Published as a conference paper at ICLR 2024

INPUT-GRADIENT SPACE PARTICLE INFERENCE FOR
NEURAL NETWORK ENSEMBLES

Trung Trinh! Markus Heinonen'! Luigi Acerbi? Samuel Kaski'3
!Department of Computer Science, Aalto University, Finland

2Department of Computer Science, University of Helsinki, Finland

3Department of Computer Science, University of Manchester, United Kingdom
{trung.trinh, markus.o.heinonen, samuel.kaski}@aalto.fi,
luigi.acerbi@helsinki.fi

ABSTRACT

Deep Ensembles (DEs) demonstrate improved accuracy, calibration and robustness
to perturbations over single neural networks partly due to their functional diversity.
Particle-based variational inference (ParVI) methods enhance diversity by formaliz-
ing a repulsion term based on a network similarity kernel. However, weight-space
repulsion is inefficient due to over-parameterization, while direct function-space
repulsion has been found to produce little improvement over DEs. To sidestep
these difficulties, we propose First-order Repulsive Deep Ensemble (FoRDE), an
ensemble learning method based on ParVI, which performs repulsion in the space
of first-order input gradients. As input gradients uniquely characterize a function
up to translation and are much smaller in dimension than the weights, this method
guarantees that ensemble members are functionally different. Intuitively, diver-
sifying the input gradients encourages each network to learn different features,
which is expected to improve the robustness of an ensemble. Experiments on image
classification datasets and transfer learning tasks show that FORDE significantly
outperforms the gold-standard DEs and other ensemble methods in accuracy and
calibration under covariate shift due to input perturbations.

1 INTRODUCTION

Ensemble methods, which combine predictions from multiple models, are a well-known strategy
in machine learning (Dietterich, 2000) to boost predictive performance (Lakshminarayanan et al.,
2017), uncertainty estimation (Ovadia et al., 2019), robustness to adversarial attacks (Pang et al.,
2019) and corruptions (Hendrycks & Dietterich, 2019). Deep ensembles (DEs) combine multiple
neural networks from independent weight initializations (Lakshminarayanan et al., 2017). While
DEs are simple to implement and have promising performance, their weight-based diversity does
not necessarily translate into useful functional diversity (Rame & Cord, 2021; D’ Angelo & Fortuin,
2021; Yashima et al., 2022).

Particle-based variational inference (ParVI) (Liu & Wang, 2016; Chen et al., 2018; Liu et al., 2019;
Shen et al., 2021) has recently emerged as a direction to promote diversity in neural ensembles from
the Bayesian perspective (Wang et al., 2019; D’ Angelo & Fortuin, 2021). Notably, the ParVI update
rule adds a kernelized repulsion term k(f, f') between the ensemble networks f, f' for explicit
control of the ensemble diversity. Typically repulsion is done in the weight space to capture different
regions in the weight posterior. However, due to the over-parameterization of neural networks,
weight-space repulsion suffers from redundancy. An alternative approach is to define the repulsion
in function space (Wang et al., 2019; D’ Angelo & Fortuin, 2021), which requires the challenging
computation of a kernel between functions. Previous works avoided this issue by comparing functions
only on training inputs, which leads to underfitting (D’ Angelo et al., 2021). Neither weight nor
function space repulsion has led to significant improvements over vanilla DEs.

From a functional perspective, a model can also be uniquely represented, up to translation, using
its first-order derivatives, i.e., input gradients Vy f. Promoting diversity in this third view of input
gradients has notable advantages:

Published as a conference paper at ICLR 2024

Figure 1: Input-gradient repulsion increases functional diversity. An illustration of input gradient
repulsion in 1D regression with 3 neural networks. Left: At some point during training, the models
fit well to the training samples yet exhibit low functional diversity. Middle: As training proceeds, at
each data point, the repulsion term gradually pushes the input gradients (represented by the arrows)
away from each other on a unit sphere. Right: As a result, at the end of training, the ensemble has
gained functional diversity.

1. each ensemble member is guaranteed to correspond to a different function;

2. input gradients have smaller dimensions than weights and thus are more amenable to kernel
comparisons;

3. unlike function-space repulsion, input-gradient repulsion does not lead to training point
underfitting (See Fig. 1 and the last panel of Fig. 2);

4. each ensemble member is encouraged to learn different features, which can improve robust-
ness.

In this work, we propose a ParVI neural network ensemble that promotes diversity in their input
gradients, called First-order Repulsive deep ensemble (FORDE). Furthermore, we devise a data-
dependent kernel that allows FORDE to outperform other ensemble methods under input corruptions
on image classification tasks. Our code is available at https://github.com/AaltoPML/
FoRDE.

2 BACKGROUND

Bayesian neural networks In a Bayesian neural network (BNN), we treat the model’s weights 6 as
random variables with a prior p(#). Given a dataset D = {(x,,,¥,)}2_, and a likelihood function
p(y|x, 0) per data point, we infer the posterior over weights p(f|D) using Bayes’ rule

p(DIOPO) _ p(O) [Taey PynlXn,0)
Jop(DIOYP(O)A0 [p(0) TTo_, p(yn|xn, 0)dO

where the likelihood is assumed to factorize over data. To make a prediction on a test sample x*, we
integrate over the inferred posterior in Eq. (1), a practice called Bayesian model averaging (BMA):

p(0|D) = M

p(ylx*, D) = /gp(yIX*ﬁ)p(@ID)d@ = Epoim) [p(y[x", 0)]. @

However, computing the integral in Eq. (2) is intractable for BNNs. Various approximate inference
methods have been developed for BNNs, including variational inference (VI) (Graves, 2011; Blundell
et al., 2015), Markov chain Monte Carlo MCMC) (Neal, 2012; Welling & Teh, 2011; Zhang et al.,
2020) and more recently ParVI (Liu & Wang, 2016; Wang et al., 2019; D’ Angelo & Fortuin, 2021).

Deep ensembles As opposed to BNNs, which attempt to learn the posterior distribution, DEs
(Lakshminarayanan et al., 2017) consist of multiple maximum-a-posteriori (MAP) estimates trained
from independent random initializations. They can capture diverse functions that explain the data
well, as independent training runs under different random conditions will likely converge to different
modes in the posterior landscape. DEs have been shown to be better than BNNs in both accuracy and
uncertainty estimation (Ovadia et al., 2019; Ashukha et al., 2020; Gustafsson et al., 2020).

https://github.com/AaltoPML/FoRDE
https://github.com/AaltoPML/FoRDE

Published as a conference paper at ICLR 2024

Deep ensemble Weight-RDE Function-RDE FoRDE (ours)

I\

-10 0 10 -10 0 10 -10 0 10

Figure 2: Input gradient ensembles (FORDE) capture higher uncertainty than baselines. Each
panel shows predictive uncertainty in 1D regression for different (repulsive) deep ensemble methods.

Deep ensemble Weight-RDE Function-RDE FoRDE (ours)

5.0
2.5
0.0

a2 &% L
&

0.6
0.4
0.2

=5 0 5 =5 0 5 -5 0 5 -5 0 5

-2.5
-5.0

Figure 3: Uncertainty of FoRDE is high in all input regions outside the training data, and is
higher than baselines. Each panel shows the entropy of the predictive posteriors in 2D classification.

Particle-based variational inference for neural network ensembles ParVI methods (Liu & Wang,
2016; Chen et al., 2018; Liu et al., 2019; Shen et al., 2021) have been studied recently to formalize
neural network ensembles. They approximate the target posterior using a set of samples, or particles,
by deterministically transporting these particles to the target distribution (Liu & Wang, 2016). ParVI
methods are expected to be more efficient than MCMC as they take into account the interactions
between particles in their update rules (Liu et al., 2019). These repulsive interactions are driven by a
kernel which measures the pairwise similarities between particles, i.e., networks (Liu et al., 2019).

The current approaches compare networks in weight space 6 or in function space f(+; #). Weight-space
repulsion is ineffective due to difficulties in comparing extremely high-dimensional weight vectors
and the existence of weight symmetries (Fort et al., 2019; Entezari et al., 2022). Previous studies
show that weight-space ParVI does not improve performance over plain DEs (D’ Angelo & Fortuin,
2021; Yashima et al., 2022). Comparing neural networks via a function kernel is also challenging
since functions are infinite-dimensional objects. Previous works resort to comparing functions only
on a subset of the input space (Wang et al., 2019; D’ Angelo & Fortuin, 2021). Comparing functions
over training data leads to underfitting (D’ Angelo & Fortuin, 2021; Yashima et al., 2022), likely
because these inputs have known labels, leaving no room for diverse predictions without impairing
performance.

3 FORDE: FIRST-ORDER REPULSIVE DEEP ENSEMBLES

In this section, we present a framework to perform ParVI in the input-gradient space. We start by
summarizing Wasserstein gradient descent (WGD) in Section 3.1, and show how to apply WGD
for input-gradient-space repulsion in Section 3.2. We then discuss hyperparameter selection for the
input-gradient kernel in Section 3.3, and outline practical considerations in Section 3.4.

Throughout this paper, we assume a set of M weight particles {6, }}£, corresponding to a set of M
neural networks {f; : x — f(x;0;)}*,. We focus on the supervised classification setting: given
a labelled dataset D = {(x,,,yn)}2_,; with C classes and inputs x,, € R”, we approximate the
posterior p(8|D) using the M particles. The output f(x;6) for input x is a vector of size C whose
y-thentry f(x;6), is the logit of the y-th class.

Published as a conference paper at ICLR 2024

3.1 WASSERSTEIN GRADIENT DESCENT

Following D’ Angelo & Fortuin (2021), we use a ParVI method called Wasserstein gradient descent
(WGD) (Liu et al., 2019; Wang et al., 2022). Given an intractable target posterior distribution
7 = p(+|D) and a set of particles {6;}£, from distribution p, the goal of WGD is to find the particle
distribution p*,

p* = argmin KL, (p), (3)
pPEP2(O)
where KL (p) is a shorthand for the standard Kullback-Leibler divergence
KL (p) = Ey(9)[log p(0) — log w(0)], @)

and P, (0©) is the Wasserstein space equipped with the Wasserstein distance W5 (Ambrosio et al.,
2005; Villani, 2009). WGD solves the problem in Eq. (3) using a Wasserstein gradient flow (p;),
which is roughly the family of steepest descent curves of KL, (+) in P2(©). The tangent vector of
this gradient flow at time ¢ is

v (6) = Vlogm(8) — Vlog pi(6) s)

whenever p; is absolutely continuous (Villani, 2009; Liu et al., 2019). Intuitively, v;(0) points to the
direction where the probability mass at 6 of p, should be transported in order to bring p; closer to .
Since Eq. (5) requires the analytical form of p; which we do not have access to, we use kernel density

estimation (KDE) to obtain a tractable approximation p; induced by particles {Hgt)}i]\il at time ¢,

M
FOEDIIC) (6)
=1

where £ is a positive semi-definite kernel. Then, the gradient of the approximation is
SiLy Vok(6,6")
M t
Dim1 k(ﬂ, 91())
Using Eq. (7) in Eq. (5), we obtain a practical update rule for each particle 8(*) of j:
M t) p(t)
Vo k(00 6]
0(t+1) — a(t) + M VO(‘) logﬂ'(G(t)) _ 2171 : 0(t) (7) , (8)
—_— M k(m,6)

repulsion force

V log p1(8) = Q)

driving force

where 7; > 0 is the step size at optimization time ¢. Intuitively, we can interpret the first term in
the particle gradient as the driving force directing the particles towards high density regions of the
posterior, while the second term is the repulsion force pushing the particles away from each other.

3.2 DEFINING THE KERNEL FOR WGD IN INPUT GRADIENT SPACE

We propose to use a kernel comparing the input gradients of the particles,

B0:,0;) ' By mpen) 1V (x:05)y, VS (x:67),) ©)
where « is a base kernel between gradients V f(x; 6),, that are of same size as the inputs x. In
essence, we define k as the expected similarity between the input gradients of two networks with
respect to the data distribution p(x, y). Interestingly, by using the kernel k, the KDE approximation
p of the particle distribution not only depends on the particles themselves but also depends on the
data distribution. We approximate the kernel & using the training samples, with linear complexity:

| X
k(0:,0;) ~ kp(0:,0;) = ~ Z 1 (Ve (%03 00)y,» Ve (03 05)y,,)- (10)

n=1

The kernel only compares the gradients of the true label V f(xy;6),,,, as opposed to the entire
Jacobian matrix Vy f(x,,; 6), as our motivation is to encourage each particle to learn different features
that could explain the training sample (x,,, y,) well. This approach also reduces computational
complexity, since automatic differentiation libraries such as JAX (Bradbury et al., 2018) or Pytorch
(Paszke et al., 2019) would require C passes, one per class, to calculate the full Jacobian.

Published as a conference paper at ICLR 2024

Choosing the base kernel We choose the RBF kernel on the unit sphere as our base kernel «:

A 1 Tl , Vi f(x0),
k(s,s’;3) exp(2(5 s)' X7 (s s)), S Vo (x:0), 12
where s,s’ denote the two normalized gradients of two particles with respect to one input, and
3 € RP*P is a diagonal matrix containing squared lengthscales. We design & to be norm-agnostic
since the norm of the true label gradient ||V f(xy;)y, ||2 fluctuates during training and as training
converges, the log-probability f(x,;0),, = log p(yn|xn,8) will approach log 1, leading to the norm
[|Vxf(xn;0)y, |2 approaching 0 due to the saturation of the log-softmax activation. Furthermore,
comparing the normed input gradients between ensemble members teaches them to learn complemen-
tary explanatory patterns from the training samples, which could improve robustness of the ensemble.
The RBF kernel is an apt kernel to compare unit vectors (Jayasumana et al., 2014), and we can control
the variances of the gradients along input dimensions via the square lengthscales 3.

eRP? an

3.3 SELECTING THE LENGTHSCALES FOR THE BASE KERNEL

In this section, we present a method to select the lengthscales for the base kernel. These lengthscales
are important for the performance of FORDE, since they control how much repulsion force is applied
in each dimension of the input-gradient space. The dimension-wise repulsion is (Liu & Wang, 2016)

i (/.2)__M (/2) (12)

83dns,s, = S K(s,s’;3),
where we can see that along the d-th dimension the inverse square lengthscale ¥ ;4 controls the
strength of the repulsion V,#(s,s’; $): a smaller lengthscale corresponds to a stronger force.'
Additionally, since the repulsion is restricted to the unit sphere in the input-gradient space, increasing
distance in one dimension decreases the distance in other dimensions. As a result, the repulsion
motivates the ensemble members to depend more on dimensions with stronger repulsion in the input
gradient space for their predictions, while focusing less on dimensions with weaker repulsion. One
should then apply stronger repulsion in dimensions of data manifold with higher variances.

To realize the intuition above in FORDE, we first apply Principal Component Analysis (PCA) to
discover dominant features in the data. In PCA, we calculate the eigendecomposition

C =UAUT eRP*xP (13)

of the covariance matrix C = X7 X /(N — 1) of the centered training samples X € RV*P (o get
eigenvectors and eigenvalues {ug, Ay} £_,. The d-th eigenvalue)\, is the variance of the data along
eigenvector uy, offering a natural choice of inverse eigenvalues)\Jl as the squared lengthscales 344
of the principal components. Let x = U”'x denote the representation of the input x in eigenbasis
U = [uj us ... up]. We compute the gradient kernel in PCA basis U and set X = AL

k(s,s') < exp (—;(UTS ~U's)TA(UTs - UTS/)> , (14)

where A is a diagonal eigenvalue matrix. While setting the square inverse lengthscales equal to the
eigenvalues seems problematic at first glance, since large eigenvalues will push the kernel « towards
0, this problem is avoided in practice since we also employ the median heuristic, which introduces
in the kernel a global bandwidth scaling term that adapts to the current pairwise distance between
particles, as discussed below in Section 3.4.

Connection to the EmpCov prior Recently, [zmailov et al. (2021a) proposed the EmpCov prior
for the weight columns w of the first layer of a BNN:

w ~ N(0,aC + I), w e RP (15)
where a > 0 determines the prior scale and € > 0 is a small constant ensuring a positive definite
covariance. The prior encourages first layer weights to vary more along higher variance data
dimensions. Samples from this prior will have large input gradients along high variance input
dimensions. In this sense, the EmpCov prior has a similar effect to the kernel in Eq. (14) on ensemble

members. The difference is that while Izmailov et al. (2021a) incorporates knowledge of the data
manifold into the prior, we embed this knowledge into our approximate posterior via the kernel.

"Here we assume that the lengthscales are set appropriately so that the kernel x does not vanish, which is
true since we use the median heuristic during training (Section 3.4).

Published as a conference paper at ICLR 2024

3.4 PRACTICAL CONSIDERATIONS

In this section, we detail two important considerations to make FORDEs work in practice. We include
the full training algorithm in Appendix C.1.

Mini-batching To make FORDE amenable to mini-batch gradient optimization, we adapt the kernel
in Eq. (10) to a mini-batch of samples B = { (x5, y5) } 2,

ki (6:,0;) BZ (T (065 0) s Vi (%0303,). (16)

In principle, this kernel in the update rule in Eq. (8) leads to biased stochastic gradients of the
repulsion term because the average over batch samples in Eq. (16) is inside the logarithm. However,
in practice, we found no convergence issues in our experiments.

Median heuristics Since we perform particle optimization with an RBF kernel &, following earlier
works (Liu & Wang, 2016; Liu et al., 2019), we adopt the median heuristic (Scholkopf et al., 2002).
Besides the lengthscales, we introduce a global bandwidth A in our base kernel in Eq. (11):
1 _ Vi f(x;0:) D
K(si, 85,25 :exp(—si—s-TE 1si—s-), $i = 0 ——2— e R”. (17)
(50,557) h (5~ %) B (s) Vo f (50,
During training, the bandwidth A is adaptively set to med?/(2log M), where med? is the median of
the pairwise distance (s; —s;)' X~ '(s; — s;) between the weight samples {6, }}, .

3.5 COMPUTATIONAL COMPLEXITY

Compared to DEs, FORDE:s take roughly three times longer to train. In addition to a forward-backward
pass to calculate the log-likelihood, we need an additional forward-backward pass to calculate the
input gradients, and another backward pass to calculate the gradients of the input gradient repulsion
with respect to the weights. This analysis is confirmed in practice: in RESNET18/CIFAR-100
experiments of Section 5.2 with an ensemble size of 10, a DE took ~31 seconds per epoch on an
Nvidia A100 GPU, while FORDE took ~101 seconds per epoch.

4 RELATED WORKS
Besides the ParVI methods mentioned in Section 2, we discuss additional related works below.

Diversifying input gradients of ensembles Local independent training (LIT) (Ross et al., 2018)
orthogonalizes the input gradients of ensemble members by minimizing their pairwise squared cosine
similarities, and thus closely resembles our input-gradient repulsion term which diversifies input
gradients on a hyper-sphere. However, their goal is to find a maximal set of models that accurately
predict the data using different sets of distinct features, while our goal is to induce functional diversity
in an ensemble. Furthermore, we formulate our kernelized repulsion term based on the ParVI
framework, allowing us to choose hyperparameter settings (orthogonal basis and lengthscales) that
imbue the ensemble with beneficial biases (such as robustness to corruption).

Gradient-based attribution methods for deep models One application of input gradients is to
build attribution (or saliency) maps, which assign importance to visually-interpretable input features
for a specified output (Simonyan et al., 2014; Bach et al., 2015; Shrikumar et al., 2016; Sundararajan
et al., 2017; Shrikumar et al., 2017). Our method intuitively utilizes the attribution perspective of
input gradients to encourage ensemble members to learn different patterns from training data.

Improving corruption robustness of BNNs Previous works have evaluated the predictive uncer-
tainty of BNNs under covariate shift (Ovadia et al., 2019; Izmailov et al., 2021b), with Izmailov
et al. (2021b) showing that standard BNNs with high-fidelity posteriors perform worse than MAP
solutions on under corruptions. Izmailov et al. (2021a) attributed this phenomenon to the lack of
posterior contraction in the null space of the data manifold and proposed the EmpCov prior as a

Published as a conference paper at ICLR 2024

remedy. As discussed in Section 3.3, the PCA kernel works in the same manner as the EmpCov prior
and thus significantly improves robustness of FORDE against corruptions. Trinh et al. (2022) studied
the robustness of node-BNNs, an efficient alternative to weight-based BNNs, and showed that by
increasing the entropy of the posterior, node-BNNs become more robust against corruptions. Wang &
Aitchison (2023) allow BNNs to adapt to the distribution shift at test time by using test data statistics.

Table 1: FORDE-PCA achieves the best performance under corruptions while FORDE-Identity
outperforms baselines on clean data. FORDE-Tuned outperforms baselines on both clean and
corrupted data. Results of RESNET18 / CIFAR-100 averaged over 5 seeds. Each ensemble has 10
members. cA, cNLL and cECE are accuracy, NLL, and ECE on CIFAR-100-C.

METHOD NLL | ACCURACY (%) T ECE | CA /cNLL /CcECE
NODE-BNNS 0.74-+0.01 79.7+0.3 0.054+0.002 54.8/1.96/0.05
SWAG 0.73-+0.01 79.4+0.1 0.038+0.001 53.0/2.03/0.05
DEEP ENSEMBLES 0.70+0.00 81.8+0.2 0.041-+0.

03 54.3/1.99/0.05
|

) 0.0
WEIGHT-RDE 0.70+0.01 81.7+0.3 0.043+0.00 54.2/2.01/0.06
FUNCTION-RDE 0.76-+0.02 80.1+0.4 0.042+0.005 51.9/2.08/0.07
FEATURE-RDE 0.75+0.04 82.1+0.3 0.072+0.023 54.8/2.02/0.06
LIT 0.70+0.00 81.9+0.2 0.040+0.003 54.4/1.98/0.05
FORDE-PCA (OURS) 0.714+0.00 81.4+0.2 0.039-+0.002 56.1/1.90/0.05
FORDE-IDENTITY (OURS) 0.70-+0.00 82.1+0.2 0.043+0.001 54.1/2.02/0.05
FORDE-TUNED (OURS) 0.70+0.00 82.1+0.2 0.044+0.002 55.3/1.94/0.05

Table 2: FORDE-PCA achieves the best performance under corruptions while FORDE-Identity
has the best NLL on clean data. FORDE-Tuned outperforms most baselines on both clean and
corrupted data. Results of RESNET18 / CIFAR-10 averaged over 5 seeds. Each ensemble has 10
members. cA, cNLL and cECE are accuracy, NLL, and ECE on CIFAR-10-C.

METHOD NLL ¢ ACCURACY (%) 1 ECE ¢ CA /cNLL /CcECE
NODE-BNN's 0.127+ l‘) 95.9+0.3 0.006+0.002 78.2/0.82/0.09
SWAG 0.124, .001 96. QL() 1 0.005+0.001 77.5/0.78/0.07
DEEP ENSEMBLES 0.117+0.001 96.3+0.1 0.005+0.001 78.1/0.78/0.08
WEIGHT-RDE 0.117+0.002 96.2-+0.1 0.005+0.001 78.0/0.78 /0.08
FUNCTION-RDE 0.128+0.001 95.840.2 0.006-+0.001 77.1/0.81/0.08
FEATURE-RDE 0.116+0.001 96.4+0.1 0.004+0.001 78.1/0.77170.08
LIT 0.116+0.001 96.4+0.1 0.004+0.001 78.2/0.78 /0.09
FORDE-PCA (OURS) 0.125+0.001 96.1-+0.1 0. 0061 001 80.5/0.71/0.07
FORDE-IDENTITY (OURS) 0.113+0.002 96.3+0.1 0.005+0.001 78.0/0.80/0.08
FORDE-TUNED (OURS) 0.114+0.002 96.4+0.1 0.005+ 001 79.1/0.74/0.07

Table 3: FORDE outperforms EmpCov priors under corruptions, while maintaining competitive
performance on clean data. Results of RESNET18 on CIFAR-10 evaluated over 5 seeds. Each
ensemble has 10 members. cA, cNLL and cECE are accuracy, NLL, and ECE on CIFAR-10-C. Here
we use the EmpCov prior for all methods except FORDE.

METHOD NLL¢ ACCURACY (%) T ECE | CA /cNLL / cECE
DEEP ENSEMBLES 0. 119i 96.2+0.1 0.006+0.001 78.7/0.76/0.08
WEIGHT-RDE 0.120-+(lll 96.0+0.1 0.006+0.001 78.8/0.76/0.08
FUNCTION-RDE 0.132i(. 95.6+0.3 0.007-0.001 77.8/0.79/0.08
FEATURE-RDE 0.118+ 0.001 96.2+0.1 0.005+0.001 78.9/0.74/0.07
FORDE-PCA (OURS) 0.125-+0.001 96.1+0.1 0.006-0.001 80.5/0.71/0.07

5 EXPERIMENTS

5.1 ILLUSTRATING FUNCTIONAL DIVERSITY

To show that FORDE does produce better functional diversity than plain DE and other repulsive
DE approaches, we repeated the 1D regression of Izmailov et al. (2019) and the 2D classification

Published as a conference paper at ICLR 2024

experiments of D’ Angelo & Fortuin (2021). We use ensembles of 16 networks for these experiments.
Fig. 2 shows that FORDE exhibits higher predictive uncertainty in the input regions outside the
training data compared to the baselines in 1D regression. For the 2D classification task, we visualize
the entropy of the predictive posteriors in Fig. 3, which also shows that FORDE has higher uncertainty
than the baselines. Furthermore, FORDE is the only method that exhibits high uncertainty in all input
regions outside the training data, a property mainly observed in predictive uncertainty of Gaussian
processes (Rasmussen & Williams, 2006).

5.2 COMPARISONS TO OTHER REPULSIVE DE METHODS AND BNNSs

We report performance of FORDE against other methods on CIFAR-10/100 (Krizhevsky, 2009) in
Tables 1-2 and TINYIMAGENET (Le & Yang, 2015) in Appendix A. Besides the PCA lengthscales
introduced in Section 3.3, we experiment with the identity lengthscales 3 = I and with tuned
lengthscales where we take the weighted average of the PCA lengthscales and the identity lengthscales.
Details on lengthscale tuning are presented in Appendix D.4. For the repulsive DE (RDE) baselines,
we choose weight RDE (D’ Angelo & Fortuin, 2021), function RDE (D’ Angelo & Fortuin, 2021) and
feature RDE (Yashima et al., 2022). We also include LIT (Ross et al., 2018), node-BNNs (Trinh et al.,
2022) and SWAG (Maddox et al., 2019) as baselines. We use an ensemble size of 10. We use standard
performance metrics of expected calibration error (ECE) (Naeini et al., 2015), negative log-likelihood
(NLL) and predictive accuracy. For evaluations on input perturbations, we use CIFAR-10/100-C and
TINYIMAGENET-C provided by Hendrycks & Gimpel (2017), which are datasets of corrupted test
images containing 19 image corruption types across 5 levels of severity, and we report the accuracy,
NLL and ECE averaged over all corruption types and severity levels (denoted cA, cNLL and cECE in
Tables 1-4). We use RESNET18 (He et al., 2016a) for CIFAR-10/100 and PREACTRESNET18 (He
et al., 2016b) for TINYIMAGENET. Experimental details are included in Appendix C.2.

Tables 1 and 2 show that FORDE-PCA outperforms other methods under input corruptions across
all metrics, while maintaining competitive performance on clean data. For instance, FORDE-PCA
shows a +1.3% gain on CIFAR-100-C and +2.4% gain on CIFAR-10-C in accuracy compared to the
second-best results. As stated in Section 3.3, the PCA kernel encourages FORDE to rely more on
features with high variances in the data manifold to make predictions, while being less dependent on
features with low variances. This effect has been shown in Izmailov et al. (2021a) to boost model
robustness against perturbations, which explains why FoRDE with the PCA kernel performs better
than the baselines on input corruptions.

On the other hand, Tables 1 and 2 show that FORDE with identity lengthscales outperforms the
baselines in terms of NLL on CIFAR-10 and has the best accuracy on CIFAR-100. However,
FoRDE-Identity is slightly less robust than DE against corruptions. We suspect that with the identity
lengthscales, FORDE also learns to rely on low-variance features to make predictions, which is
harmful to performance under corruptions (Izmailov et al., 2021a).

Finally, Tables 1 and 2 show that FORDE with tuned lengthscales (FORDE-Tuned) outperforms the
baselines on both clean and corrupted data in most cases, suggesting that the optimal lengthscales for
good performance on both clean and corrupted data lie somewhere between the identity lengthscales
and the PCA lengthscales. Additional results on lengthscale tuning are presented in Appendix D.4.

5.3 COMPARISONS TO EMPCOV PRIOR

As stated in Section 3.3, our approach is similar to the EmpCov prior (Izmailov et al., 2021a). We thus
perform comparisons against ensemble methods where the EmpCov prior is defined for the first layer
instead of the standard isotropic Gaussian prior. We report the results of RESNET18/CIFAR-10 in
Table 3, where we use the EmpCov prior for all ensemble methods except FORDE. Comparing Table 3
to Table 2 indicates that the EmpCov prior slightly improves robustness of the baseline ensemble
methods against corruptions, while also leading to a small reduction in performance on clean data.
These small improvements in robustness are not surprising, since for ensemble methods consisting
of approximate MAP solutions, the isotropic Gaussian prior already minimizes the influences of
low-variance data features on the ensemble’s predictions (Izmailov et al., 2021a). We argue that
besides minimizing the influences of low variance features on predictions via the PCA kernel, FORDE
also encourages its members to learn complementary patterns that can explain the data well, and these

Published as a conference paper at ICLR 2024

NLL 4 ECE ! Accuracy (%) 1 Epistemic uncertainty T
100
06 0.075 06
o 95
< 0.4 0.050 0.4
< 90
=
o (il D00 i 1
0o NNNNN 0.000 MlNaa 80 0.0 [|
CIFAR-10 CINIC10 CIFAR-10-C CIFAR-10 CINIC10 CIFAR-10-C CIFAR-10 CINIC10 CIFAR-10-C CIFAR-100
15 0.06 100
S 90
S 10 0.04 0.4
3(: 80
> 1 = it . . il
0.0 0.00 60 ----- 0.0
CIFAR-100 CIFAR-100-C CIFAR-100 CIFAR-100-C CIFAR-100 CIFAR-100-C CIFAR-10 CINIC10

mmm DE mmm Weight-RDE mmm Function-RDE LT W= FoRDE

Figure 4: FoORDE outperforms competing methods in transfer learning. First three columns: We
report NLL, ECE and accuracy on in-distribution test sets and under covariate shift. For CIFAR-10,
we use CINIC10 (Darlow et al., 2018) to evaluate models under natural shift and CIFAR-10-C for
corruption shift. For CIFAR-100, we evaluate on CIFAR-100-C. FoRDE performs better than the
baselines in all cases. Last column: We evaluate functional diversity by calculating epistemic
uncertainty of ensembles on out-of-distribution (OOD) datasets using the formula in Depeweg et al.
(2018). We use CIFAR-100 as the OOD test set for CIFAR-10 and we use CIFAR-10 and CINIC10 as
OOD test sets for CIFAR-100. FoRDE exhibits higher functional diversity than the baselines.

two effects act in synergy to improve the robustness of the resulting ensemble. Thus, Table 3 shows
that FoRDE is still more robust against corruptions than the baseline methods with the EmpCov prior.

5.4 TRANSFER LEARNING EXPERIMENTS

To show the practicality of FORDE, we evaluated its performance in a transfer learning scenario. We
use the outputs of the last hidden layer of a Vision Transformer model pretrained on IMAGENET-21K
as input features and train ensembles of 10 networks. We report the results on CIFAR-10 in the first
row and on CIFAR-100 in the second row in Fig. 4. Overall, Fig. 4 shows that FORDE is better than
the baselines across all cases. See Appendix C.3 for experimental details.

6 DISCUSSION
In this section, we outline directions to further improve FoRDE.

Reducing computational complexity One major drawback of FORDE:s is the high computational
complexity as discussed in Section 3.5. To circumvent this problem, one could either (i) only calculate
the repulsion term after every £ > 1 epochs, or (ii) using only a subset of batch samples at each
iteration to calculate the repulsion term.

Reducing the number of lengthscale parameters Here we use the RBF kernel as our base kernel,
which requires us to choose appropriate lengthscales for good performance. To avoid this problem,
we could explore other kernels suitable for unit vector comparisons, such as those introduced in
Jayasumana et al. (2014). Another solution is to study dimensionality reduction techniques for input
gradients before calculating the kernel, which can reduce the number of lengthscales to be set.

7 CONCLUSION

In this work, we proposed FORDE, an ensemble learning method that promotes diversity in the input-
gradient space among ensemble members. We detailed the update rule and devised a data-dependent
kernel suitable for input-gradient repulsion. Experiments on image classification and transfer learning
tasks show that FORDE outperforms other ensemble methods under covariate shift. Future directions
include more efficient implementations of the method and reducing the burden of hyperparameter
selection as discussed in Section 6.

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by the Research Council of Finland (Flagship programme: Finnish Center
for Artificial Intelligence FCAI and decision no. 359567, 345604 and 341763), ELISE Networks of
Excellence Centres (EU Horizon: 2020 grant agreement 951847) and UKRI Turing Al World-Leading
Researcher Fellowship (EP/W002973/1). We acknowledge the computational resources provided by
Aalto Science-IT project and CSC-IT Center for Science, Finland.

ETHICS STATEMENT

Our paper introduces a new ensemble learning method for neural networks, allowing deep learning
models to be more reliable in practice. Therefore, we believe that our work contributes towards
making neural networks safer and more reliable to use in real-world applications, especially those
that are safety-critical. Our technique per se does not directly deal with issues such as fairness, bias
or other potentially harmful societal impacts, which may be caused by improper usages of machine
learning or deep learning systems (Mehrabi et al., 2021). These issues would need to be adequately
considered when constructing the datasets and designing specific deep learning applications.

REPRODUCIBILITY STATEMENT

For the purpose of reproducibility of our results with our new ensemble learning method, we have
included in the Appendix detailed descriptions of the training algorithm. For each experiment, we
include in the Appendix details about the neural network architecture, datasets, data augmentation
procedures and hyperparameter settings. All datasets used for our experiments are publicly available.
We have included our codes in the supplementary material and we provide instructions on how to
run our experiments in a README . md available in the provided codebase. For the transfer learning
experiments, we used publicly available pretrained models which we have mentioned in the Appendix.

REFERENCES

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer, 2005.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In International Conference on Learning
Representations, 2020.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS ONE, 10(7):e0130140, 2015.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, 2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-optimization
framework for scalable Bayesian sampling. In Uncertainty in Artificial Intelligence, 2018.

Francesco D’ Angelo and Vincent Fortuin. Repulsive deep ensembles are Bayesian. In Advances in
Neural Information Processing Systems, 2021.

Francesco D’ Angelo, Vincent Fortuin, and Florian Wenzel. On Stein variational neural network
ensembles. In ICML workshop Uncertainty and Robustness in Deep Learning, 2021.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

10

Published as a conference paper at ICLR 2024

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decompo-
sition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1184—1193. PMLR,
10-15 Jul 2018. URL https://proceedings.mlr.press/v80/depewegl8a.html.

Thomas G. Dietterich. Ensemble methods in machine learning. In International Workshop on
Multiple Classifier Systems, 2000.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. In NeurIPS workshop Bayesian Deep Learning, 2019.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, 2011.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep
learning methods for robust computer vision. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition workshops, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE conference on Computer Vision and Pattern Recognition, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, 2016b.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Pavel Izmailov, Wesley Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and Andrew Gor-
don Wilson. Subspace inference for bayesian deep learning. Uncertainty in Artificial Intelligence
(UAI), 2019.

Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dangers of Bayesian model
averaging under covariate shift. In Advances in Neural Information Processing Systems, 2021a.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What are bayesian
neural network posteriors really like? In International Conference on Machine Learning, 2021b.

Sadeep Jayasumana, Richard Hartley, Mathieu Salzmann, Hongdong Li, and Mehrtash Harandi.
Optimizing over radial kernels on compact manifolds. In IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

Ya Le and Xuan S. Yang. Tiny ImageNet visual recognition challenge. 2015.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understanding and accelerating
particle-based variational inference. In International Conference on Machine Learning, 2019.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. In Advances in Neural Information Processing Systems, 2016.

11

https://proceedings.mlr.press/v80/depeweg18a.html

Published as a conference paper at ICLR 2024

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for Bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, 2019.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM Comput. Surv., 54(6), jul 2021. ISSN 0360-0300.
doi: 10.1145/3457607. URL https://doi.org/10.1145/3457607.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using Bayesian binning. In AAAI Conference on Artificial Intelligence, 2015.

Radford M Neal. Bayesian learning for neural networks, volume 118 of Lecture Notes in Statistics.
Springer, 2012.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
Evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems, 2019.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In International Conference on Machine Learning, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, 2019.

Alexandre Rame and Matthieu Cord. DICE: Diversity in deep ensembles via conditional redundancy
adversarial estimation. In International Conference on Learning Representations, 2021.

Carl Edward Rasmussen and Christopher K. 1. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Andrew Slavin Ross, Weiwei Pan, and Finale Doshi-Velez. Learning qualitatively diverse and
interpretable rules for classification. arXiv preprint arXiv:1806.08716, 2018.

Bernhard Scholkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Zheyang Shen, Markus Heinonen, and Samuel Kaski. De-randomizing MCMC dynamics with the
diffusion Stein operator. In Advances in Neural Information Processing Systems, 2021.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black box:
Learning important features through propagating activation differences. arXiv, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In International Conference on
Learning Representations Workshop, 2014.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, 2017.

Trung Q Trinh, Markus Heinonen, Luigi Acerbi, and Samuel Kaski. Tackling covariate shift with
node-based Bayesian neural networks. In International Conference on Machine Learning, 2022.

Cédric Villani. Optimal transport: old and new, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

Xi Wang and Laurence Aitchison. Robustness to corruption in pre-trained Bayesian neural networks.
In International Conference on Learning Representations, 2023.

12

https://doi.org/10.1145/3457607

Published as a conference paper at ICLR 2024

Yifei Wang, Peng Chen, and Wuchen Li. Projected Wasserstein gradient descent for high-dimensional
Bayesian inference. SIAM/ASA Journal on Uncertainty Quantification, 10(4):1513-1532, 2022.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization for
Bayesian neural networks. In International Conference on Learning Representations, 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning, 2011.

Shingo Yashima, Teppei Suzuki, Kohta Ishikawa, Ikuro Sato, and Rei Kawakami. Feature space
particle inference for neural network ensembles. In International Conference on Machine Learning,
2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference, 2016.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
stochastic gradient MCMC for Bayesian deep learning. In International Conference on Learning
Representations, 2020.

13

Published as a conference paper at ICLR 2024

A RESULTS ON TINYIMAGENET

Table 4: FORDE-PCA performs best under corruptions while having competitive performance
on clean data. Results of PREACTRESNET18 on TINYIMAGENET evaluated over 5 seeds. Each
ensemble has 10 members. cA, cNLL and cECE are accuracy, NLL, and ECE on TINYIMAGENET-C.

METHOD NLL | ACCURACY (%) T ECE | CA /cNLL /CECE
NODE-BNNS 1.39+0.01 67.6+0.3 0.114-+0.004 30.4/3.40/0.05
SWAG 1.39-+0.01 66.6+0.3 0.020+0.005 28.4/3.72/0.11
DEEP ENSEMBLES 1.15+0.00 71.6+0.0 0.035-+0.002 31.8/3.38/0.09
WEIGHT-RDE 1.15+0.01 71.5+0.0 0.036-0.003 31.7/3.39/0.09
FUNCTION-RDE 1.214+0.02 70.2+0.5 0.036+0.004 31.1/3.43/0.10
FEATURE-RDE 1.24+0.01 72.0+0.1 0.100-+0.003 31.9/3.35/0.09
LIT 1.15+0.00 71.5+0.0 0.035+0.002 31.2/3.40/0.11
FORDE-PCA (OURS) 1.16+0.00 71.4+0.0 0.033-+0.002 32.2/3.28/0.08

B PERFORMANCE UNDER DIFFERENT ENSEMBLE SIZES

We report the NLL of FORDE and DE under different ensemble sizes on CIFAR-10/100 and CIFAR-
10/100-c in Figs. 5-6. We use the WIDERESNET16X4 (Zagoruyko & Komodakis, 2016) architecture
for this experiment. These figures show that both methods enjoy significant improvements in perfor-
mance as the ensemble size increases. While Fig. 5a and Fig. 6a show that FORDE underperforms DE
on clean images, Fig. 5b and Fig. 6b show that FORDE significantly outperforms DE on corrupted
images, such that a FORDE with 10 members has the same or better corruption robustness of a DE
with 30 members.

0.66 Method
' —— FORDE 2.20
- bE = 2.15
_,0.65 s
— -
= Z2.10
0.64
2.05
10 20 30 10 20 30
Ensemble size Ensemble size
(a) CIFAR-100 (clean) (b) CIFAR-100-C (corrupted)

Figure 5: FoRDE is competitive on in-distribution and outperforms DEs under domain shifts by
corruption. Performance of WIDERESNET16X4 on CIFAR-100 over 5 seeds.

C TRAINING PROCEDURE

C.1 TRAINING ALGORITHM FOR FORDE

We describe the training algorithm of FoRDE in Algorithm 1.

C.2 EXPERIMENTAL DETAILS FOR IMAGE CLASSIFICATION EXPERIMENTS

For all the experiments, we used SGD with Nesterov momentum as our optimizer, and we set the
momemtum coefficient to 0.9. We used a weight decay A of 5 x 10~ and we set the learning rate
nto 10~1. We used a batch size of 128 and we set € in Algorithm 1 to 10712, We used 15 bins to
calculate ECE during evaluation.

14

Published as a conference paper at ICLR 2024

Algorithm 1 FORDE

1: Input: training data D, orthonormal basis U, diagonal matrix of squared lengthscales X, a neural
network ensemble {f(-;0;)}2, of size M, positive scalar ¢, number of iterations 7', step sizes

{m}E |, weight decay A

2: Output: optimized parameters {HgT)}ﬁl
3: Initialize parameters {950)}%1
4: fort =1toT do
5. Draw a mini-batch {x,, yp}2_, ~ D.
6: for b =1to B do
7: for i =1to M do > Calculate the normalized input gradients for each 6; (Eq. (11))
8:
Vi, f (305 0"
Si’b - b ((f))yh2 (18)
VIV Gas0),, 15 +
9: end for
10: fori =1to M do > Calculate the pairwise squared distance in Eq. (14)
11: for j =1to M do
1
dijp < 50— 550) TUBU (855 —5;) (19)
12: end for
13: end for
14: Calculate the global bandwidth per batch sample using the median heuristic (Eq. (17)):
hy, +— median({d; j } 101 —)/(21n M) (20)
15: end for
16: fori=1to M do > Calculate the pairwise kernel similarity using Eq. (16) and Eq. (17)
17: for j =1to M do
1 B
ki’j — EZeXp (_di,j,b/hb> 20
b=1
18: end for
19: end for
20: for i =1to M do
21: Calculate the gradient of the repulsion term using Eq. (7):
M
op | 2i=1 Vewki
8 —=w . (22)
Zj:l kij
22: Calculate the gradient g of the cross-entropy loss with respect to 6;.
23: Calculate the update vector in Eq. (8):
t]- ata re
v — 5 (& — &) (23)
24: Update the parameters and apply weight decay:
08t — 0 (v — a0y (24)

25: end for
26: end for

15

Published as a conference paper at ICLR 2024

0.85
01250 F 75m—,—m0o—+
0.80
_, 01225 Method N
= 0.1200 — FORDE 4075
= DE =2
0.1175 0.70 \
0.1150 0.65
10 20 30 10 20 30
Ensemble size Ensemble size
(a) CIFAR-10 (clean) (b) CIFAR-10-C (corrupted)

Figure 6: FoRDE is competitive on in-distribution and outperforms DEs under domain shifts by
corruption. Performance of WIDERESNET16X4 on CIFAR-10 over 5 seeds.

On CIFAR-10 and CIFAR-100, we use the standard data augmentation procedure, which includes
input normalization, random cropping and random horizontal flipping. We ran each experiments
for 300 epochs. We decreased the learning rate 7 linearly from 10! to 10~ from epoch 150 to
epoch 270. For evaluation, we used all available types for corruptions and all levels of severity in
CIFAR-10/100-cC.

On TINYIMAGENET, we use the standard data augmentation procedure, which includes input normal-
ization, random cropping and random horizontal flipping. We ran each experiments for 150 epochs.
We decreased the learning rate 7 linearly from 10~! to 10~ from epoch 75 to epoch 135. For
evaluation, we used all available types for corruptions and all levels of severity in TINYIMAGENET-C.

For weight-RDE and FoRDE, we only imposed a prior on the weights via the weight decay parameter.
For feature-RDE and function-RDE, we followed the recommended priors in Yashima et al. (2022).
For feature-RDE, we used Cauchy prior with a prior scale of 10~2 for CIFAR-10 and a prior scale of
5 x 1072 for both CIFAR-100 and TINYIMAGENET, and we used a projection dimension of 5. For
function-RDE, we used Cauchy prior with a prior scale of 10~ for all datasets.

C.3 EXPERIMENTAL DETAILS FOR TRANSFER LEARNING EXPERIMENTS

We extracted the outputs of the last hidden layer of a Vision Transformer model pretrained
on the ImageNet-21k dataset (google/vit-base-patchl6-224-in21k checkpoint in the
transformers package from huggingface) and use them as input features, and we trained
ensembles of 10 ReLU networks with 3 hidden layers and batch normalization.

For all the experiments, we used SGD with Nesterov momentum as our optimizer, and we set the
momemtum coefficient to 0.9. We used a batch size of 256, and we annealed the learning rate from
0.2 to 0.002 during training. We used a weight decay of 5 x 10~%. We used 15 bins to calculate
ECE for evaluation. For OOD experiments, we calculated epistemic uncertainty on the test sets of
CIFAR-10/100 and CINIC10. For evaluation on natural corruptions, we used all available types for
corruptions and all levels of severity in CIFAR-10/100-c.

D ADDITIONAL RESULTS

D.1 INPUT GRADIENT DIVERSITY AND FUNCTIONAL DIVERSITY

To show that FORDE indeed produces ensembles with higher input gradient diversity among member
models, which in turn leads to higher functional diversity than DE, we visualize the input gradient
distance and epistemic uncertainty of FORDE and DE in Fig. 7. To measure the differences between
input gradients, we use cosine distance, defined as 1 — cos(u, v) where cos(u, v) is the cosine
similarity between two vectors u and v. To quantify functional diversity, we calculate the epistemic
uncertainty using the formula in Depeweg et al. (2018), similar to the transfer learning experiments.
Fig. 7 shows that FORDE has higher gradient distances among members compared to DE, while also
having higher epistemic uncertainty across all levels of corruption severity. Intuitively, as the test

16

Published as a conference paper at ICLR 2024

inputs become more corrupted, epistemic uncertainty of both FORDE and DE increases, and the input
gradients between member models become more dissimilar for both methods. These results suggest

that there could be a connection between input gradient diversity and functional diversity in neural
network ensembles.

ResNet18 / CIFAR-100

Gradient cosine distance T Epistemic uncertainty 1t
0.3
0.6
0.4 0.2
0.2 0.1 II
0.0 0.0
O 1 2 3 4 5 0o 1 2 3 4 5
Severity Severity

B DE I FoRDE-PCA

Figure 7: FoRDE has higher gradient distance as well as higher epistemic uncertainty Results of
RESNET18 on CIFAR100 over 5 seeds under different levels of corruption severity, where 0 mean no
corruption.

D.2 PERFORMANCE UNDER CORRUPTIONS

We plot performance of all methods under the RESNET18/CIFAR-C setting in Figs. 8 and 9. These

figures show that FORDE achieves the best performance across all metrics under all corruption
severities.

5

80
4 «
;560
03 >
= © 40
= 3
2 ﬂ E i + *
20
1 B9y
1 2 3 4 s 1 2 3 4 s 1 2 3 4 s
Corruption severity Corruption severity Corruption severity

I DE 8 DE-EmpCov I feature-RDE I FORDE-PCA

Figure 8: FoRDE performs better than baselines across all metrics and under all corruption
severities. Results for RESNET18/CIFAR-100-C. Each ensemble has 10 members.

D.3 CoMPARISON BETWEEN FORDE-PCA AND EMPCOV PRIOR

In Section 3.3, we discussed a possible connection between FORDE-PCA and the EmpCov prior (I1z-
mailov et al., 2021a). Here, we further visualize performance of FORDE-PCA, DE with EmpCov prior
and vanilla DE on different types of corruptions and levels of severity for the RESNET18/CIFAR10
setting in Fig. 10. This figure also includes results of FORDE-PCA with EmpCov prior to show that
these two approaches can be combined together to further boost corruption robustness of an ensemble.
Overall, Fig. 10 shows that FORDE-PCA and DE-EmpCov have similar behaviors on the majority of
the corruption types, meaning that if DE-EmpCov is more or less robust than DE on a corruption
type then so does FORDE-PCA. The exceptions are the blur corruption types ({motion, glass, zoom,

17

Published as a conference paper at ICLR 2024

100

3 ! ; 0.4
« 80
S 0.3
- 2 = -
- O 60 w
= Q02
1 |9}
; g % 01 l
0 & 20 0.0 Bees
1 2 3 4 5 1 2 3 4 5
Corruption severity Corruption severity Corruption severity

I DE 8 DE-EmpCov I feature-RDE N FORDE-PCA

Figure 9: FoRDE performs better than baselines across all metrics and under all corruption
severities. Results for RESNET18/CIFAR-10-C. Each ensemble has 10 members.

defocus, gaussian}-blur), where DE-EmpCov is less robust than vanilla DE while FORDE-PCA
exhibits better robustness than DE. Finally, by combining FORDE-PCA and EmpCov prior together,
we achieve the best robustness on average.

ResNet18 / CIFAR-10-C

100 gaussian_noise pixelate jpeg_compression impulse_noise spatter
g 75
o
8 50
5
S 25
<
0
100 brightness frost speckle_noise motion_blur contrast
g 75
9
© 50
=1
<7 | lin
<
0
100 glass_blur zoom_blur snow defocus_blur saturate
g 75
o)
© 50
3
S 25
<
0
100 shot_noise gaussian_blur elastic_transform Average
g 75
o
© 50
=1
<
0
Severlty Severlty Severlty Severlty Severlty

mmm DE s DE-EmpCov mmm FoRDE-PCA mmm FoRDE-PCA-EmpCov

Figure 10: FORDE-PCA and EmpCov prior behave similarly in most of the corruption types
Here we visualize accuracy for each of the 19 corruption types in CIFAR-10-C in the first 19 panels,
while the last panel (bottom right) shows the average accuracy. Both FORDE-PCA and DE-EmpCov
are more robust than plain DE on most of the corruption types, with the exception of contrast where
both FORDE-PCA and DE-EmpCov are less robust than DE. On the other hand, on the blur corruption
types ({motion, glass, zoom, defocus, gaussian}-blur), DE-EmpCov is less robust than vanilla DE
while FORDE-PCA exhibits better robustness than DE.

D.4 TUNING THE LENGTHSCALES FOR THE RBF KERNEL

In this section, we show how to tune the lengthscales for the RBF kernel by taking the weighted
average of the identity lengthscales and the PCA lengthscales introduced in Section 3.3. Particularly,

18

Published as a conference paper at ICLR 2024

using the notation of Section 3.3, we define the diagonal lengthscale matrix X,:
S,=aA '+ (1-a) (25)

where A is a diagonal matrix containing the eigenvalues from applying PCA on the training data
as defined in Section 3.3. We then visualize the accuracy of FORDE-PCA trained under different
a € {0.0,0.1,0.2,0.4,0.8,1.0} in Fig. 11 for the RESNET18/CIFAR-100 setting and in Fig. 12 for
the RESNET18/CIFAR-10 setting. Fig. 11 shows that indeed we can achieve good performance on
both clean and corrupted data by choosing a lengthscale setting somewhere between the identity
lengthscales and the PCA lengthscales, which is at &« = 0.4 in this experiment. A similar phenomenon
is observed in Fig. 12, where o = 0.2 achieves the best results on both clean and corrupted data.

ResNet18 / CIFAR-100

Clean data Severity level 1, 2, 3 Severity level 4, 5
s —— 63.5 ~ s -
82.0 / /
>
o 44.0
E 63.0 o o
3 / 43.5 /
J 81.5 *—_, 625 = 2
< ! 43.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
a a a

Figure 11: When moving from the identity lengthscales to the PCA lengthscales, FORDE becomes
more robust against natural corruptions, while exhibiting small performance degradation on
clean data. Results are averaged over 3 seeds. Blue lines show performance of FORDE, while orange
dotted lines indicate the average accuracy of DE for comparison. At the identity lengthscales, FORDE
has higher accuracy than DE on in-distribution data but are slightly less robust against corruptions
than DE. As we move from the identity lengthscales to the PCA lengthscales, FORDE becomes more
and more robust against corruptions, while showing a small decrease in in-distribution performance.

Here we can see that o« = 0.4 achieves good balance between in-distribution accuracy and corruption
robustness.

ResNet18 / CIFAR-10
Clean data Severity level 1, 2, 3 Severity level 4, 5

A964 34 °® —o
g /‘\ 87 = 70 7
%963 5 / .
© \ 4 /
g 96.2 — 86 / 68 /
< 96.1 o=t .

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

a a a

Figure 12: When moving from the identity lengthscales to the PCA lengthscales, FORDE becomes
more robust against natural corruptions, while exhibiting small performance degradation on
clean data. Results are averaged over 3 seeds. Blue lines show performance of FORDE, while orange
dotted lines indicate the average accuracy of DE for comparison. At the identity lengthscales, FORDE
has higher accuracy than DE on in-distribution data but are slightly less robust against corruptions
than DE. As we move from the identity lengthscales to the PCA lengthscales, FORDE becomes more
and more robust against corruptions, while showing a small decrease in in-distribution performance.

Here we can see that o« = 0.2 achieves good balance between in-distribution accuracy and corruption
robustness.

19

	Introduction
	Background
	FoRDE: First-order Repulsive Deep Ensembles
	Wasserstein gradient descent
	Defining the kernel for WGD in input gradient space
	Selecting the lengthscales for the base kernel
	Practical considerations
	Computational complexity

	Related works
	Experiments
	Illustrating functional diversity
	Comparisons to other repulsive DE methods and BNNs
	Comparisons to EmpCov prior
	Transfer learning experiments

	Discussion
	Conclusion
	Results on tinyimagenet
	Performance under different ensemble sizes
	Training procedure
	Training algorithm for FoRDE
	Experimental details for image classification experiments
	Experimental details for transfer learning experiments

	Additional results
	Input gradient diversity and functional diversity
	Performance under corruptions
	Comparison between FoRDE-PCA and EmpCov prior
	Tuning the lengthscales for the RBF kernel

