removed the unwanted concept feature, the accuracy of concept-probing
classifier will be proportion to κ due to presence of correlated main-task feature in the latent space.
This can be seen in the third row of Fig. 10. Thus we cannot be sure if the unwanted concept-causal
feature has been completely removed from the latent space or just became noisy enough to have
accuracy proportional to κ after AR converges. In Fig. 10, for each dataset and encoder, we manually
choose the hyperparameter described λ described in §E.7 which reduces the spuriousness score most
for the main-task classifier while not hampering the main-task classifier accuracy. In Fig. 11, we
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show the trend in spuriousness score is similar for all choices of hyperparameter λ in our search. No
value of λ is able to completely reduce the spuriousness score to zero.

Adversarial removal makes a classifier clean. Fig. 12 shows that when the adversarial classifier
is initialized with a clean main-task classifier that doesn’t use unwanted-concept causal features,
it makes matters worse by making the main-task classifier use the unwanted-concept feature. For
the Synthetic-Text dataset, since the word embeddings are non-trainable, one single hidden layer is
applied after the nBOW encoder so that AR methods could remove the unwanted-concept feature
from the new latent representation. We create a clean Synthetic-Text dataset by training a classifier
(iteration 1-20) on dataset with predictive correlation κ = 0.5 between the main-task and concept
label. κ = 0.5 which implies there is no correlation between the labels thus we can expect the
main-task classifier to not use the concept-causal feature. This can be seen from Main classifier
spuriousness score in Fig. 12a (2nd row) which is close to 0. We chose this method to create a
clean classifier since this allows us to measure the spuriousness score for the main-task classifier. If
we would have followed method described in [35], then we would have had only a single value of
concept label (yp) in the dataset and couldn’t have defined the majority and minority group required
for calculation of spuriousness score (see Def 3.1). For all our experiments on Synthetic-Text dataset
we use noise =0.3 and trained the main-task and probing classifier with 1 hidden layer. Similarly for
training a clean classifier for MultiNLI dataset (iteration 1-6) we again use a dataset with predictive
correlation κ = 0.5. Post training the clean classifier the AR method is initialized with these clean
classifiers for removal of concept-causal features. Since AR is initialized with clean classifier which
doesn’t use concept-causal feature, we expect AR to have no effect on the classifier. In contrast we
observe that the spuriousness score of main-classifier for both Synthetic-Text and MultiNLI dataset
increases (2nd row in Fig. 12a and 12b) which shows that AR when initialized clean/fair classifier
could make them unclean/unfair.

F.4 Synthetic-Text dataset Ablations

Adversarial Removal Failure in Synthetic-Text dataset: Figure 13 shows the failure of AR on
the synthetic dataset as we vary the noise in the main-task label and unwanted concept-label. For the
experiment, since the word embeddings are non-trainable, one single hidden layer is applied after the
nBOW encoder so that AR methods could remove the unwanted-concept feature from the new latent
representation.

Dropout Regularization Helps AR method: Continuing on observation from Fig. 14a, 14b and
14c shows the ∆-Prob of the main-task classifier after we apply the AR on Synthetic-Text dataset
(with noise=0.3) and how they changes as we increase the dropout regularization. As we increase
the dropout (drate in the figure), the ∆-Prob of the main classifier decreases showing that the
regularization methods could help improve the removal methods.

G Comparison between Spuriousness Score and ∆Prob

In this section we compare the Spuriousness Score proposed in §3.4 for measuring a classifier’s
use of a binary spurious feature with the ideal, ground-truth metric, ∆Probability (∆Prob for short)
defined in §E.8. ∆Prob measures the reliance on a spurious feature by changing the spurious feature
in the input space (when possible) and measuring the change in the prediction probability of the given
classifier. Hence ∆Prob is a direct and intuitive measure of spuriousness in a given classifier. But
changing the spurious feature is difficult in the input space for real-world data, thus we only evaluate
this metric on the Synthetic-Text dataset.

To do so, we use the result from Fig. 13 that showed failure of the adversarial removal method on
the Synthetic-Text dataset under various noise settings (refer §F.4 for details). For the setting with
noise n = 0.0, both Spuriousness Score and ∆Prob curve for Adversarial Removal (marked as
ADV in Fig. 13) are identical (close to 0 for all values of κ with mean = 0.0 and standard-deviation
= 0.0). For the other settings with non-zero noise, we compute the Pearson correlation between
the Spuriousness score and ∆Prob for the ADV curve. As Table 1 shows, we observe high Pearson
correlation of 0.83 and 0.95 for the noise setting, n = 0.1 and n = 0.3 respectively. The third column
in the table shows p-value (< 0.05) assuming a null hypothesis that the two metrics are uncorrelated.

43



Table 1: Correlation between Spuriousness Score and ∆Prob on Synthetic-Text dataset: Pearson-
correlation between Spuriousness score and ∆Prob; the two metrics for quantifying the dependence
of a classifier on a spurious feature. We measure the correlation for adversarial-removal experiment
over two different noise setting on Synthetic-Text dataset. For more details, see §F.4. The first column
shows different experimental settings and the second column shows the Pearson correlation between
the two metrics. The third column shows the p-value under the null hypothesis that the two metrics
are uncorrelated. Both correlations are statistically significant since p-value for both the case is <
0.05.

Pearson Correlation p-value
Synthetic-Text + n=0.1 0.83 0.0403
Synthetic-Text + n=0.3 0.95 0.0033

These results suggest that Spuriousness-Score can be a good approximation for the ideal ∆Prob
metric.
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Figure 7: Failure of Null Space Removal when using BERT as encoder: The observation is
similar to the case when RoBERTa was used as encoder (see Fig. 6) . Different columns of the
figure are for three different real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE respectively.
The x-axis from steps 8-26 is different INLP removal steps. The y-axis shows different metrics to
evaluate the main task and probing classifier. Different colored lines show the spurious correlation
(κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained classifier is
clean i.e. doesn’t use the spurious concept-causal feature, hence INLP shouldn’t have any effect on
main-classifier when removing concept-causal feature from the latent space. Against our expectation,
the second row shows that the main-task classifier’s accuracy is decreasing even when it is not using
the concept-feature. The main reason for this failure to learn a clean concept-probing classifier.
This can be verified from the last row which shows that the concept-probing classifier has high
spuriousness score thus implying that it is using the main-task feature for concept label prediction
and hence during the removal step, wrongly removing the main-task feature which leads to a drop in
main-task accuracy. For more discussion see §F.2.
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(b) Synthetic-Text + n=0.1
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(c) Synthetic-Text + n=0.3

Figure 8: Failure Mode of INLP in Synthetic-Text dataset: Different columns of the figure are
Synthetic-Text dataset with different levels of noise in the main task and probing task label. Here,
n=0.0 means there is 0% noise and n=0.3 means there is 30% noise in the labels. The x-axis from
steps 22-40 is different INLP removal steps. The y-axis shows different metrics to evaluate the
main task and probing classifier. Different colored lines show the spurious correlation (κ) in the
probing dataset used by INLP for the removal of spurious-concept. The pretrained classifier is clean
i.e. doesn’t use the spurious concept-causal feature, hence INLP shouldn’t have any effect on main
classifier when removing concept-causal feature from the latent space. Contrary to our expectation,
the first row shows main-task classifier accuracy drops as the INLP progresses. Higher the correlation
between the main-task and concept label, faster the drop in the main task accuracy. The last row
shows the change in prediction probability (∆-Prob) of main-task classifier when we change the
input corresponding to concept-label. This shows, how much sensitive the main task classifier is
wrt. to concept feature. We observe that the ∆-Prob increases in the middle of INLP showing that
the main-classifier which was not using the concept initially (as in iteration 21), started using the
sensitive concept because of INLP removal. Thus stopping INLP prematurely could lead to a more
unclean classifier than before whereas running INLP longer removes all the correlated features and
could make the classifier useless. For more discussion see §F.2.
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(c) Twitter-AAE + RoBERTa

Figure 9: Failure Mode of INLP + Main Task Classifier head retraining: Given a pretrained
encoder and the main task classifier as input to INLP for spurious concept removal, in this experiment,
we retrain the main task classifier after every step of null-space projection by INLP. All the other
experiment configurations for these experiments are kept the same as the case when we don’t retrain
the main-task classifier. The first, second, and third columns show the results for Synthetic-Text,
MultiNLI, and Twitter-AAE datasets respectively. We observe a similar trend as the case when the
main task classifier was not trained after each projection step (see Fig. 6, 7 and 8). The main task
classifier’s accuracy drops as the null-space removal proceeds (iteration 21-40 for Synthetic-Text and
iteration 7-26 for MultiNLI and Twitter-AAE datasets). Though the drop is not as severe as in the
previous setting (when we didn’t train the main task classifier), it is significant enough to impact
the practical utility of the model (greater than 20% drop in the accuracy when κ > 0.8 for all the
datasets above). Similar to previous setting, early-stopping of INLP removal may lead to a classifier
that has a higher reliance on the spurious concept than it had before the INLP removal. For example,
for κ = 0.8 in Synthetic-Text dataset, the main-task classifier’s performance drops for the first time
at iteration 29 (a valid heuristic for early stopping), but it has high ∆Prob ≈ 10% as shown in the last
row of the Synthetic-Text dataset column of this figure. For discussion of the case when the main
task classifier is not trained after every projection step, see §F.2 and §4.2.
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Figure 10: Failure Mode of Adversarial removal on real-dataset: Different column shows the
result on three different real datasets —MultiNLI, Twitter-PAN16, and Twitter-AAE respectively. The
second row shows the accuracy of spuriousness score of the main-task classifier after AR when the
dataset contains different levels of spurious correlation between the main-task and unwanted-concept
label, denoted by κ in the x-axis. When using RoBERTa as the encoder, the orange curve in second
row shows the spuriousness score of the main-task classifier when trained using the ERM loss. The
spuriousness score describes how much unwanted concept-causal feature the main task classifier
is using. The blue curve shows that the AR method reduces the spuriousness of main-task though
cannot completely remove it. When using BERT as encoder, the observation is same i.e green curve
in second row shows AR is able to reduce the spuriousness of main classifier than the red curve which
is trained using ERM, but is not able to completely remove the spurious feature. For more discussion
see §F.3.
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Figure 11: Choice of Adversarial Strength Parameter λ: The second plot shows that trend in
spuriousness score after AR is similar for all the choices of hyperparameter λ we have taken in our
search. None of the settings of λ is able to completely reduce the spuriousness score to zero. For
more discussion see §F.3.
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(b) MultiNLI + RoBERTa

Figure 12: Adversarial Removal Makes a classifier unclean: We test if the AR method increases the
spuriousness of a main-task classifier if initialized with a clean classifier. In 12a, from iteration 1-20
in x-axis, a clean classifier is trained on Synthetic-Text dataset (with 30% noise i.e n=0.3 in main-task
and probing labels) such that it doesn’t uses the unwanted concept-causal feature by training on a
dataset with κ = 0.5 (see §F.3 for details). Then the classifier is given to AR method for removing
the unwanted concept feature which makes the initially clean classifier unclean. This can be seen
from the second row of the 12a which shows the spuriousness score of main-classifier is 0 during
1-20 iteration but increases after the AR start from 21-40. Also, the last row shows the ∆-Prob of the
main-task classifier on changing the unwanted-concept in input which increases for datasets which
have large κ i.e correlation between the main and concept label. A similar result can be seen for the
MultiNLI dataset where a clean classifier is trained in iterations 1-6 (using a dataset with κ = 0.5)
which is made unclean by AR. Second row again shows that spuriousness score of main-task classifier
increases after AR starts in iteration 7-12. For more discussion see §F.3.
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(b) Synthetic-Text + n=0.1
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(c) Synthetic-Text + n=0.3

Figure 13: Failure of Adversarial Removal method on Synthetic-Text dataset: Different columns
show the adversarial removal method on Synthetic-Text dataset with different levels of noise in the
main-task and concept label. When there is no noise, from the second row in Fig. 13a, we see that
both the classifier trained by ERM and AR has zero-spuriousness score. But as we increase the noise
to 10% in Fig. 13b, we observe that the spuriousness score increases when AR is applied in contrast
to classifier trained by ERM which stays at 0. Also, higher the predictive correlation κ, higher the
increase in spuriousness. This observation augments the observation in Fig. 12 which shows that
using AR makes a clean classifier unclean. Similarly in Fig. 13c when we increase the noise to
30% we observe in second row, AR is increased the spuriousness, unlike ERM which is at 0. For
discussion see §F.4
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(a) Synthetic-Text + drate=0.0
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(b) Synthetic-Text + drate=0.5
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Figure 14: Dropout Regularization helps in Adversarial Removal: ∆-Prob of the main-task
classifier after we apply the AR on Synthetic-Text dataset (with noise=0.3) decreases as we increase
the dropout regularization from 0.0 to 0.9. For discussion see §F.4.
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