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The appendix mainly consists of 5 parts.1

• Appendix A: We present details about the key ideas and techniques used in the paper but2

is not discussed in details due to page limitsm, including details of the model Neural DNF3

and the learning algorithm BOAT.4

• Appendix B: We discuss related works on interpretability research. we first answer why we5

prefer inherently interpretable models, we only mention briefly in the main paper, here we6

discuss more. We then talk about recent works on interpretable deep learning. We end with7

a discussion of a comparision of interpretability of rule-based models and linear model.8

• Appendix C: We discuss more about Disjunctive Normal Form (DNF). for classification,9

previous works on learning DNF and more closely, some recent works to learn DNF by10

gradient descent using a differentiable DNF function.11

• Appendix D: We relatin Neural DNF to the literature of neuro-symbolic integration.12

• Appendix E: We present details of experiment setup and experimental results not covered13

in the main paper.14

Contents15

A Algorithm Details 216

A.1 The modified Bop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.2 BOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.3 Improved SemHash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.4 Initialization of W̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A.5 Regularization of DNF: Rg and possible Alternatives . . . . . . . . . . . . . . . . 421

A.6 Possible direction of improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 422

B Related Works on Interpretability 423

B.1 Inherent interpretability, not Post-hoc interpretation . . . . . . . . . . . . . . . . . 424

B.2 Related works on Interpretable Deep Learning . . . . . . . . . . . . . . . . . . . . 525

B.3 why favouring the symbolic DNF for interpretability . . . . . . . . . . . . . . . . 526

C DNF 627

C.1 Differentiable replacement of the DNF function g . . . . . . . . . . . . . . . . . . 628

D Connections to Neural-symbolic Integration 729

E Experiment 830

E.1 Evaluation of the BOAT Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 831

E.2 The 2d-XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

E.3 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033

E.4 Other datasets in Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



A Algorithm Details35

we introduce some key ideas and techniques and the details of algorithm36

A.1 The modified Bop37

Helwegen et al. [2019] proposes the Bop optimizer in the context of binarized neural networks of38

value {−1, 1}. As suggested by Helwegen et al. [2019], the Bop can be viewed as a basic (gradient-39

based) binary optimizer, in the same sense that SGD is a basic (gradient-based) continuous-valued40

optimizer. The update rule for the original Bop is41

w =

{
−w, if |m| > τ and sign(w) = sign(m)

w, otherwise.

And the modified bop for {0, 1} used in this paper is42

w =

{
1− w, if |m| > τ and (w = 1 and m > 0 or w = 0 and m < 0)

w, otherwise.

The modification of suiting the case of {−1, 1} to {0, 1} is minor.43

Also, in the implementation we add a bias correction procedure. Let m̂t be the non-corrected gradi-44

ent momentum that is updated as m̂t = γm̂t−1 + (1− γ)∇, The bias correction is given by45

mt = m̂t/(1− γt)

We need this correction because in the original Bop paper Helwegen et al. [2019] uses random46

initialization for m but in our implementation we make specific that m is zero-initialized. So we47

will need this bias correction.48

A.2 BOAT49

Basically, BOAT consists of the modified bop and the proposed temperatured noise. We differ from50

the Helwegen et al. [2019] as follows: (1) First, we fit into the case of {0, 1} instead of {−1, 1},51

which is trivial; (2) we introduces the adaptively-temperatured noise controlled by the learnable52

temperature parameter. (3) we add a bias-correction procedure.53

We mentioned in the main paper that we suspect the noise smoothes the loss surfaces so to help the54

optimization. But it is far from a rigorous statement and we do lack some theoretical understanding55

of why and how this noise helps learning.56

We refer interested readers to the original Bop paper Helwegen et al. [2019] or a more recent paper57

by Meng et al. [2020] who discusses the connection of Bop and STE-Binary network and also58

provides a bayesian perspective on binary network learning. We believe that the our method BOAT59

can in principle be linked to approximate variational inference [Khan et al., 2018, Kingma et al.,60

2015, Potapczynski et al., 2019]. In particular, the variational Adam [Khan et al., 2018] is very like61

ours, except they works for continuous values and we add noise for binary parameters. We leave62

further theoretical investigation of BOAT for future works.63

A.3 Improved SemHash64

Since the feature extractor φ processes the raw input x into a set of intermediate representations65

{c1, c2, . . . , ck} called concept predicates. As φ is parameterized by a neural network θ, φ’s output66

c̃i is real-valued. We use a binary step function to discretize c̃i into Boolean predicates:67

ci =

{
1, if c̃i > 0

0, otherwise.

However, since gradient through this step function is zero almost anywhere and thus prevents train-68

ing, we utilize the Improved SemHash[Kaiser and Bengio, 2018] as one way to make the overall69

model differentiable.70

During training, Improved SemHash first draw Gaussian noise ε with mean 0 and standard deviation71

1. The noise ε is added to c̃, two vectors c and c′ are then computed.72

c = 1(c̃+ ε)
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Algorithm 1 The BOAT algorithm for learning Neural DNF
Hyperparameters: Accepting threshold τ > 0; Exponential decay rate γ ∈ [0, 1) ; Initial noise
temperature σ0 ∈ [0, 0.5] ; Size of rule pool N . (Default:τ=10−6, γ=1-10−5, σ0=0.2, N=64.)
Input: Dataset D; Output: The DNF g ({W ,S}); The neural network φ (θ).

1: Initialize θ randomly.
2: For every w in {W ,S}: initialize w ∈ {0, 1} randomly, mw ← 0, σw ← σ0.
3: while stopping criterion not met do
4: Sample mini-batch {(xi, yi)}batch size from the training set D.
5: Compute the perturbed {W̃ , S̃} where each entry w̃ is perturbed according to σw (??).
6: Use θ and perturbed W̃ , S̃ to compute the objective function

∑
xi,yi

L(gW̃ ,S̃(φθ(xi)), yi)

7: for every binary parameter w in {W ,S} do
8: Compute gradient∇w w.r.t the objective function computed at line 4.
9: Update exponential moving average of gradient: mw ← γmw + (1− γ)∇w.

10: if |mw| > τ and (mw < 0 and w = 0 or mw > 0 and w = 1) then
11: w ← 1− w . Line 7-11: update binary parameters using Modified Bop
12: Update θ by Adam given the objective function computed at line 6.
13: for every σw do
14: Update σw by Adam given the objective function computed at line 6.
15: Clip σw = min(0.5,max(σw, 0))

c is the result after applying the binary step function and73

c′ = max(0,min(1, 1.2 ∗ sigmoid(c̃+ ε)− 0.1))

c′ is computed by the above function called saturating sigmoid function [Kaiser and Sutskever, 2015,74

Kaiser and Bengio, 2016]. During training, c is used half of the time and and c′ is used for the other75

half of the time in the forward pass; for the backward pass we define the gradient of c to c̃ the same76

as c′ to c̃. During testing, the noise is disabled and c is used as output.77

It is not clear according to the description of [Kaiser and Bengio, 2018] what ‘half of time’ for c78

and c′ means, that is, whether we use c for one mini-batch and c′ for the next mini-batch, or we use79

c and c′ for half of the samples for each mini-batch. In our implementation, we choose the latter80

option: we use c for half of the samples in the mini-batch, and use c′ for the other half of samples in81

the mini-batch, determined randomly.82

The use of saturating sigmoid function, instead of just sigmoid function, is introduced first by Kaiser83

and Sutskever [2015] who claims to have slight improvement. But we do not observe such improve-84

ment in Neural DNF so in our implementation we simply computed85

c′ = sigmoid(c̃+ ε)

We use the simple sigmoid function instead of the saturating sigmoid function.86

We name two reason of using Improved SemHash: (1) Improved SemHash does not need any manual87

annealing of temperature [Bulat et al., 2019, Hansen et al., 2019] or additional loss functions. There88

are some serveral alternative that need tuning of annealing, including the annealed sigmoid/tanh89

[Bulat et al., 2019] and gumbel-softmax trick [Maddison et al., 2016], but we believe tuning this90

annealing schedule is difficult. (2) Improved SemHash achieves good results compared with many91

alternative solutions. Comparisons with other discretized latent representation learning can be found92

at [Kaiser et al., 2018], semHash performs great despite being very simple. It also has been demon-93

strated to be a robust discretization technique in various domains [Kaiser and Bengio, 2018, Chen94

et al., 2019b, Kaiser et al., 2019]. But of course, we note that Improved SemHash is not the only95

option for binarizing the extracted features.96

A.4 Initialization of W̃97

We will initializes W and S randomly, each entry is drawn from a Bernoulli disctribution where98

pBernoulli < 0.1. This is because we want W and S to be sparse.99

Remark: note that if we are really careful about the initialization, there is a small issue for initializa-100

tion of W , because some w can the value of c or the negation value. In principle, a condition and the101

negation of it cannot be set to 1 at the same time; but we do not consider it in our implementation.102

It seems that it does not matter in our optimization using BOAT .103
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A.5 Regularization of DNF: Rg and possible Alternatives104

The simplest choice of Rg(W ) is to use a L2 regularization. However, this is not what we really105

want. Recall that we wish to obtain a DNF, a set of rules where the number of total rules is small and106

the length of each rule is small. So more technically we want a small number of columns of W that107

have non-zero elements and small number of non-zero elements for each column (that is indicated108

by the membership vector S). This can be realized by penalizing the number of rules as the L1-norm109

of S and the length of selected rules also by the L1-norm (note that as only rules selected by S are110

actually used), we use a grouped L1-norm by111

Rg(W ,S) = λg

N∑
j

|Sj |1|W·,j |1

which is very like group lasso.112

The reason we use this the grouped L1-norm is that does variable selection at the group level and113

in our case can effectively eliminate a group of weights by columns(rules). We support the use114

of grouped L1-norm (like group lasso) instead of L2 norm by an empirical study on the cognitive115

preference of rules Fürnkranz et al. which shows that there is no strong preference on shorter rules116

but instead even a slight preference on longer rules. In other words, a small number of long rules is117

preferred over many short rules.118

We leave more sophisticated metrics like feature overlaps [Lakkaraju et al., 2016] as future work.119

There are, indeed, many metrics but it remains hard to apply them for Neural DNF because some of120

them is not differentiable. If we use a discrete optimization algorithm this is not a problem, but in121

the case of our Neural DNF , we need the objective function to be end-to-end differentiable, so we122

need the regularization terms to be differentiable as well.123

A.6 Possible direction of improvement124

In the main paper we only discuss the regularization for the second stage DNF g, so the overall125

objective is given as126

L = Lloss + λgRg(W ,S)

This is because we do not focus or design anything for the first stage neural network feature extractor.127

If we consider this (for future works), we can extend the objective to128

L = Lloss + λgRg(W ,S) + λφRφ(θ)

by considering a regularization term for the feature extractor that somehow defines some inter-129

pretability constraints.130

B Related Works on Interpretability131

The interest for interpretability is not new. It appears with the development of rule-based expert132

systems in the mid-1980’s Amel [2019]. Of course the current situation is different because recently133

we have seen an increasing trend of interpretability research in machine learning [Lipton, 2018], in134

particular interpretable deep learning[Xie et al., 2020, Fan et al., 2020].135

There are many definitions on interpretability, we use Lipton [2018]’s Simulatability definition of136

interpretability: for a prediction to be fully understood, the human should be able to re-calculate and137

reach the same prediction given resonable time.138

B.1 Inherent interpretability, not Post-hoc interpretation139

We summarize two main tracks of approaches for interpretability research, namely post-hoc inter-140

pretation and building inherently interpretable models, and we favor the latter. Post-hoc interpreta-141

tion builds a secondary model to explain the given pre-trained deep learning model. Representative142

works include saliency maps [Simonyan et al., 2013], LIME [Ribeiro et al., 2016], Concept Activa-143

tion Vectors [Kim et al., 2017]; some aim at giving counterfactual explanation [Dhurandhar et al.,144

2018, Zhang et al., 2018, Grath et al., 2018]. However, the provided explanation is in fact provided145

by a secondary model, not the original one, so it might not correspond faithfully to how the original146

blackbox model actually computes its prediction. Recent works further suggest that post-hoc inter-147

pretations are not robust [Adebayo et al., 2018, Fen et al., 2019, Alvarez-Melis and Jaakkola, 2018]148
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and can even be misleading [Lakkaraju and Bastani, 2019, Rudin, 2019], and more specifically, the149

counterfactual explanations have the ‘unjustify’ issue [Laugel et al., 2019].150

The second track, on the contrary, is to build an inherently interpretable deep learning model, so151

that the explanation it provided is exactly how it calculates the prediction. Inherently interpretale152

models are more preferred to examine and use when deployed in real world applications for vari-153

ous advantages (See [Khandani et al., 2010, Florez-Lopez and Ramon-Jeronimo, 2015]): it derives154

explanations to justify decision (legal issue), so people are less likely to refuse to use, easier to be155

combined with experts. An inherently interpretable classifier uses a interpretable prediction pro-156

cess to compute the prediction, and provides such computation process itself as the explanation for157

prediction.158

B.2 Related works on Interpretable Deep Learning159

For tabular datasets where each feature is already-meaningful, linear model or rule-based model are160

well-established choices of interpretable models[Amel, 2019], but for other data types such as image161

where each feature dimension itself is not meaningful, interpretable model is harder to construct.162

A reasonable approach, which we call the two-stage paradigm, is to first construct intermediate163

representations φ(x) that is interpretable, and on top of that a simple interpretable classifier g is164

applied as the second stage such that the prediction is given by ŷ = f(x) = g(φ(x)).165

Most works on interpretable deep learning [Melis and Jaakkola, 2018, Chen et al., 2019a, Vaughan166

et al., 2018] choose linear model as the second-stage model g. Indeed, any neural network can be167

intuively viewed as a two-stage model where the second-stage is a linear model, as long we treat the168

network up to the last hidden layer as a generic feature extractor φ. But the notion of interpretability169

means we wish to make certain heuristics to make φ(x) interpretable.170

Vaughan et al. [2018] formularize g as a linear model that g(φ(x)) =
∑
i wiφi(x) where φ(x) is171

a set of ridge functions, each of which are produced by a neural network. It claims to be more172

interpretable than general networks, because such a function has simpler partial derivatives that can173

simplify saliency analysis, statistical analysis and so on.174

Chen et al. [2019a] also uses a linear model g and proposes a prototype-based design for φ(x).175

It learns interpretable φ(x) in the sense that each dimension of φ(x) is the similarity score to an176

image patch. It provides extra interpretability tailed for vision tasks as the similarity scores φ(x)177

can be visualized with the corresponding ‘prototype’ image patches. Melis and Jaakkola [2018]178

takes a step further that they use neural networks to produce not only φ(x) but also the coefficient of179

the linear model, such that prediction function is given by g(φ(x)) =
∑
i wi(x)φi(x) where φ(x)180

(called ‘concepts’) are regularized by auto-encoding reconstruction loss and wi(x) can be intuitively181

understood as an input-dependent relevance score for a concept φi(x). Here we can see that the182

implementation of φ(x) is domain-specific and customizable.183

Theses works extend standard deep neural networks to interpretable ones by improving the design184

of the feature extractor φ and use a linear model for g. This is because a linear model, or its general185

form of general additive model, can be integrated into the automatic differentiation very easily.186

Taking an opposite direction, we differ with previous works by considering to a rule-based classifier187

for g and do not put our focus on φ. However, because of the discrete struture, integrating a rule-188

based model g remains an hard and unexplored direction. But in terms of interpretability we favor189

rule-based models over linear models, not only because the discrete structure is more intutive for190

human to follow, but also that it can provide only the satisfied rules for explanation, unlike that for191

linear model for which we need to present the full model coefficients.192

B.3 why favouring the symbolic DNF for interpretability193

we argue that there are two major reasons for preferring rules over linear models as the second-stage194

classifier: (1) Rules as combinations of conditions are more interpretable than feature impor-195

tance (at least for classification). It is widely acknowledged that the rule-based models are inter-196

pretable [Freitas, 2014, Huysmans et al., 2011, Wachter et al., 2018] because the rules give explana-197

tions by explicitly describing the decision boundary as logical combinations of conditions. There-198

fore, rules can more naturally provide counterfactual explanations in the form of ‘Would changing a199

certain factor have changed the decision?’ which is often considered to be the most important prop-200

erty of explanation [Doshi-Velez et al., 2017, Wachter et al., 2018, Grath et al., 2018, Miller, 2019].201
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On the other hand, coefficients as feature importances are arguably ‘harder to use and to understand202

for a non-expert user’ [Wachter et al., 2018]. We conjecture that rules are probably closer to human’s203

mental model for classification, which can be corroborated by the fact that rules have been the most204

intuitive choice of model for human categorization learning [Bruner et al., 1956]. (2) Using rules as205

a second-stage classifier g requires the feature extractor φ to produce Boolean output({0, 1}),206

which is less complex than continuous ones. Compared with continuous values, Boolean output is207

simpler as it has only two states, making it easier for human to probe its meaning or to potentially208

align it with human knowledge. as future works209

Rules can derive counterfactual explanations while linear models cannot (at least, not easy for210

linear models). The explicit decision boundary of rules not only can give factual explanations,211

namely giving the conjunctive conditions of the satisfied rule, but also give counterfactual expla-212

nations, by simply presenting that could have changed the prediction. Unlike weighted feature im-213

portance, rules explicitly presents all the sufficient conditions for prediction and thus can naturally214

handles counterfactual explanations in the form of ‘Would changing a certain factor have changed215

the decision?’. Indeed, the counterfactual explanation is often considered to be the most impor-216

tant property of explanation, confirmed not only from a more practical perspective [Doshi-Velez217

et al., 2017, Wachter et al., 2018, Grath et al., 2018] and also from cognitive/psychological research218

[Miller, 2019].219

C DNF220

Here we first explain the reason of choosing DNF as the rule module.221

We choose DNF, one of the most powerful and historically significant symbolic methods, for its222

interpretability and its generality. It has a simple and transparent ‘OR-of-ANDs’ prediction process:223

if at least one AND clause (a conjunction of Boolean predicates) is satisfied, it predicts positive;224

otherwise it predicts negavtive. DNF is interpretable not only that the discrete structure is intuitive225

to follow, each conjunctive clauses (AND) of DNF can be viewed as subtype for explanation, i.e. the226

DNF can be decomposed into individual local patterns. We also appreciate the generality of DNF,227

as any propositional logic formula has a equivalent DNF and thus any rule-based binary classifier228

including decison set/list/tree can be expressed as a DNF.229

DNF have a long history but learning DNF is still a very hard problem, not to mention that we230

need to add interpretability contraints. Theoretical results on learning DNF in the PAC (probably231

approximately correct) setting are often unrealistic in practice and are hard to incorporate extra in-232

terpretability contraints. On the other hand, the practical use of rule learning of a DNF form attracts233

more attention from data mining community, namely, desciptive pattern discovery [Novak et al.,234

2009]. Seminal algorithms include CN2 and RIPPER (constrained for binary classification). More235

recent state of the art machine learning algorthms for learning DNF can work quite well on small236

tabular datasets, but not very scalable on high dimensional datasets, we name few representative237

recent works using greedy heuristics [Obermann and Waack, 2015, 2016]. Bayesian approxima-238

tion [Wang et al., 2015], linear programming [Su et al., 2015]. We name the interpretable decision239

set by Lakkaraju et al. [2016] and Bayesian rule set by Wang et al. [2017] as two recent work as240

representative.241

However, we note that these approach is not compatible here if we wish to jointly optimize g with242

the neural network feature extractor φ in an end-to-end way. It is because that first, constructing W243

by rule mining becomes non-sense if the neural module is currently being trained; second, discrete244

optimization methods for learning S is not compatible with gradient-based optimization.245

C.1 Differentiable replacement of the DNF function g246

The differentiable replacement of the DNF function we use in the paper is adopted from Payani and247

Fekri [2019], Wang et al. [2019b]. However, as we mentioned in the footnote in the main paper, we248

believe that this relaxation is not new but rather re-invented. Simialr formulations on differentiable249

operations see [Sajjadi et al., 2016, Arabshahi et al., Nomura et al., 1992]. It is also likely that we250

miss critical references on neuro-fuzzy system research in the 90s.251

Basically, we construct differentiable g following the approaches of [Payani and Fekri, 2019, Wang252

et al., 2019b], where neural networks that execute differentiable logical operations are learned for in-253

ductive logic programming [Payani and Fekri, 2019] and multiple DNF layers are stacked to classify254

on tabular datasets [Wang et al., 2019b].255
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We here introduce some works that also uses a similar differentiable replacement of the DNF func-256

tion below. Sajjadi et al. [2016] learns a DNF in the context of tackling the moving target problem257

(herd-effect) [Fahlman and Lebiere, 1990]. For each rule there is no selection of conditions, but258

rather, all conditions are taking as conjection. One thing worth mentioning is that Sajjadi et al.259

[2016] do not actually train the parameters of the disjunctive function but only gives a good initial-260

ization.261

Payani and Fekri [2019] propose the neural logical networks to solve inductive logic programming,262

optimized in a gradient-based way. It does not add any extra regularizations to push the parameters263

to binary values, in the other hand it carefully discusses the problem of initialization to solve the264

problem.265

Wang et al. [2019b] proposes to stack many DNF layers to make accurate and interpretable pre-266

dictions (at least the authors claim that the resulted networks is interpretable), although we doubt267

it as the stacked DNF may in fact corresponding to a rule set that is so complicated for human too268

understand. Wang et al. [2019b] also propose the randomized binarzation to make the parameters269

of the matrix Ŵ to be close to binary values. We view this as a binarization version of dropout, at270

each round, some parameters in Ŵ are thresholded to 0 or 1 and get fixed, and other parameters271

are optimized as usual by backprop. However, it seems in the experiment of [Wang et al., 2019b]272

that the rate of binarization plays an important role, often the rate need to set in a very high value273

(for example, 80 90%) We also think that, it is not very efficient in terms of learning, by fixing such274

a high percentage of parameters to thresholded values. Because there binarized parameters are not275

getting updated at all (no gradient).276

Optimization issues. The presense of both discrete and continuous parameters in Neural DNF277

introduces a hard optimization problem. A straightforward solution is to use a EM-like approach, by278

applying well-studied optimization techniques for neural and rule-based module separately. But we279

argue such separate training scheme might not be as efficient as joint end-to-end training. Another280

solution is to end-to-endly optimizing the overall model, which is challenging. We discuss in the281

main paper of two straightforward alternatives for joint learning: DNF-Real and DNF-STE and we282

also propose BOAT , the key algorithm in our paper.283

Possible future directions. We consider possible directions about moving from DNF (proposi-284

tional logic) to more flexible and powerful rule languages, And we are hoping that the proposed285

BOAT can possibly help.286

For example, there is an inductive program synthesis project called ‘TerpreT‘ [Gaunt et al., 2016],287

where the authors design a special language TerpreT for inductive program synthesis. It is designed288

to separate the program specificaion and the inference algorithm so that it can be optimized by289

different backends such as SGD, relaxed linear programming and non-machine-learning solvers so290

that compare all these optimization backends. Its key surprising finding is that in terms of empirical291

performance, SGD is dominated by more traditional constraint solvers. It also gives a very simple292

case where SGD can fail consistently with a exponential number of local minima, yet constraint293

solvers can work it out very easily. Note that in [Gaunt et al., 2016], the binary parameters is not in294

fact binary but only transformed by sigmoid/tanh/etc, so it is like the DNF-Real [Payani and Fekri,295

2019] we mentioned in the main paper.296

D Connections to Neural-symbolic Integration297

It turns out that interpretable deep learning is very close to neuro-symbolic integration, just slightly298

different focus. Neural DNF can also be seen as achieving an interpretable model by neuro-symbolic299

integration. In fact, this ‘explainability or interpretability through neuro-symbolic integration’ ap-300

proach is recently gaining attention (for example, see David Cox’s AAAI/IAAI 2020 invited talk).301

Neuro-symbolic integration [Besold et al., 2017], which aims at combining neural methods with302

symbolic-logic methods, learning and reasoning, seems to be very related to our Neural DNF .303

However, the literature on this topic is vast and offers a multitude of approaches covering different304

settings, making it difficult to discuss related works completely. We follow a most recent survey305

[Garcez et al., 2019], which divides neuro-symbolic integarion into the two categories: Horizontal306

and Vertical.307

Horizontal integration contains most of the research, aims at integrating neural and symbolic tech-308

niques into one inseparable model: either by making neural model behaves more like a symbolic309
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model (also known as deep learning with logical contraints), which using logical knowledge to im-310

prove neural network learning, or the making symbolic method neural, using a neural network as311

interpreter to execute symbolic programs. Some approaches for Horizontal integration are312

• Put logic as constraints on a DNN: a deep net is extended with an extra regularization term313

derived from some logical property or from extra heavy annotations. But it is not guaran-314

teed that such a DNN can make consistent symbolic prediction, as suggested by Xu et al.315

[2017] that deep nets trained with additional logical regularizations cannot consistently316

make predicions that is from the logic they were trained on.317

• Enable a DNN to execute logical programs Cohen et al. [2017]. We can make a logic318

program differentiable by using differentiable functions and let a neural network to execute319

the logical program, such as querying a database. These approaches predicts a transparent320

struture as output, but its prediction process is not transparent or following logical property321

at all.322

Vertical integration, the category to which our Neural DNF belong, assembles a deep learning model323

and a symbolic model in a sequential manner. It intends to use deep learning for pattern recognition324

(perception), and the symbolic model for high-level reasoning. However vertical integration but325

does not recieve much attention even it has a strong neuroscience inspiration.326

• SATNet by Wang et al. [2019a] opens a framework to design flexible combinatorial func-327

tion in a smoothed differentiable way and the combinatorial relationship is learned instead328

of hard-coded grammar. But still, we do not have a control or a sense of understanding to329

interpret the prediction.330

• Manhaeve et al. [2018] use DNN for perception and symbolic reasoning given a defined331

grammar . They use a DNN to handle perception and outputs a classification as a neural332

predicate, and then use this predicates to do reasoning. It learn a Probabilistic ProgLog333

program by gradient descent enabled by compiling a Sentential Decision Diagram. But the334

relationship of these predicates are hard-coded by the used grammar, not learned; and the335

symbols (that is, the extracted feature φ(x)) is not learned from scratch.336

Learning neural predicates that represent the abstract features/symbols (‘cat’s mouth’, etc) and learn-337

ing the relationship among these variables are a novel thing! And this is also very important if we338

wish to do symbolic prediction on raw unstrutured data. It is genrally true that most of the methods339

will need pre-training or heavy annotations of the symbols extracted by a DNN.340

But note that for our Neural DNF both the features φ(x) and the rules g are learned from scratch.341

This is in fact quite non-trivial if we consider Neural DNF in the context of neuro-symbolic integra-342

tion.343

E Experiment344

E.1 Evaluation of the BOAT Optimizer345

Here we evaluate BOAT on datasets with Boolean features so that we learn only the DNF g. We use346

a synthetic dataset adopted from Payani and Fekri [2019] which consists of 10-bit Boolean strings347

and a randomly-generated DNF as ground-truth.348

First, to show the proposed noise is indeed necessary and helps the optimization, we learn the DNF349

with/without the noise on multiple datasets generated with different random seeds (so the ground-350

truth DNF is different) and plot the loss curves. From fig. 1a we observe that multiple runs of BOAT351

give very similar and stable convergence, while in fig. 1b, surprisingly, runs consistently fail to352

converge without the noise. We view this as strong evidence for the necessity of the proposed noise.353

On the other hand, if noise temperature is initialized larger, the convergence is slower (fig. 1b).354

There are some other issues with a large noise rate: (1) The slower learning of a larger noise rate355

can also be explained from the multiplicity nature of the DNF function we use (eq 2 and 3 in the356

main paper). This becomes more severe in high dimensional inputs. And finding a small noise rate357

initialization value will help. (2) when the noise rate intialized too high (and the hyperparameter of358

adaptivity rate not set right), it is also possible that the binary parameters cannot get huge gradient359

enough to flip, while it is only the continuous parameters including the noise rate are getting updated.360

This is an undesired result. In this case, find a smaller initilization rate.361
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(a) with noise (σ0=0.2) (b) with NO noise (c) with noise (σ0=0.4)

Figure 1: Loss curve with 10 differently-generated synthetic dataset

Next, we apply BOAT and compared the convergence speed with the following baselines: (1)362

DNF-Real [Payani and Fekri, 2019, Wang et al., 2019b] and (2) DNF-STE which are discussed363

in ??. (3) A Linear Model. (4) A multi-layer perceptron. Note that we also use the adap-364

tive noise for DNF-STE since otherwise optimization will fail. As shown in fig. 2, BOAT365

gives the fastest convergence, while MLP, DNF-STE and DNF-Real converge much more slowly.366

The linear model does not converge. As for the reason of DNF-STE’s slower and less sta-367

ble convergence, we believe it is because that unlike the modified Bop, DNF-STE does not368

have the mechanism to prevent rapid flipping and thus optimization becomes more unstable.369

Figure 2: Loss Curve on the synthetic dataset

As for performance, all above methods except linear370

model achieve 100% F1 score on test set and BOAT371

can always find the ground truth DNF on different372

synthetic datasets generated with different random373

seeds. Remark: Note that since we use random ini-374

tialization for W ,S, a natural suspicion is that the375

ground truth DNF happens to be discovered by the376

random initialization, not learned. To refute it, we377

can use zero initialization and find that BOAT con-378

verges similarly to random initialization. We report379

it in the appendix together with the performance re-380

sults on some UCI datasets.381

Here we evaluate only the second stage of our model,382

i.e., we use some datasets that the input features are383

already Boolean attributes, so we can use an identity384

function for the first stage neural module φ.385

By removing φ, we focus on the evaluation of the learning algorithm, i.e., the proposed BOAT . We386

decide to use the synthetic Boolean bit-string dataset introduced by [Payani and Fekri, 2019] where387

this dataset is used for comparing the convergence of learning of the introduced DNF layer.388

We randomly draw 5000 bit-strings where each bit is 0 or 1 (uniformly drawed). We then also ran-389

domly generate a ground-truth DNF and use this ground-truth DNF to assign labels to the bit-strings.390

Hopefully this ground-truth DNF should be recovered and indeed it is recovered. The ground-truth391

DNF consists of 5 clauses (rules) and each clause (rule) has 3 conditions. The conditions include392

negations. We random choose 4000 strings as the training set.393

The generation of this synthetic Boolean bit-string dataset can be found at dataloaders.py. Note394

that in [Payani and Fekri, 2019], the bit is drawn with prob 0.75 to be zero and 0.25 to be one, and395

in our case we just use prob 0.5 to be zero and 0.5 to be one. This is because we also use negation396

in the generation of ground-truth DNF.397

The DNF structure is 2K→N→1. We set N = 64 for the DNF as the default value for our method398

as well as DNF-Real and DNF-STE. For MLP and Linear model, we concatenate the input with399

its negation, and use a three-layer architecture (2K→N→1) for MLP, and the linear model is in400

essential a two-layer perceptron (2K→1). As the DNF layer uses negations, we will also do the401

same for the linear model and multi-layer perceptron(MLP). We simple concanate the input feature402

with its negations so that the linear model is of structure (2K→1) and the MLP (2K→N→1) For403

our method and all baselines we compare, we use Adam with initial learning rate 0.001. We use404

λg = 0.0001 as the default value.405
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Note that for compared baselines, if we use a larger learning rate such as 0.01 and since the synthetic406

Boolean bit-string dataset is not very difficult, the learning of DNF will be quicker (thus the cover-407

gence figure will looks different). However for our method, if we also set the initial learning rate for408

the noise from 0.001 to 0.01, the learning of BOAT will also be quicker (and a similar convergence409

figure should be able to be reproduced).410

Figure 3: Loss curve with 10 differently-generated synthetic dataset using zero-initialization

random initialization and zero initialization. As we’ve mentioned in the main paper, one might411

suspect that the ground-truth DNF is not learned by our algorithm BOAT , but is only happened to be412

discovered by the random initialization. So here we also run our method with 10 different random413

seeds (differently-generated dataset) but with all-zero-initialization for W and S. We can observe414

that the learning is still successful.415

On real-world tabular datasets. In order to further investigate the performance, we also applied416

our method (learning the DNF g only) on several real-world datasets (table 1). We discretize the417

input features as preprocessing. Since these datasets are more complicated than the above synthetic418

dataset, we set N to 128; we set λg to 1e-4 as the default value. We find that our method perform419

competitively well and does not have performance decrease when the noise is removed. DNF-420

Real’s performance slightly decreases after parameters are thresholded for Banknote dataset. One421

point worth noting is that learned DNF can achieve 100% F1-score on the tic-tac-toe dataset while422

weighted-sum-style models (linear Model/MLP/SENN1) can only approach to 100%. We think it423

is because the tic-tac-toe data is gathered from the status of a combinatorial game and thus may be424

more easily learned by rule-based models.425

DNF-BOAT
With / Without noise

DNF-REAL
Before / After thresholding

DNF-STE
With / Without noise

Linear
Model MLP SENN

Banknote 92.11%/92.11% 92.56%/91.05% 91.49%/91.49% 92.56% 92.11% 92.11%
tic-tac-toe 100%/100% 100%/100% 93.59%/93.59% 98.79% 99.59% 99.59%
Blogger 81.81%/81.81% 81.81%/81.81% 78.78%/78.78% 71.42% 86.95% 86.95%

Table 1: Test F1 score of learned DNF

Note that learning rule-based models using neural networks is already a challenging task, which we426

will not further investigate here.427

E.2 The 2d-XOR428

Four gaussians are drawn using scikit’s ‘make blob’ function with cluster mean (0,5), (5,0), (10,5)429

and (5,10).430

E.3 MNIST431

We use the standard train-test split for MNIST (in total 10000 test samples.)432

We use a randomly-initialized LeNet-like convolutional network as the feature extractor φ to produce433

5 concept predicates. Since MNIST has 10 class, we use a separate W ,S for each class. After434

1Note that SENN here is the second stage module of [Melis and Jaakkola, 2018] which is a MLP that takes
input and generate the coefficients of a linear model.
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training Neural DNF finds one or two rules for each class and can achieve over 99% test accuracy.435

In order to give an example of Neural DNF ’s explanation, we first apply Neural DNF on MNIST as436

a direct comparison to the explanations provided by linear models (e.g., the MNIST example from437

[Melis and Jaakkola, 2018]).438

 (one-verus-all for each class separately)  Here we visualize each concept by its corresponding samples

......

For class 0:

  For class 1:

For class 2:

......

For class 6:

(a) Global explanation for the overall Neural DNF Model

It satisfies the decision rule for class 2

The concept predicate for this sample 
is computed as

And thus this sample is classified as class 2.

(b) Local explanation

Figure 4: Explanations provided by Neural DNF on MNIST

Here we provide the explanations that Neural DNF derives: (1) In fig. 4a, we provide a global439

explanation for Neural DNF that explains the working of the overall model, by presenting the rules440

for each class as well as the image samples that triggers each concept predicate (c = 1) or not441

(c = 0). As it is necessary to understand what each each concept cmeans, we provide representative442

samples for c = 1 and c = 0 by retrieving samples that maximize or minimize the pre-binarization443

value c̃. (2) In fig. 4b, Neural DNF is also able to derive local explanations which explain the444

classification for a particular sample. Given a test sample, we present the value of its concept445

predicate (computed by φ) as well as the satisfied rule by which prediction is computed. Note in446

particular that the satisfied rules are not only the explanation but also how the predication is exactly447

computed, thus inherently interpretable.448

Unlike explaining by feature importance that can only indicate some of φ(x) contributes more signif-449

icantly to the final prediction, Neural DNF’s explanation describes the decision boundary explicitly450

as combinations of conditions. For example, in fig. 4b as the decision rule for class 2 is ‘If c0=1 and451

c2=0 and c3=0 Then class 2’, it becomes clear that only c0, c2, c3 are essential for predicting class 2452

while c1, c4 are not. In other words, for this test sample, we know precisely that if we change any of453

c1 or c4, the prediction will remain but changing of any of c0, c2, c3 will give a different prediction.454

The detailed decision rule for each class is:455

Decision rule for class 0 is IF c-0,c-2,c-3 = 1 AND c-1, c-4 = 0 THEN predict class 0456

Decision rule for class 1 is IF = 1 AND c-0, c-2, c-3, c-4 = 0 THEN predict class 1457

Decision rule for class 2 is IF c-0 = 1 AND c-2, c-3 = 0 THEN predict class 2458

Decision rule for class 3 is IF c-0,c-1,c-2 = 1 AND c-3, c-4 = 0 THEN predict class 3459

Decision rule for class 4 is IF c-3,c-4 = 1 AND c-0, c-2 = 0 THEN predict class 4460

Decision rule for class 5 is IF c-1,c-2 = 1 AND c-0, c-3 = 0 OR c-0,c-1,c-2 = 1 AND c-0, c-1, c-2,461

c-4 = 0 THEN predict class 5462

Decision rule for class 6 is IF c-0,c-3,c-4 = 1 AND c-1, c-2 = 0 THEN predict class 6463

Decision rule for class 7 is IF c-0,c-1,c-3 = 1 AND = 0 THEN predict class 7464

Decision rule for class 8 is IF c-0,c-2,c-4 = 1 AND c-3 = 0 OR c-2,c-4 = 1 AND c-1, c-3 = 0 THEN465

predict class 8466

Decision rule for class 9 is IF c-1,c-2,c-3 = 1 AND c-0 = 0 THEN predict class 9467

E.4 Other datasets in Section 4.2468

We evaluate our method on datasets as follows: MNIST, KMNIST, SVHN, CIFAR10. These are not469

new but very standard image datasets and we just use standard train-test split comes with the pytorch470

backend. Note that the four datasets are image datasets so use an convolutional neural network.471
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We use a fixed adam learning rate and fixed γ for the modified Bop optimizer. So there is no learning472

rate decay or other scheduling. For MNIST and KMNIST we use 5 concept predicate and run for473

100 epoch. For SVHN and CIFAR10 we use 32 concept predicate and run for 200 epoch as these474

two datasets are more challenging.475

Note that we present results of Neural DNF using lazy tie-breaking: by selecting the first encoun-476

tered positive class in ascending order (e.g., when class 1, 4, 7 are all predicted as positive, we select477

class 1.). We can also use a random tie-breaking: when multiple classes are predicted as positive,478

we randomly pick one. We run 10 times on test set and report mean and standard deviation479

Table 2: Test Accuracy of Neural DNF on some image datasets with two different tie-breaking
MNIST KMNIST SVHN CIFAR10

lazy tie-breaking 99.08% 95.43% 90.13% 67.91%
random tie-breaking 99.08% ± 0.02% 95.43% ± 0.03% 90.29% ± 0.04% 68.26% ± 0.12%
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