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ABSTRACT

Stochastic optimization is a key enabler in modern machine learning, producing
effective models for various tasks. However, several researchers have shown that
model parameters and gradient information are susceptible to privacy leakage.
Although, Differentially Private SGD (DPSGD) addresses privacy concerns, its
static noise mechanism impacts the error bounds for model performance. Addition-
ally, with the exponential increase in model parameters, efficient learning of these
models using stochastic optimizers has become more challenging. To address these
concerns, we introduce the Dynamically Differentially Private Projected Stochas-
tic Gradient Descent (D2P2-SGD) optimizer. In D2P2-SGD, we combine two
important ideas: (i) dynamic differential privacy (DDP) with automatic gradient
clipping and (ii) random projection with SGD, allowing dynamic adjustment of
the tradeoff between utility and privacy of the model. It demonstrates provably
tighter error bounds compared to DPSGD across different behavior (i.e. convex and
non-convex) of the objective function. The theoretical analysis further suggests that
DDP leads to better utility at the cost of privacy, while random projection enables
more efficient model learning. Extensive experiments across diverse datasets show
that D2P2-SGD significantly enhances accuracy while maintaining privacy. Our
code is available herel

1 INTRODUCTION

Deep learning models Kasneci et al.[ (2023); |Chang et al.| (2023)); [Thirunavukarasu et al.[ (2023);
Zhao et al.| (2023)); Menghanil (2023)), enabled by stochastic optimization techniques have achieved
remarkable success in many fundamental machine learning tasks. Though these models empirically
show incredibly appealing capabilities, there are critical concerns regarding the privacy of these
models. In numerous applications, such as healthcare (Chen et al.| (2021)) and finance |Goodell et al.
(2021)), training datasets often contain highly sensitive information that must remain confidential.
However, due to the wide use of deep learning models, their rich representations can possibly disclose
private information under privacy attacks, as demonstrated in the prior works Zhu et al.[(2019);Zhao
et al.| (2020); Wang et al.| (2022).

To mitigate these privacy concerns, differential privacy (DP)|Dwork! (2006;2008)); Li et al.|(2011)
was introduced, and it has gained considerable attention Ji et al.| (2014); [Blanco-Justicia et al.| (2022)
to provide principled and rigorous privacy guarantees. Intuitively speaking, DP is a mechanism to
ensure that all data samples have no significant impact on the ultimate trained model. Differentially
private SGD (DPSGD) |Song et al.|(2013)); Jagielski et al.|(2020); |/Abadi et al.|(2016); Bassily et al.
(2014) is one of the most acknowledged methods to solve the private empirical risk minimization
(ERM) problems. Specifically, it perturbs each gradient update with a static random noise vector
(with the same dimension as that of the gradient) sampled from a distribution. Using the perturbed
gradient updates, we can compute the tradeoff between the utility and privacy of the model. This
tradeoff can be adjusted via a noise mechanism, typically sampled from a static distribution with
properly chosen yet fixed variance. While this approach is technically simple and provably effective,
the noise variance significantly impacts the ultimate error bound.

A challenging issue that remains in various private machine learning tasks is how to achieve a
desirable tradeoff between privacy and utility, which becomes particularly important in large-scale
deep learning models [Li et al.| (202 1a)); Flemings et al.[(2024); Mattern et al.| (2022)).
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Recent work Du et al.| (2021)) proposed a dynamic DP mechanism to adjust the tradeoff on the fly,
reducing the model performance loss gap but at the cost of increased privacy loss. Further, the
dimension of the noise vector is typically the same as that of the gradient, which could be extremely
large to cause intensive computational complexity. This issue motivates us to seek out an approach
that assists in reducing the complexity while maintaining privacy. Inspired by the work Blocki et al.
(2012), we pay attention to model compression techniques.

Model compression |Bucilua et al.| (2006); (Choudhary et al.| (2020) has been utilized to reduce
the computational complexity, including quantization [Zhou et al.| (2018)); (Chmiel et al.| (2020),
regularization [Moradi et al.| (2020); (Orvieto et al.| (2023)); [Tao et al| (2015), and projection |Gu
et al.[(2023)); Tsfadial (2024)). Though these methods aim to reduce computational complexity, their
technical details can differ significantly depending on the specific focus. For example, in|Gu et al.
(2023)), the authors used projection to identify the dominating gradient subspace, which assisted in
improving model accuracy, without changing the dimension of model parameters. This is analogous
to L1-norm regularization Xu et al.| (2008)), which enforces some model parameters to be exactly 0.
Albeit model compression enables enticing performance, it comes at the expense of possible accuracy
reduction and sophisticated compression techniques, necessitating an effective optimizer that can
balance the dynamic trade-off between privacy and utility. Thus, this naturally leads to a synthesis
among complexity, privacy and utility and the following question:

Can we design an efficient differentially private optimizer to allow small model performance
reduction gap and maintaining privacy?

Contributions. In this work, we answer this question affirmatively. Specifically, we propose a novel
stochastic optimizer termed Dynamically Differentially Private Projected Stochastic Gradient Descent
(D2P2-SGD), which, for the first time, integrates the dynamic DP mechanism with automatic gradient
clipping and random projection for optimization. The dynamic DP mechanism involves an isotropic
Gaussian distribution with a properly chosen time-varying variance that decreases along with the
iterations, reducing noise effects as privacy loss increases. To further warrant differential privacy and
bound the influence of each individual example on the stochastic gradient, we resort to a recently
developed automatic gradient clipping mechanism Bu et al.|(2024)). This is different from traditional
clipping method |Abadi et al.|(2016) that there is an upper bound imposed for gradients. Additionally,
the stochastic gradient is projected into a lower-dimensional space, reducing the dimension of additive
noise and mitigating the increase in privacy loss. Concretely, the main contributions are as follows:

1. We propose a novel DP optimizer, D2P2-SGD, by defining a dynamic DP mechanism with
time-varying noise variance and using random projection to reduce the model performance loss
gap and the dimension of noise vectors added to stochastic gradients. The per-sample gradient
normalization is utilized as the automatic gradient clipping mechanism to control the influence of
each individual example on the stochastic gradient.

2. Theoretically, we show that with D2P2-SGD, the error rates for generally convex and non-convex
functions are tighter than those for regular DPSGD. The results for the dynamic DP mechanism
can immediately degenerate to those for the static scenario, revealing the consolidation among
complexity, utility, and privacy.

3. We validate the proposed D2P2-SGD on a wide spectrum of datasets, demonstrating that the
model accuracy can substantially improve compared to the state-of-the-art.

It is noteworthy that our approach in this paper prioritizes theoretical exploration over scalability to
larger datasets and models, such as transformers and large language models [Kasneci et al.| (2023);
Chang et al.|(2023)). While some work has been done in this area|Anil et al.| (2021); |Yu et al.| (2021a),
developing a differentially private optimizer for these models remains a significant challenge and is
left for future work.

2 RELATED WORKS

Beyond the aforementioned works, additional related works have been done to develop more efficient
DP optimizers. The authors in [Koloskova et al.| (2023b) designed a novel optimizer called anti-
correlated perturbed gradient descent (Anti-PGD) and analyzed its convergence rates for diverse
functions. Though they claimed the bounds are tighter and used the results to develop new and
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Table 1: Comparison among different methods.

Method N. C. Rate
DPSGD [Bassily et al.|(2014) S N O(#)
PDP-SGD [Zhou et al|(2020) S Y O(7=)
DPKD Mireshghallah et al.[(2022) S N N/A
Ant i-PGD |[Koloskova et al.| (2023b) S N O(#)
Dynamic DPSGD|Du et al.|(2021) D N (’)(\/—%)
PrivSGD |Kasiviswanathan| (2021) S Y N/A*
RQP-SGD [Feng & Venkitasubramaniam|(2024) S Y (’)(\/—%)
D2P2-SGD (Ours) D Y O(= + #15)

S: static; D: dynamic; N: no; Y: yes; I'N/A: the convergence rate in this work is only for
convex; however, the rate herein is for non-convex functions. N.: Noise. C.: Compression.

effective matrix factorizations for DP optimization, no relevant theoretical results have been found
for the trade-off between utility and privacy. A recent work for the first time (and possibly being
only one to our best of knowledge) proposed a dynamic DP mechanism |Du et al.|(2021) to vary the
noise variance along with the optimization. In this work, the authors scrutinized how to dynamically
adjust the gradient clipping thresholds and noise power for alleviating the performance loss gap
given a total privacy budget constraint. However, they overlooked the dependence of noise vector
on the dimension of gradient, which can be extremely large to worsen the performance loss gap.
Moreover, regardless of delivering meaningful insights for the trade-off between utility and privacy,
no formal results were reported on the privacy guarantee. A projected variant of DPSGD [Zhou
et al.| (2020) provably showed the tighter error bounds based on the reduced dependence on the
originally large dimension by identifying the gradient sub-eigenspace. Although the proposed scheme
is mathematically simple, calculating eigenvectors from structure tensors could become problematic
if they are ill-conditioned. Furthermore, a small public dataset was entailed to estimate structure
tensors, which may not be satisfied if their method was applied to a distributed setting. A work close
to ours is PrivSGD in Kasiviswanathan| (2021]), which used random projection on the gradient vector
to reduce the dependence on the large dimension arising from the noise addition. Nevertheless, in this
work, an extra optimization was required to lift the lower-dimensional gradient back to the original
one, which inevitably caused more computational overhead. In addition to this, the noise power in the
DP mechanism still remained static. The authors in|Yu et al.| (2021b) proposed Gradient Embedding
Perturbation (GEP) to first project gradients into a non-sensitive anchor subspace and then perturb
the low-dimensional embedding and the residual gradient separately according to the privacy budget.
Though this work has implemented low-dimensional embedding to reduce the perturbation variance,
as we do in this work, there is no control mechanism on the gradient that may diverge. Also, the
utility analysis only applies to convex case. A more recent work [Feng & Venkitasubramaniam| (2024)
employed randomized gradient quantization to compress the dimension of the gradient vector for
reducing the computational complexity, facing the same issues including large dimension and static
noise power. Different from these existing works, our work aims to reduce the performance loss gap
by attenuating the negative noise impact without significantly sacrificing the privacy. Please refer to
Table [T] for a summarized comparison among different methods.

3 PROBLEM FORMULATION AND PRELIMINARIES

Given a private dataset D = {s1, $2, ..., S5, } sampled in an i.i.d. manner from a distribution P such
that we want to solve the empirical risk minimization (ERM) problem subject to differential privacy:

n

1
iny = - 394 )y 1
miny f(x) n;f(xs) (H
where x € R? and f(-, ) is the loss for a single sample. We aim to optimize Eq. with a gradient-

based algorithm in a differentially private manner. We denote by x;, the model parameters’ iterate
and g the mini-batch gradient at each time step k. Throughout the analysis, we assume that gy
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is the unbiased estimate of V f(xy). In this context, we resort to gradient clipping mechanism
to constrain the magnitude of the stochastic gradient gj. To provide the guarantee of differential
privacy, it requires bounding the influence of each individual example on gj. A fairly popular
clipping operation |Abadi et al.| (2016) applied to vector v € R? is as: clip(v, G) = min{1, ﬁ} -V,
where G > 0, || - || is the I norm. However, when applying this to the stochastic gradient, such
an operation will inevitably result in "lazy region" issue, particularly if ||v|| > G. This means the
parameters will not be updated even if the true gradients are non-zero. Therefore, to mitigate this
issue, we leverage a recently developed per-sample gradient normalization |Bu et al.|(2024])) as an
automatic clipping described as: clip(v,G,v) = ﬁ, where ~ is a positive stability constant,
which has been recommended in their work. Additionally, the authors even showed that any constant
choice G is equivalent to choosing G = 1. In this work, we reveal that for any v > 0, the gradient
norm will converge to a neighborhood at the same asymptotic rate such that common deep learning
optimizers are insensitive to the choice of . To characterize the analysis for the propose scheme,
we introduce the necessary background and preliminary knowledge in the sequel, starting with the
standard definition of differential privacy.

Definition 1. (c-Differential Privacy Dwork (20006)) A randomized algorithm M is e-differentially
private if for any pair of datasets D, D’ differ in exactly one data point and for all events ) C
Range(M) in the output range of M, we have Pr{M(D € )} < exp(e)Pr{M(D' € )},
where the probability is taken over the randomness of M.

Range(M) refers to the set of all possible outcomes of M. Technically speaking, the set ) in
Definition [I| must be measurable. This definition implies that the probability of observing a specific
output on any two neighboring datasets can differ by at most a multiplicative factor of exp(e).
Intuitively, a sufficiently small € value suggests that either including or excluding a single data point
from the dataset does not likely affect the output. Hence, an adversary only accessing the output of M
is difficult to infer whether any data point is present in the dataset. The parameter ¢ is called privacy
budget and its practical selection varies significantly, depending on different scenarios |Ponomareva
et al. (2023)). However, a relaxation of e-DP in Definition E]has been used more commonly instead,
which is primarily due to attaining better utility and easier privacy accounting for composing multiple
DP mechanisms. Consequently, an Approximate DP mechanism is defined as follows.

Definition 2. ((¢, §)-differential privacy |Dwork (2000)) A randomized algorithm M is (g,0)-
differentially private if for any two neighboring datasets D, D" and for all events Y C Range(M)
in the output range of M, we have Pr{M(D € Y)} < exp(e)Pr{M(D’' € Y)} + §, where the
probability is taken over the randomness of M.

Here, it can be observed that § controls the strength of the relaxation, compared to Definition
with smaller values leading to stronger privacy guarantees. A generally recommended ¢ value in
the literature is to choose § < % Ponomareva et al.|(2023)). In our analysis, we will establish the
privacy guarantee for the proposed algorithm presented in the next section. In the sequel, we present
preliminaries on random projection and define formally the projection matrix for our algorithm.

Random projection (RP) |Achlioptas| (2001)) is an effectively fundamental tool that has been used
in numerous applications to analyze datasets and then characterize their major features. It projects
data points to random directions that are independent on the dataset, which renders simpler and
computationally faster trend than classical methods such as singular value decomposition (SVD). RP
is based upon the Johnson-Lindenstrauss lemma |Larsen & Nelson|(2017), described as follows.

Definition 3. (Johnson-Lindenstrauss Lemma|Larsen & Nelson|(2017)) For any 0 < ( < 1, a set S
of m points in R%, and an integer p > 8(Inm) /C2, there exists a linear map h : R* — RP, such that

(1= Qllu—vl* < h(u) = h()[* < 1+ )llu— o], )
forallu,v € S.

Johnson-Lindenstrauss lemma states that a set of points in a high-dimensional space can be projected
into a lower dimension subspace such that their relative distances are nearly preserved. Inspired
by this, we adapt random projection techniques to model parameters or gradients |Kasiviswanathan
(2021)) by projecting the counterpart from a high-dimensional space to its corresponding subspace,
which facilitates the efficient updates. Note also that the lower dimension subspace is selected
randomly based on some distribution. According to Definition [3| we observe that the core to the
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Johnson-Lindenstrauss Lemma is the linear map h, which can be obtained through the following
definition.

Definition 4. Let A be a random matrix of order d x p, i.e., A;; ~ N(0,1) and o be any fixed vector
in R, Define r = %ATO. Thus, r € RP and r; = % Zj Ajjo;.

We notice that each element of A is sampled from the same normal distribution A (0, 1), while we
use a slightly different variance, 0% instead of 1, in our theoretical analysis.

4 ALGORITHM AND MAIN RESULTS

We present the main algorithm framework for the proposed D2P2-SGD and defer the variants to the
supplementary materials.

4.1 ALGORITHMIC FRAMEWORKS

D2P2-SGD is shown in Algorithm[I] Line 4 states the key gradient clipping operation to control the
influence of the gradient magnitude. Compared to the clipping mechanism applied in|Abadi et al.
(2016), we do not need to tune the clipping threshold. In Line 5, a mini-batch stochastic gradient is
calculated after the per-sample gradient clipping. In Line 6, the stochastic gradient gy, is projected to
the lower-dimensional space RP by using Ay, which is followed by addmg the noise sampled from
a Gaussian distribution with time-varying distribution O’ wlp, where o, =

independent of a high dimension d, but dependent on a lower dimension p < d, which fundamentally
reduces the noise. The fact that we resort to the decay of ﬁ for the variance is motivated by the same

setup to the learning rate in stochastic optimizers |Bottou et al. (2018) which manipulates the tradeoff
between the convergence speed and optlmallty Analogously, o ¢ 1, controls the impact of the noise
mechanism on the tradeoff between the privacy and utility in d1fferent phases of the optimization.
Since the update for x;, is operated in the original dimension R?, we multiply the projected stochastic
gradient by Ay, to project it back to the original one. It is apparent that such an implementation will
cause projection errors that will impact the error rate, (which will be observed in the theoretical
analysis). However, similar to/Wang et al.|(2019b)), D2P2-SGD implies more efficient model learning
as it has now focused primarily on the subspace in R? instead of the whole space. Note that the
temporal evolution of Ay is due to its elements sampled from a constant distribution every iteration.
We claim that D2P2-SGD represents a unified framework over existing methods. When p = 1 and
Ay = Ay = ... = Ag = I, D2P2-SGD degenerates to dynamic DPSGD (D2P-SGD) Du et al.| (2021)),
though the original approach has another gradient clipping mechanism to prevent dynamic DPSGD
from diverging and different formula for o2, . Similarly, if we set fixed variance for €5, D2P2-SGD
becomes DPSGD, without any random projéction. On the contrary, PrivSGD [Kasiviswanathan| (2021}
can also be obtained if D2P2-SGD has the fixed variance, but with the random projection. However,
compared to PrivSGD, which involves an extra optimization to convert from the low-dimensional to
high-dimensional spaces, our scheme simply uses Ay, to replace the optimization, which significantly
attenuates the practical implementation complexity. We also use DP2-SGD (differentially private
projected SGD) to represent this case. Please see all the methods in the supplementary materials.

Algorithm 1 D2P2-SGD

1: Input: Model initialization x;, step size «, the number of epochs K, lower dimension
p, random matrices Ay, Ao, ..., Ax, size of mini-batch B, training set D, noise sequence

021,029,002 37

for each kin 1 to K do
Split the dataset D into multiple mini-batches with size B and randomly sample one B
Clip the per-sample gradient g7 = V f(xx;s)/(|Vf(xk; )| +7), s € B
Calculate the mini-batch stochastic gradient g, = % 5 s &
Project noisy gradient using Ak gr = Ai( fAk gk + €x), where e, ~ N (0, or 2. L)
Update parameter using projected noisy gradient: Xx41 = X — a8k

end for

Output: x5

R e A A
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4.2 MAIN RESULTS

We next show the convergence behavior for our proposed D2P2-SGD, with generally convex and
non-convex objective functions. All proof is deferred to the appendix. Before presenting the results,
we impose some necessary assumptions.

Assumption 1. (a): f(x) is smooth with modulus L for all x € R? and coercive; (b) throughout the
analysis, the minimum value of the objective | exists and is bounded below, i.e., f* = f(x*),x* =
minycga f(x) and f* > —oc.

Assumption [1| (a) is generic in many previous works [Wang et al.| (2019b)); Du et al.| (2021); |Ka+
siviswanathan| (202 1)) to imply that the variations of gradients along with optimization is bounded
above by L. Many models even including deep neural networks can at least be approximately smooth
for the corresponding losses.

Assumption 2. (a) The variance of stochastic gradient V f(x, s) is bounded above by a constant
o >0, ie, E[|[Vf(x,s) — Vf(x)|] < 02,Vs € D; (b) for any x € R% and any sample s € D,
IVi(x,s)| <G.

Assumption 2] (a) is popular when analyzing the convergence behavior of SGD type of algorithms
due to the mini-batch sampling. As in/Wang et al.|(2019b); |Du et al.| (2021)), the bounded gradient in
Assumption 2] (b) is only needed for of utility guarantee of generally convex objectives, which has
typically been regarded as a strong assumption. However, it was also used in recent works Zhou et al.
(2020); Zhang et al.|(2023)). The author in|Kasiviswanathan|(2021)) used an extra bounded second
moment assumption for gradients besides the bounded variance assumption, though it is weaker
than the bounded gradient assumption. Additionally, to measure the convergence, we adopt function
difference f(x) — f* < £ for generally convex functions and the norm of gradient ||V f(x)|| < ¢ for
non-convex functions, where £ > 0 can be an arbitrarily small constant. In the sequel, we start the
main results with the privacy guarantee.

Theorem 1. (Privacy) Let Assumption[2|(b) hold. There exist constants Cy,Cy > 0 such that for any
2
e < le#, D2P2-SGD is (e, §)-differentially private for any § > 0, if 02 > CoKIn(1/9)

n2e2

The proof is essentially adapted from the same proof in|Abadi et al.| (2016), while differing in some
constants. At each iteration, Line 7 in Algorithm I] post-processes the Gaussian noise mechanism that
perturbs the stochastic gradient g, by adding noise €. Subsequently, the sequence of {ﬁAZ gr +

e 1, is released to have privacy guarantee by following the same privacy proof of Theorem 1
in|Abadi et al.|(2016). The detailed proof is deferred to the Appendix However, the significant
difference in our work is that the noise variance is time-varying, i.e., o¢ ;. With the explicit form

2
of noise variance we have defined in this work, i.e., 052, b= % it is immediately obtained that
02, > 025> .. > O'?)K. InWang et al.| (2019b) and |Abadi et al|(2016), the static variance has the
C2K1n(1/5)
n2e?

b}

lower bound with respect to some key constants such as K and G. Thus, as long as af’ K 2
the privacy guarantee is attained. Equivalently, o2 > % in this context. Another observation
from Theorem |1|is that the size of mini-batch B has an impact on e. When B enlarges, ¢ has
a larger upper bound such that the model performance improves with the cost of privacy, which
will be evidently validated in the result section. Though the authors in [Du et al.| (2021)) for the
first time proposed to leverage dynamic DP mechanism to reduce the model performance loss gap,
privacy guarantee has been ensured by the dynamic power following an exponential mechanism
Oclp X O(p_%), where p is a positive constant. As they still utilized the clipping mechanism
from|Abadi et al.|(2016), they had also to establish the similar exponential mechanism for the clipping
threshold, which makes their algorithm framework more complex. While in our work, thanks to the
automatic clipping mechanism, there is no such a requirement. We are now ready to state the results
for the utility with different functions.

Theorem 2. (Utility for convex functions) Let Assumptions[I|and 2| hold. Suppose that f is a convex
function and that A is a random matrix with each element being sampled from a normal distribution
N(0,0%). Also, let the additive noise of DP mechanism have the variance 0627 x 1f the step size

o= j—;’? where « is the base learning rate, and B = o2 /£, then for the iterates {x; }< |, K > 1
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generated by D2P2-SGD, the following relationship holds true
lx1 —x*[|2(G+7) (G +7)(InK + 1)0? N aopd?c? (G +7)
200VK0?%\/p 2K15 20K

Elf(xx)—f] < + D&,
3

where X = £ S0 xp, ¢ = maxk{”gi%} > 1,D = sup, cpallx — x*.

Remark 1. Theorem[2|suggests that the error bound involves four terms, the initialization error, the
error of additive noise due to the DP mechanism, the random projection approximation error, and
the clipping bias. The second term implies the tradeoff between utility and privacy. If 037 B = a2,
aop’®e(GHy)o?
2 2\/?

oZ k = 0;5 , it can be bounded by O(I“K ), which also relaxes the dependence on « to control the
magnitude. Though model performance loss gap is reduced, dynamic variance can breach the privacy.
To maintain the (g, 0)-differential przvacy for D2P2-SGD, as implied in Theorem |l| l the additive
noise should be sampled with a larger o2 to offset the privacy loss, particularly in the early phase
during the optimization, compared to DPSGD The third term is associated with model projection
error, while the term 0% d* due to model compression can cause significant error. One empirical
remedy is to leverage a small o, leading to the slow convergence. The last term to dictate the
error bound in Eq.[B|is a bias caused by the gradient clipping. If the initialization error is small,
then D is typically reduced, leading to a smaller bias. Such a bias is attained when batch size B
satisfies B = O(1/&2)|Zhao et al|(2021). Without this condition, it would become cDo such that
the clipping bias is in the order of O(o), which resembles the result in |Koloskova et al.|(2023dl).
Overall, the consolidation among complexity, utility, and privacy in D2P2-SGD is reflected explicitly
in Theorem 2] One trivial corollary summarizes the the clipping bias for D2P2-SGD in the following.

this term becomes , which result in a slower convergence to vanish it. Instead, if

Corollary 1. (Convergence rate for convex functions) With condmons defined in Theorem 2] the
following relationship holds true, i.e., E[f(Xx) — f*] < (9( + B+ cDE).

The conclusion in Corollary [1{requires the constant learning rate « to have a format o o< O(\/%)

which is a quite popular choice in finite time convergence. However, due to the gradient clipping,
regardless of how small « is, D2P2-SGD convergences to a neighborhood of size cDE. This complies
with findings from |Koloskova et al.| (2023a)); Bu et al.[(2024); |Xiao et al.[(2023); |Chen et al.[(2020).
However, the bias term we have obtained is quantified by a flexibly smaller constant, such that
it can be controlled within a small magnitude of constant. In previous works [Xiao et al.[ (2023);
Koloskova et al.|(2023a), the clipping bias is tightly correlated with o, which can be large under
some scenarios. Additionally, Compared to DPSGD with the static variance, our error rate is tighter,
without sacrificing the privacy, by manipulating the time-varying variance.

Theorem 3. (Utility for non-convex functions) Let Assumptions[I|and[2 hold. Suppose that A is a
random matrix with each element being sampled from a normal distribution N (0 02). Also, let the
additive noise of DP mechanism have the variance o> <k If the step size « = \/?

base learning rate, and B = o* /£, then for the iterates {x;, }}*_,, K > 1 generated by D2P2-SGD,
the following relationship holds true

f(x1) aoLp*Po?(InK + 1) N Lo /pd*c%,
\/Fai\/f)ao K15 VK

Remark 2. Viewing Theorem[3|for the non-convex functions allows us to make the similar conclusions
as in Remark[l] Nevertheless, different from generally convex cases, the first-order stationary point
(FOSP) can only be guaranteed through Eq. 4| which is fairly generic in many stochastic optimization
problems. The clipping bias in Eq. {|is slightly different from that in the generally convex case due to
an extra . Similarly, a corollary is presented to show the finite time convergence for D2P2-SGD.

minge g E[[|V f(x)[l] <

+2§+’y “)

Corollary 2. (Convergence rate for non-convex functions) With condltlons defined in Theorem|[3| the
following relationships hold true, mingcp, g1 E[||V f (xx)||] < (’)( + 2K+ 204 7).

Based on Corollary 2] the convergence rate of non-convex functlons remains the same as that of
generally convex functions, in a finite time manner. However, comparing results from both cases in the
asymptotic manner, the error of non-convex functions may relatively be larger by the stability constant
«, which illustrates that the asymptotic convergence for non-convex functions is more challenging.
We summarize the clipping bias for different methods in the following Table |2 for a comparison




Under review as a conference paper at ICLR 2025

(we only compare for non-convex functions as most of existing methods only discussed non-convex
objectives), showing that the clipping bias induced by D2P2-SGD is more flexible to control, when
batch size B = O(1/£?). Also, if the computational complexity is defined as the total number of
gradient computation, it can be observed that the computational complexity is KB = O(1/£%),
which retains the same complexity as in|Ghadimi & Lan|(2013)). Similarly, the iteration complexity is
K = O(1/£?), while the convergence is a neighborhood of size O().

Table 2: Comparison among different methods.

Method Clipping Bias
Chen et al. (2020) Wasserstein distance
Koloskova et al.|(2023a) goro?/a
Xiao et al.|(2023) 150
Bu et al|[(2024) o/r
~ D2P2-SGD (Ours) 26+~

a > 0 is the clipping threshold; » > 0

5 NUMERICAL EXPERIMENTS

We present extensive empirical results to thoroughly validate our proposed approaches with the
comparison to baselines. The baseline we use in this study consists of SGD, vanilla DPSGD, D2P-
SGD, and DP2-SGD. D2P-SGD is an equivalent alternative of Dynamic DPSGD in |Du et al.| (2021)).
DP2-SGD can also be regarded as an equivalence of PrivSGD |Kasiviswanathan| (2021)) since the
compression technique they adopted is also random projection, with a static DP. We leverage the
Opacus library [Yousefpour et al.| (2021) and build the framework on top of it. We use a 4-layer
Convolutional Neural Network (CNN) [Li et al.| (2021b) as the model, which has been widely used in
developing optimizers Zhou et al.|(2020). A more detailed explanation of the architecture is provided
in Appendix. Additionally, the datasets for testing our algorithms include FashionMNIST Xiao et al.
(2017) and SVHN |Sermanet et al.| (2012)). As we have particularly identified the critical relationship
between the privacy loss € and other parameters, an ablation study on this is shown to reveal their
impact on the performance. Additional results on other larger models and datasets are in Appendix.
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Figure 1: Comparison among different methods for SVHN data: on the right side, the privacy loss is
shown for static and dynamic scenarios.

Comparative Evaluation. Figure |l| shows the model performance and privacy loss for different
methods. We train five different instances of each algorithm with different random seeds. The solid
curves correspond to the mean and the shaded region to the minimum and maximum values over the
five runs. For the privacy loss, the standard deviation is fairly small. Also, the dynamic mechanism
for D2P-SGD and D2P2-SGD is the same. Similarly, DPSGD and DP2-SGD have the same static
mechanism. D2P2-SGD significantly improves the model accuracy compared to DPSGD, D2P-SGD,
and DP2-SGD. While this comes at the expense of a larger privacy loss, which is expected. This
is attributed to the decreasing variance ofv /K along with iterations. However, the testing accuracy
of D2P2-SGD is much closer to SGD, while having a gap due to projection error and clipping bias.
Notably, D2P2-SGD spends a lesser number of epochs, reaching a higher accuracy at the early phase,
even earlier than SGD, which implies that random projection enables more efficient model learning.
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Figure 2: Comparison among different methods for FashionMNIST data: on the right side, the privacy
loss is shown for static and dynamic scenarios.
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Figure 4: Privacy loss vs. standard deviation

The similar conclusions can be made from Figure 2] Comparing DP2-SGD and D2P2-SGD, we see
that with random projection, if the noise variance from the DP mechanism is static, the performance
deteriorates accordingly. However, with a dynamic mechanism, it performs robustly throughout
training. This validates the conclusion from Theorem 3] where the second term decays faster when
the number of iterations increases. However, DP2-SGD remains with the rate of O(1/vK) (If o is
not in O(1/v/K), this term in D2P2-SGD is in O(In(K/K)), while DP2-SGD O(1)). Turning to
the privacy loss (¢) in both figures, we can observe that the maximum privacy losses of the dynamic
mechanism end up with respectively 2.45 (for SVHN) and 2.75 (for FashionMNIST). Compared to
values with the static DP mechanism (1.06 and 0.95, respectively), the privacy loss of D2P2-SGD
grows sharply. However, given the bound for ¢ in Theorem ] as long as the constant C; (> 314,
see supplementary material for more detail) is selected properly, D2P2-SGD still remains (¢, ¢)-
differentially private. Thus, our proposed scheme substantially improves the accuracy over baselines
while successfully maintaining differential privacy.
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Figure 5: Impacts of parameters

Impact of o.. From Figure [3] it shows that as o, value increases, the final model accuracy drops
for DP2-SGD and D2P2-SGD, which first validates the coupling between projection error 0% and
the noise variance ‘752, & in Theorem (3{and show the trade-off between the utility and privacy. When
oe < 6, which can be treated as a low privacy regime, D2P2-SGD maintains the better performance
than DPSGD and D2P-SGD, while underperforming in the high privacy regime after o. > 6. This
intuitively shows us a careful selection of o is required to balance the trade-off. Figure ] delivers a
similar conclusion in terms of privacy loss.

Impact of B. As suggested from Theorem [T} we can adjust the privacy loss by setting the batch
size B. In Figure@ we can observe that when batch size increases from 256 to 1024, it increases
the upper bound for ¢ < le# such that the privacy loss is relatively higher through all o, for
D2P2-SGD, leading to the better performance. This essentially validates the condition B = o2 /¢2

from Theorem [2| and Theorem , where o2 decreases in the error bounds, leading to the better
convergence due to the smaller €.

Impact of p. Figure [Sb{shows the impact of different lower dimensions on the testing accuracy and
privacy loss. It immediately suggests that the performance of random projection varies with different
p values. The optimal one is a 30% reduction rate, which implies that random projection can assist in
model learning efficiency if the p value is chosen properly. Instead, the privacy loss is independent of
the dimension change based on Figure [5bl Thus, D2P2-SGD allows for reducing the computational
complexity by random projection, while maintaining privacy.

Limitation. Though D2P2-SGD has shown good performance compared to the existing baselines,
some potential limitations exist, which can also help us close such gaps in future work. First, D2P2-
SGD may not work well in the scenarios with high privacy restrictions. As we have the decaying
noise variance that ensures decent model performance, privacy loss will inevitably be the resulting
outcome. One can carefully tune these parameters to obtain acceptable values, but it is still fairly
challenging to scale. One way to get rid of this is to develop more effective dynamic DP mechanisms
such that the tradeoff between utility and privacy can be handled better. Second, getting an optimal
p value for random projection may be difficult as well. Though based on Johnson-Lindenstrauss
Lemma, p can be analytically obtained, its practical values for different scenarios have not yet been
accessible in a principled manner.

6 CONCLUSIONS AND BROADER IMPACTS

This work presents a novel differentially private optimizer termed D2P2-SGD with dynamic DP
mechanism, automatic gradient clipping, and model compression, which reveals the synthesis among
privacy, utility, and complexity. Specifically, we establish the dynamic privacy guarantee such that a
relatively larger variance is required in the early phase of optimization to compensate the privacy loss
in the latter phase. Given a pre-defined dynamic variance, D2P2-SGD enables a tighter error bound
compared to vanilla DPSGD with static DP mechanism. Empirical results are shown to first validate
the theory and then compare with baselines, by using a popular model and benchmark datasets.
Compared to vanilla DPSGD, our D2P2-SGD is more robust against larger noise variance, but with
a slightly larger privacy loss. However, the accuracy is significantly improved without dependence
on the large dimension. Broader vision of this work is to advance the field of differentially private
machine learning with potential impact in building privacy-aware deep learning models with highly
sensitive information for critical sectors such as healthcare and national security.
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A APPENDIX

A.1 ADDITIONAL ALGORITHMS

In this section, we present additional algorithm frameworks degenerated from D2P2-SGD, including
D2P-SGD and DP2-SGD.

Algorithm 2 D2P-SGD

1: Input: Model initializationx;, step size «, the number of epochs K, size of mini-batch B,
training set D, noise sequence 0371, 0372, e O’iK, y

2: foreach kin 1 to K do

3 Split the dataset D into multiple mini-batches with size B and randomly sample one B

4: Clip the per-sample gradient g7 = V f(xx;s)/(|Vf(xk; )| +7), s € B
5
6
7

Calculate the mini-batch stochastic gradient g, = % Y8
Perturb the gradient gy, using dynamic noise: g = g, + €, where 5 ~ N(0, 052_ wlp)
Update parameter using projected noisy gradient: Xx1+1 = X — a8k /

8: end for

9: Output: xx

Algorithm 3 DP2-SGD

1: Input: Model initializationx, step size «, the number of epochs K ,lower dimension p, random
matrices A, As, ..., A, size of mini-batch B, training set D, noise variance o2,y

2: foreach kin 1 to K do

3: Split the dataset D into multiple mini-batches with size B and randomly sample one 55

4: Clip the per-sample gradient g = V f(xy;3)/(|Vf(xk; 8)|| +7), s€ B
S: .
6
7

Calculate the mini-batch stochastic gradient g, = £ >, 5 &;
Project noisy gradient using A} : g = Ak(ﬁAng + €x), where e ~ N (0, 02L,)
: Update parameter using projected noisy gradient: xx11 = X — a8k
8: end for
9: Output: xx

Table 3: D2P2-SGD and its different variants.

Method p al Ay,

_ 0'52 dXp
D2P2-SGD >1 7 R
D2P-SGD N/A i‘/z I € Rdxd
DP2-SGD >1 o2 Rdxp

A.2 PROOF FOR PRIVACY GUARANTEE

In this subsection, we provide the proof for the privacy guarantee. Before that, we present some
existing results to serve to characterize the proof. We begin with a function defined in the following.

Definition 5. Denote by M a randomized mechanism and by D and D' two adjacent inputs. The
parameterized Rényi divergence between two distributions is defined as:

_ Ny _ 1 M(D)(9) >q
EM (7]) - SupD,'D’Dn(M(D)”M(D )) - SupD,D’ n— 110gE9NM(D/) |:(M(D/)(9) ) (5)
where M(D)(0) refers to the density at 6 of this distribution.

The first result is from Proposition 1 in|Mironov|(2017)).
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Lemma 1. Let M = Mg o Mg _q 00 Mj be defined in an interactively compositional way,

then for any fixedn > 1,
K
<Y e, (). (6)

k=1
em(n) is defined as in Definition E]

The K iterations of D2P2-SGD can be decomposed into K compositions of sub-sampled Gaussian
mechanisms with uniform sampling without replacement. We denote by G(o.) o S(n, B). With the
abuse of notations, we denote by é(n). the privacy-accountant functional of Eq. [5|in Definition
Another lemma in the following introduces a sufficient and necessary condition for a mechanism to
be (e, d)— differentially private.

Lemma 2. Dwork et al.|(2014) Let M be a randomized mechanism. M is (¢,6)—DP if and only if
§ > exp[(n — 1)(em(n) — )], for some n > 1.

Before the formal proof, we present another auxiliary technical lemma, which dictates the privacy
amplification by uniform sub-sampling without replacement.

Lemma 3. For the mechanism induced by D2P2-SGD, G (o) o S(n, B), with £ <

the following
10’
privacy accountant holds:

. 7B : n
e < s L/ 210g<B) )

With this in hand, we are now ready to prove Theorem[I] We restate it in the following for complete-
ness.

Theorem 1: (Privacy) Let Assumption@] (b) hold. There exist constants C7, Cy > 0 such that for any
e < QK DoP2-SGD is (e, §)-differentially private for any § > 0, if 02 > C2B K In(1/3)

TL E
2
Proof. With the explicit form of noise variance we have defined in this work, i.e., 062 b= Ze it

k 9
C2B?KlIn(1/95)
n2g?

is immediately obtained that 02, > 025 > ... > 07 . If 02 > , then 02, >

w for all k. Thus, the core of the proof has now turned to o2. As discussed before,

D2P2- SGD can be treated as a composition, denoted by M. In light of Lemmaﬂ] and Lemma [3] it is

easily obtained that
TK2B? o2 n
em(n) < —5—5— 777 v < > 1Og(B)- (®)

K is due to the K iterations in D2P2-SGD and K < K?2. Additionally, based on Lemma we can
know that D2P2-SGD is (e, §)-DP is there exists 1 < %ﬁzlog (g) such that

TK?B?n —(n—1)e

W <eg/2, exp<2 <. 9
It is now easy to verify that if ¢ = CyB2K?/n?, all these conditions can be satisfied by setting
O = % Vslog(l/é), for some explicit constants C; and Cl. O]

A.3 PROOF FOR CONVEX OBJECTIVES

A well-known result regarding the convexity is presented in the following to characterize the analysis.
Lemma 4. (convexity Garrigos & Gower (2023)) If f : R — R is convex and differentiable, then

forx,y € R%,
fx) = fly) +(Vfy)x—y) (10)
Theorem 2: (Utility for convex functions) Let Assumptions[IJand[2]hold. Suppose that f is a convex

function and that A is a random matrix with each element being sampled from a normal distribution
N(0,0%). Also, let the additive noise of DP mechanism have the variance o2, . If the step size
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a = 5, where g is the base learning rate, and B = 02 /€2, then for the iterates {x;} 5 |, K > 1
generated by D2P2-SGD, the following relationship holds true
1 = x*[Pe(G + ) | aop™?e(G + 7)(InK + 1)o¢  aopd®oj¢(G +7)

€

E[f(iK) f } = 20[0\/*014\/» 2K1.5 2\/]:?

+cD¢,
(11)

where X = S 1| Xp, ¢ = maxk{@%} > 1,D = sup,cpallx — x*||.

Proof. Letg; = V f(xy;s) and define C = . Using the update law we have:

1
[EARR!
Efllxe1 — %12 = Ellxe — aAu(—=A] = ZO gi + ex) — x"[|°]

+ \/* k B sB&k
= E[llxx —x"[*] + ]E[HOéAk(\[ATB chgk +ex)|”]

VP

1 1
= Ef||xx — x*[|*] + E[HO‘(%AkAgE XS: Cigi, + Axer)||°]

1 1
- 20‘E[<7Ak141:§ Z Csgy + Axer, x — x7)]

1 Sk
—2aE[(—E[4,A]]—28
K\/z’v A gy

1 1
= Bl — x*|*] + Eflla(—= A4y Z Csgi + Arer)||”] (12)

y Xk — X*>]

D

— 2aE 17
R

* 1 S
= Ef||x, — x*[|*] + ]E[Ha(*Ak:AEE > Csgi + Aren) %]

s X — X))

/P
— 2ay/poAE|(x;, - x*, —SE )]
gkl + v
— E[||x; — x*||?] + a?Em;ﬁAkAZ; gcsgznﬂ + a2E[|| Ager )’
— 2a/po}El(x; — x*, —E )]
lgell +

The third equality follows from that E[Ae;] = 0 based on the Concentration Theorem for Projec-
tions [Dasgupta et al.[(2012), the independence between AkAT and g(xx), and E[ > Csgl] =

Hgfﬁ' According to Deﬁnition we know that IE[AkAZ] = po AI Nabil (2017), which yields

the fourth equality. The last equality follows similarly from E[Aze;] = 0. As E[||4,A]|]?] =
2

Bl|S2, AraAl || ] < p X0 EllAeALI? < p S0 Ell A PENAT P = pdob.

Also, E[||Axer]|?] = Elef A] Arex] = Ele] E[A] Axlex] = €] po)ler = IE[pUAHekH ]. With
ICsgrll < 1, the following relationship holds:

Efllxi1 —x*|°] < Ellxi — x*[*] + o®p"*d*0y + a®p*ofo?,,

. BE Vf(xx) + Vf(xk)

— 20\/poiE - X
vhoaBlx. T )
< Elllxy, — x*[I°] + a?p'?d* oy + a®p*olior
VI(xk) 2 gr — Vf(xx)
+ 20 /poi E[(x* — xp,, — 2] + 200 /poi E[(x* — xp,, oL
VPoAE[( k HngJFWH VP E[( b el )]

17
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Using Lemmad] and Cauchy-Schwartz inequality yields the following,

=4
L5k + oot

ATy o) 200k 18T (14)

Since f* < f(xy) and ||gk|| < G, we have

Ellxk1 — x*|°] < E[llxe — x*[*] + o®p

2a0%,/p 2a0%/p
—E[f(xx) =[] < T Bl (k) — f7
Gy O =S g B ) = 1
< Efllxx —x*|°] + a®p"?d?o’y + a*pPofo? p — Eflxp1 — x| (15)
gk — Vf(xk)H
+ 2004 /PE[||xi — x*|| o

Diving both sides of the last inequality by e i f produces the following

Elllxx — X*H2 = IIxe1 — x| ](

B[/ (i) — 1] < N

apd?c? (G + ) n ap'®a? (G +7)
2 2

+ Eflxx —x*[[llgr — V£ (xi)|l

G +7)

+
G+~ ]
gkl +~ (16)
Efllxr —x*[1* — [[xp1 — x*]?]
2\/1»)01240[ (G+7)
apd?c% (G +~)  ap" ol (G +7)
+ AQ + 2
+cDV/(Elllgr — V£ (xx)]1)2
As (E[x])? < E[x*], and E[||gr, — Vf (xi)[1?] = E[|V f(x;5) — Vf(xk)|[%]/ B < 0/ B, we have

(e — x*[1* = [1xxs1 — X*IIQ](

<

B[S (i) — /7] < Nt G+) "
2 2 1.5 .2
o) G

If we sum over k from 1 to K and divede both sides by K, the following relationship can be obtained:

LS B - < El X1
K £ = 2Kozﬁaioz 7

(18)

apd®0%(G+7v)  ap"®(G+7) o
D

Substituting the learning rate o = \7—% into the last inequality and using Jensen’s inequality on
f(xx) — f* (e, f(Rr) — f* < &+ Z,[f:l E[f(xx) — f*]) completes the proof. O

A.4 PROOF FOR NON-CONVEX OBJECTIVES

Theorem 3: (Utility for non-convex functions) Let Assumptions T]and 2] hold. Suppose that A is a
random matrix with each element being sampled from a normal distribution N (0 a2). Also, let the
additive noise of DP mechanism have the variance ‘757 i 1f the step size o = \/F where oy is the

base learning rate, and B = 02 /£2, then for the iterates {x; }2_,, K > 1 generated by D2P2-SGD,
the following relationship holds true

f(x1) aoLp*Po?(InK + 1) JrLcuo\fd?
VE o /pao K15 VK

minge k] B[V (x)[[] < 426+, (19)
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Proof. Due to the smoothness condition, we have the following relationship:
L
FOki1) < FOxk) + (VF(0) X1 = %0) + 5 301 — x| (20)
Also, we know that (xp4+1 — X = faAk(%A;% > Csgl +er))
Substituting the above equality to the smoothness equation yields the following relationship:
1
fxrg1) < f(xr) + (Vf(xp), —ad( AT Z Csgi + €x))
2n
7HAk \[ Bzcsgk+€k

Taking expectation on both sides, with the proof from Theorem [2} we can obtain the following
relationships

BLS Goes)] < Bl O] — o | (V1) = AeA] 7 3 Cogh + Aver)

N/

1
AkAEE Z Csgp + Aer ||21

N
\/ﬁ
< E[f(xx)] — aB[(V f(x), AkA chgk

i 1 T 1 s112 2
+—E ”%AkAk B chng + (| Arex|| ]

(22)
= E[f(xk)] = aE[(V f(xx), AkA Z Csg)l

Lao? La?
+—5E IIIAkA B Cagil? +—5E (I Agerl|]
1 gk
= E[f(x)] — aE[(Vf(xs), —E[4,A] | —>2—
La? s La?
+ = E ||7AkA ;csgw + =5 E Il Axer?]

The second inequality is due to the expectation of A€ equal to 0, as shown in the generally convex
case. From random projection property we know E[A; A, ] = po? 1, so we will have:

E[f(x+1)] < ELf (x4)] — ay/BoAEL(V f (xk) — 8k + 8h, —2—)]

gkl +~
23)
La? 1 1 Lao? (
—E — A Al = g2 + =—E [|| Axexl®
+ 5B (|5 Al 5 3 CtlP | + 5 [l vl
As —(a,b) < [lal|[|b]| and g, gr = ||gx|*, we have:
(=
Elf (xk+1)] < E[f(x£)] + ay/poRE[||V f(xk) — gk||m]
Lo? La? gkl +
2ot + 2 2 2 2 (24)
2 ba 0 4 2 b UAUe,k a\/i)O-A [Hng+’Y||gk||]
Y
JFO‘\/ﬁUExE[WHng]

Since 8L < 1, we have a\/BodE[|Vf(xx) — gl l8H=] < ayBoiE[|VF(xk) — gl
Hence, with ||V f(xz)|| < ||V f(xk) — gk|| + ||gk]| the following relationship can be obtained:

av/poAE[|V £ (xi)ll] < E[f (xx) — f (xu+1)] + 200/poAE[|V f (xi) — gil]

La? La?
+ ——pd?oh + —p?c0?, + a p02E[7
2 A 9 A%¢,k f A || ||+")/

(25)
g ]
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Dividing both sides of the last inequality by a\/ﬁai yields:
E[f (xk) — f(Xp41)]

E[[V f(xx)[] < avpo? + 2E[||V f(xk) — gxll] o6
La,/pd?c%  Lap'Pa?,
) + B +

which is due to == lgr|| < 7. Since E[|Vf(xx) — gul] < VE[VI(xr) —eil?] < % =¢
Summing the last equation over from 1 to K and dividing both sides by K grants us the following
relationship:

K 2 _2 1.5 K
_fx) Laypd"oy | Lap 2
IV f(xx)] < +26+~+ + ocr (27
T2 E T ) 2K 2%
With the fact that S5 o1 02 g < (INK + 1)02, substituting o = \(/% into the above equation, and the
fact that the minimum is less than the average, yields the desirable result. [

A.5 ADDITIONAL RESULTS

All the experiments were conducted on a machine equipped with an Intel Xeon Silver 4110 CPU and
an NVIDIA Titan RTX GPU.

A.5.1 ADDITIONAL DATASETS

Figure 6] shows the performance with ResNet20 Wang et al.| (2019a) on the CIFAR-10 dataset. From
the plots, we can observe that with a D2P-SGD slightly performs better than D2P2-SGD due to the
random projection error in the error bound, which also deteriorates the performance of DP2-SGD.
The the dynamic variance mechanism plays a central role in enhancing performance closer to SGD.
However, the tradeoff between random projection and privacy drives the performance of D2P2-SGD
between those in D2P-SGD (upper) and DP2-SGD (lower).

In Figures [7]and [§] results for the CIFAR-10 dataset are provided, showing a similar trend to the
other datasets. We also compare them to disclose the impact of the reduction rate. The reduction
rate is the number of dimensions that have been compressed in random projection. For example, if
d = 10000 and reduction rate is 0.3, then p = 7000. The chosen hyperparameters are: batch size
= 1024, 0. = 2.0, and dimension reduction rate = 0.3 in Figure[/| If we decrease the dimension
reduction rate to 0.1 in Figure |8} we can observe that the performance enhances, but the privacy loss
remains the same, which aligns with our findings in the main contents.

In Figure 0] when reducing o = 1.0, we can can see the significant improvement on accuracy, but
with a sacrifice of privacy loss instead. However, D2P2-SGD achieves the best performance over
baselines, and is favorably comparable to SGD. Similarly, for Figures [I0I2] (KMNIST, EMNIST,
MNIST), D2P2-SGD is favorably comparable to or outperform all baselines, which strengthens our
claims.

A.5.2 CALCULATION OF C; VALUE.

From Figures[T|and [2] given the batch size equal to 1024, the number of epoch 40, and the training
2

data sizes 60000 and 73257, based on the upper bound for ¢ in Theorem |1} ¢ < Cl%K, we can

obtain that as long as C; > 314, ¢ values for both datasets will remain within the bound.

A.5.3 DETAIL OF NETWORK ARCHITECTURE
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Figure 6: Comparison among different methods for CIFAR10 data with ResNet20: on the right side,
the privacy loss is shown for static and dynamic scenarios.

—— SGD DPSGD —— D2P-SGD —— DP2-SGD —— D2P2-SGD
10 1.0 10
—— static
—— dynamic
8 >0.8 8
9 g
S e go.s 6
g < w
c o
5 4 < 0.4 4
. i
2 Fo0.2 2
0 0.0 0
0 10 20 30 40 10 20 30 40 0 10 20 30 40
Epoch Epoch Epoch

Figure 7: Comparison among different methods for CIFAR10 data with reduction rate being 0.3, with
CNN: on the right side, the privacy loss is shown for static and dynamic scenarios.
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Figure 8: Comparison among different methods for CIFAR10 data with reduction rate being 0.1, with
CNN: on the right side, the privacy loss is shown for static and dynamic scenarios.
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Figure 9: Comparison among different methods for CIFAR10 data with CNN: training loss and
testing accuracy.
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Figure 10: Comparison among different methods for KMNIST data with CNN: training loss and
testing accuracy.

—— SGD —— DPSGD —— D2P-SGD —— DP2-SGD —— D2P2-SGD
3.0 1.0
25 >.0.8 ;
[®)
wn
£20 o
S 2 0.6
215 <
c o
= c04
g 1.0 =
© 0.2
0.5 '
0.0 0.0
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch

Figure 11: Comparison among different methods for EMNIST data with CNN: training loss and
testing accuracy.
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Figure 12: Comparison among different methods for MNIST data with CNN: training loss and testing

accuracy.

Table 4: Network architecture for Fashion MNIST, SVHN, and CIFAR-10.

Layer Parameters

Convolution 16 filters of 3 x 3, strides 1
Average Pooling 2x2

Convolution 32 filters of 3 x 3, strides 1
Average Pooling 2x2

Convolution 32 filters of 3 x 3, strides 1
Average Pooling 2x2

Convolution 64 filters of 3 x 3, strides 1
Adaptive Average Pooling 1x1

Fully connected 64 units

Softmax 10 units
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