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VIBIDSAMPLER: ENHANCING VIDEO INTERPOLA-
TION USING BIDIRECTIONAL DIFFUSION SAMPLER

Anonymous authors
Paper under double-blind review

Figure 1: Keyframe interpolation results using our ViBiDSampler. (a) The images in the first
and last rows are keyframes, and the intermediate frames are generated using ViBiDSampler. (b)
A comparison of results with three baseline methods—FILM, TRF, and Generative Inbetweening
(GI)—demonstrates that these baselines exhibit artifacts or unnatural appearances. In contrast, our
method generates clear and realistic frames.

ABSTRACT

Recent progress in large-scale text-to-video (T2V) and image-to-video (I2V) dif-
fusion models has greatly enhanced video generation, especially in terms of
keyframe interpolation. However, current image-to-video diffusion models, while
powerful in generating videos from a single conditioning frame, need adaptation
for two-frame (start & end) conditioned generation, which is essential for effec-
tive bounded interpolation. Unfortunately, existing approaches that fuse tempo-
rally forward and backward paths in parallel often suffer from off-manifold is-
sues, leading to artifacts or requiring multiple iterative re-noising steps. In this
work, we introduce a novel, bidirectional sampling strategy to address these off-
manifold issues without requiring extensive re-noising or fine-tuning. Our method
employs sequential sampling along both forward and backward paths, conditioned
on the start and end frames, respectively, ensuring more coherent and on-manifold
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generation of intermediate frames. Additionally, we incorporate advanced guid-
ance techniques, CFG++ and DDS, to further enhance the interpolation process.
By integrating these, our method achieves state-of-the-art performance, efficiently
generating high-quality, smooth videos between keyframes. On a single 3090
GPU, our method can interpolate 25 frames at 1024×576 resolution in just 195
seconds, establishing it as a leading solution for keyframe interpolation. Project
page: https://vibid.github.io/

1 INTRODUCTION

Recent advancements in large-scale text-to-video (T2V) and image-to-video (I2V) diffusion mod-
els (Blattmann et al., 2023a;b; Wu et al., 2023; Xing et al., 2023; Bar-Tal et al., 2024) have made it
possible to generate high-quality videos that closely match a given text or image conditions. Vari-
ous efforts have been made to leverage the powerful generative capabilities of these video diffusion
models, especially in the context of keyframe interpolation, to improve perceptual quality signifi-
cantly. Specifically, diffusion-based keyframe interpolation (Voleti et al., 2022; Danier et al., 2024;
Huang et al., 2024; Feng et al., 2024; Wang et al., 2024) focuses on generating intermediate frames
between two keyframes, aiming to create smooth and natural motion dynamics while preserving the
keyframes’ visual fidelity and appearance. Image-to-video diffusion models are particularly well-
suited for this task because they are designed to maintain the visual quality and consistency of the
initial conditioning frame.

While image-to-video diffusion models are designed for start-frame conditioned video generation,
they need to be adapted for start and end frame conditioned video generation for keyframe inter-
polation. One line of works (Feng et al., 2024; Wang et al., 2024) addresses this issue by intro-
ducing a new sampling strategy that fuses the intermediate samples of the temporally forward path,
conditioned on the start frame, and the temporally backward path, conditioned on the end frame.
The fusing strategy ensures smooth and coherent frame generation in-between two keyframes using
image-to-video diffusion models in a training-free (Feng et al., 2024) or a lightweight fine-tuning
manner (Wang et al., 2024).

In the geometric view of diffusion models (Chung et al., 2022), the sampling process is typically
described as iterative transitionsMt →Mt−1, t = T, · · · , 1, moving from the noisy manifoldMT

to the clean manifold M0. From this perspective, fusing two intermediate sample points through
linear interpolation on a noisy manifold can lead to an undesirable off-manifold issue, where the
generated samples deviate from the learned data distribution. TRF (Feng et al., 2024) reported that
this fusion strategy often results in undesired artifacts. To address these discrepancies, they apply
multiple rounds of re-noising and denoising to the fused samples, which may help correct the off-
manifold deviations.

Unlike the prior works, here we introduce a simple yet effective sampling strategy to address off-
manifold issues. Specifically, at timestep t, we first denoise xt to obtain xt−1 along the tempo-
rally forward path, conditioned on the start frame (Istart). Then, we re-noise xt−1 back to xt using
stochastic noise. After that, we denoise x′

t to get x′
t−1 along the temporally backward path, condi-

tioned on the end frame (Iend), where the ′ notation indicates that the sample has been flipped along
the time dimension. Unlike the fusing strategy, which computes two conditioned outputs in parallel
and then fuses them, our bidirectional diffusion sampling strategy samples two conditioned outputs
sequentially, which mitigates the off-manifold issue.

Furthermore, we incorporate advanced on-manifold guidance techniques to produce more reliable
interpolation results. First, we employ the recently proposed CFG++ (Chung et al., 2024), which ad-
dresses the off-manifold issues inherent in Classifier-Free Guidance (CFG) (Ho & Salimans, 2021).
Second, we incorporate DDS guidance (Chung et al., 2023) to ensure proper alignment of the last
frame of the generated samples with the given frames, as the ground-truth start and end frames are
already provided. By combining bidirectional sampling with these guidance techniques, our method
achieves stable, state-of-the-art keyframe interpolation performance without requiring fine-tuning or
multiple re-noising steps. Thanks to its efficient sampling strategy, our method can interpolate be-
tween two keyframes to generate a 25-frame video at 1024×576 resolution in just 195 seconds on a
single 3090 GPU. Since our method is designed for high-quality and vivid video keyframe interpola-
tion using bidirectional diffusion sampling, we refer to it as Video Interpolation using BIdirectional
Diffusion (ViBiD) Sampler.
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2 RELATED WORKS

Video interpolation. Video interpolation is a task that generates the intermediate frames based
on two bounding frames. Conventional interpolation methods have utilized convolutional neural
networks (Kong et al., 2022; Li et al., 2023; Lu et al., 2022; Huang et al., 2022; Zhang et al.,
2023b; Reda et al., 2019), which are typically trained in a supervised manner to estimate the optical
flows for synthesizing an intermediate frame. However, they primarily focus on minimizing L1 or
L2 distances between the output and target frames, emphasizing high PSNR values at the expense
of perceptual quality. Furthermore, the train datasets generally consist of high frame rate videos,
limiting the model’s ability to learn extreme motion effectively.

Diffusion-based methods and time reversal sampling. Diffusion-based methods have been pro-
posed (Danier et al., 2024; Huang et al., 2024; Voleti et al., 2022) to leverage the generative priors
of diffusion models to produce high-quality perceptual intermediate frames. Although these meth-
ods demonstrate improved perceptual performance, they still struggle with interpolating frames that
contain significant motion. However, video keyframe interpolation methods that build on the robust
performance of video diffusion models have been more successful in handling ambiguous and non-
linear motion (Xing et al., 2023; Jain et al., 2024), largely due to the incorporation of the temporal
attention layers in these models (Blattmann et al., 2023a; Ho et al., 2022; Chen et al., 2023; Zhang
et al., 2023a).

Recent advancements in video diffusion models, particularly for image-to-video diffusion, have in-
troduced new sampling techniques that leverage temporal and perceptual priors. These techniques
reverse video frames in parallel during inference and fuse bidirectional motion from both the tem-
porally forward and backward directions. TRF (Feng et al., 2024) proposed a method that combines
forward and backward denoising processes, each conditioned on the start and end frames. Simi-
larly, Generative Inbetweening (Wang et al., 2024) introduced a method that extracts temporal self-
attention maps and rotates them to sample reversed frames, enhancing video quality by fine-tuning
diffusion models for reversed motion. However, these methods rely on a fusion strategy that of-
ten results in an off-manifold issue. Moreover, although methods such as multiple noise injections
and model fine-tuning have been employed to address these challenges, they continue to exhibit
off-manifold issues and substantially increase computational costs. In contrast, we introduce a sim-
ple yet effective sampling strategy that eliminates the need for multiple noise injections or model
fine-tuning.

3 VIDEO INTERPOLATION USING BIDIRECTIONAL DIFFUSION

Although our method is applicable to general video diffusion models, we employ Stable Video
Diffusion (SVD) (Blattmann et al., 2023a) as a proof of concept in this paper. By introducing SVD,
we aim to provide a clearer understanding of our approach. SVD is a latent video diffusion model
employed in EDM-framework (Karras et al., 2022) with micro-conditioning (Podell et al., 2023) on
frame rate (fps). For the image-to-video model, SVD replaces text embeddings with the CLIP image
embedding (Radford et al., 2021) of the conditioning.

In EDM-framework, the denoiser Dθ computes the denoised estimate from the U-Net ϵθ:

Dθ(xt;σ, c) = cskip(σ)xt + cout(σ)ϵθ (cin(σ)xt; cnoise(σ), c) , (1)

where cskip, cout, cin, and cnoise are σ-dependent preconditioning parameters and c is the condition.
In practice, the denoiser Dθ takes concatenated inputs [xt, xt] to return c-conditioned estimate
and null-conditioned estimate [x̂0,c, x̂0,∅], where x̂0,c is then updated using ω-scale classifier-free
guidance (CFG) (Ho & Salimans, 2021):

x̂0,c ← x̂0,∅ + ω[x̂0,c − x̂0,∅]. (2)

For sampling, SVD employs Euler-step to gradually denoise from Gaussian noise xT to get x0:

xt−1,c = x̂0,c +
σt−1

σt
(xt − x̂0,c), (3)

where x̂0,c is the denoised estimate from (2) and σt is the discretized noise level for each timestep
t ∈ [0, T ].
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Figure 2: Comparison of denoising processes. (a) Time Reversal Fusion method and (b) bidirec-
tional sampling (Ours).

3.1 BIDIRECTIONAL SAMPLING

Prior approaches such as TRF (Feng et al., 2024) and Generative Inbetweening (Wang et al., 2024)
have employed a fusion strategy that linearly interpolates between samples from the temporally
forward path, conditioned on the start frame (Istart), and the temporally backward path, conditioned
on the end frame (Iend):

xt−1,cstart = x̂0,cstart +
σt−1

σt
(xt − x̂0,cstart), (4)

x′
t−1,cend

= x̂′
0,cend

+
σt−1

σt
(x′

t − x̂′
0,cend

), (5)

xt−1 = λxt−1,cstart + (1− λ)(x′
t−1,cend

)′, (6)

where the ′ notation indicates that the sample has been flipped along the time dimension, λ denotes
interpolation ratio, cstart and cend denotes the encoded latent condition of Istart and Iend, respectively.
However, as the authors in TRF (Feng et al., 2024) reported, the vanilla implementation of this fusion
strategy suffers from random dynamics and unsmooth transitions. This occurs because linearly
interpolating between two distinct sample points in the noisy manifoldMt can cause the deviation
from the original manifold, as illustrated in Fig. 3 (a).

In this work, we aim to leverage the image-to-video diffusion model (SVD) for keyframe inter-
polation tasks, eliminating the multiple noise injections or model fine-tuning. Notably, our key
innovation lies in the sequential sampling of the temporally forward path of xt and the temporally
backward path of x′

t := flip(xt) by integrating a single re-noising step between them:

xt−1,cstart = x̂0,cstart +
σt−1

σt
(xt − x̂0,cstart), (7)

xt,cstart = xt−1,cstart +
√
σ2
t − σ2

t−1ϵ, (8)

x′
t−1 = x̂0,cend +

σt−1

σt
(xt,cstart − x̂0,cend), (9)

xt−1 =
(
x′
t−1

)′
. (10)

Note that the amount of renoising is determined by the noise difference between Mt and Mt−1,
which is crucial to avoid mode collapsing behavior from the forward path sampling. This approach
effectively constrains the sampling process for bounded generation between the start frame (Istart)
and the end frame (Iend). As depicted in Fig. 3 (b), our method seamlessly connects the temporally
forward and backward paths so that the sampling trajectory stays within the SVD manifold, resulting
in smooth and coherent transitions throughout the interpolation process.
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Figure 3: Comparison of diffusion sampling paths. (a) Existing methods encounter off-manifold
issues due to the averaging of two sample points. (b) In contrast, our bidirectional sampling sequen-
tially connects the temporally forward and backward paths, ensuring that the process remains within
the manifold.

3.2 ADDITIONAL MANIFOLD GUIDANCES

We further employ recent advanced manifold guidance techniques to enhance the interpolation
performance of the bidirectional sampling. First, we introduce additional frame guidance us-
ing DDS (Chung et al., 2023). Then, we replace traditional CFG (Ho & Salimans, 2021) with
CFG++ (Chung et al., 2024) to mitigate the off-manifold issue of CFG in the original implementa-
tion of SVD (Blattmann et al., 2023a).

Last frame guidance with DDS. We introduce additional frame guidance to achieve more accurate
bounded generation. Specifically, we employ DDS guidance to align the last frame with cend in the
temporally forward path and with cstart in the temporally backward path. DDS (Chung et al., 2023)
synergistically combines the diffusion sampling and Krylov subspace methods (Liesen & Strakos,
2013) such as the conjugate gradient (CG) method, guaranteeing the on-manifold solution of the
following optimization problem:

min
x∈M

ℓ(x) := ∥y −A(x)∥2, (11)

where A is the linear mapping, y is the condition, and M represents the clean manifold of the
diffusion sampling path.

Here, we present a novel insight that DDS, originally designed to address image inverse problems,
can also be effectively applied to bounded video generation. Specifically, we define A(x) := xlast
as a last-frame extractor and y as the target condition, which corresponds to cend for the temporal
forward path and cstart for the temporal backward path in bounded video generation. Then we take
DDS step from (11) on denoised estimates (x̂0,cstart and x̂0,cend ) with target condition (cend and cstart)
to get the on-manifold solutions (x̄0,cstart and x̄0,cend ) of the following optimization problems:

x̄0,cstart = DDS(x̂0,cstart , cend) := argmin
x∈x̂0,cstart+Kl

∥cend −A(x)∥2, (12)

x̄′
0,cend

= DDS(x̂′
0,cend

, cstart) := argmin
x∈x̂′

0,cend
+Kl

∥cstart −A(x)∥2, (13)

where Kl is the l-th order Krylov subspace, in which Krylov subspace methods seek an approximate
solution. By leveraging this DDS framework, we effectively guide the sampling process toward
a path conditioned by both the start and end frames, which is particularly effective for keyframe
interpolation.

Better Image-Video alignment with CFG++. Recent advances of CFG++ (Chung et al., 2024)
tackles the inherent off-manifold issue in CFG (Ho & Salimans, 2021). Specifically, CFG++ mit-
igates this undesirable off-manifold issue using the unconditional score instead of the conditional
score in a re-noising process of CFG. By using the unconditional score, CFG++ can overcome the
off-manifold phenomena in CFG-generated samples, resulting in better text-image alignment for
text-to-image generation tasks.

While SVD replaces text embeddings with CLIP image embeddings, we empirically found that
CFG++, initially designed to enhance text alignment in image diffusion models, also significantly
improves image-to-video alignment in the video diffusion model. Specifically, after applying
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CFG++ into SVD sampling framework, the Euler-step of SVD (3) now reads:

xt−1,c = x̂0,c +
σt−1

σt
(xt − x̂0,∅), (14)

where the last term in (3) is replaced by x̂0,∅. In practice, we apply DDS guidance before CFG++
update, so x̂0,c in (14) should be replaced with x̄0,c as in (12), (13). We experimentally found that
incorporating DDS and CFG++ guidance synergistically improves the interpolation performance of
bidirectional sampling. The overall sampling method effectively steers the SVD sampling path to
perform keyframe interpolation in an on-manifold manner, fully leveraging the generation capabili-
ties of SVD. The detailed algorithm is provided in Algorithm 1. The vanilla bidirectional sampling
can be implemented by removing DDS guidance (orange) and replacing the CFG++ update (blue)
with a traditional CFG update. The detailed algorithm of the vanilla bidirectional sampling is pro-
vided in Appendix A.

Algorithm 1 ViBiDSampler
Require: xT ∼ N (0, I), Istart, Iend, {σt}Tt=1

1: cstart, cend ← encode(Istart, Iend)
2: for t = T : 1 do
3: x̂0,cstart , x̂0,∅ ←Dθ(xt;σt, cstart) ▷ EDM denoised estimate with cstart
4: x̄0,cstart ← DDS(x̂0,cstart , cend) ▷ DDS guidance for end-frame matching
5: xt−1,cstart ← x̄0,cstart +

σt−1

σt
(xt − x̂0,∅) ▷ CFG++ update

6: xt,cstart ← xt−1,cstart +
√

σ2
t − σ2

t−1ϵ ▷ Re-noise
7: x′

t,cstart
← flip(xt,cstart) ▷ Time reverse

8: x̂′
0,cend

, x̂′
0,∅ ←Dθ(x

′
t,cstart

;σt, cend) ▷ EDM denoised estimate with cend

9: x̄′
0,cend

← DDS(x̂′
0,cend

, cstart) ▷ DDS guidance for start-frame matching
10: x′

t−1 ← x̄′
0,cend

+ σt−1

σt
(x′

t,cstart
− x̂′

0,∅) ▷ CFG++ update
11: xt−1 ← flip(x′

t−1) ▷ Time reverse
12: end for
13: return x0

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

Dataset. The high-resolution (1080p) video datasets used for evaluation are sourced from the
DAVIS dataset (Pont-Tuset et al., 2017) and the Pexels dataset1. For the DAVIS dataset, we pre-
processed 100 videos into 100 video-keyframe pairs, with each video consisting of 25 frames. This
dataset includes a wide range of large and varied motions, such as surfing, dancing, driving, and
airplane flying. For the Pexels dataset, we collected 45 videos, primarily featuring scene motions,
natural movements, directional animal movements, and sports actions. We used the first and last
frames from each video as keyframes for our evaluation.

Implementation Details. For the sampling process, we used the Euler scheduler with 25 timesteps
for both forward and backward sampling. The motion bucket ID was fixed at 127, and the decoding
frame number was set to 4 due to memory limitations on an NVIDIA RTX 3090 GPU. All other
parameters followed the default settings from SVD. Since micro-condition fps is sensitive to the data,
we applied a lower fps for cases with large motion and a higher fps for cases with smaller motion.
While both DDS and CFG++ generally improve the results, the choice between them depends on
the specific use case. All evaluations were performed on a single NVIDIA RTX 3090.

4.2 COMPARATIVE STUDIES

We conducted a comparative study with four different keyframe interpolation baselines, including
FILM (Reda et al., 2019), a conventional flow-based frame interpolation method, and three frame in-
terpolation methods based on video diffusion models: TRF (Feng et al., 2024), DynamiCrafter (Xing
et al., 2023), and Generative Inbetweening (Wang et al., 2024). We conducted these studies using
the official implementations with default values, except for TRF, which has not been open-sourced
yet.

1https://www.pexels.com/
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Figure 4: Qualitative evaluation compared to three baselines: FILM, TRF, and Generative
Inbetweening. The start and end frames (I0, I24) are used as keyframes. While FILM encounters
difficulties in capturing motion when there is a significant discrepancy between the two keyframes,
and TRF and Generative Inbetweening experience a decline in perceptual quality due to the blurring
of objects within the image, our method successfully captures motion while maintaining high fidelity
in the generated images.
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Method DAVIS Pexels

LPIPS ↓ FID ↓ FVD ↓ LPIPS ↓ FID ↓ FVD ↓
FILM 0.2697 40.241 833.80 0.0821 25.615 559.16
TRF 2 0.3102 60.278 622.16 0.2222 80.618 880.97

DynamiCrafter 0.3274 46.854 538.36 0.1922 49.476 604.20
Generative Inbetweening 0.2823 36.273 490.34 0.1523 40.470 746.26

Ours (Vanilla) 0.3031 52.452 543.31 0.2074 63.241 717.37
Ours (Vanilla w/ CFG++) 0.2571 41.960 434.41 0.1524 41.347 478.35

Ours (Full) 0.2355 35.659 399.15 0.1366 37.341 452.34

Table 1: Quantitative evaluation on DAVIS and Pexels datasets. We compared our method
against four different baselines and conducted ablation studies to assess the impact of CFG++ and
DDS. Ours (Vanilla) refers to the bidirectional sampling method utilizing traditional CFG update
without DDS guidance. Ours (Vanilla w/ CFG++) refers to the bidirectional sampling method with
CFG++ update, also without DDS guidance. Bold and underline refer to the best and the second
best, respectively.

Figure 5: Ablation study on the effects of CFG++ and DDS. The inclusion of CFG++ and DDS
results in improved perceptual quality in the generated frames.

Qualitative evaluation. As illustrated in Fig. 4, our model clearly outperforms the other methods in
terms of motion consistency and identity preservation. Other baselines struggle to accurately predict
the motion between the two keyframes when there is a significant difference in content. For exam-
ple, in Fig. 4, the first frame shows the tip of an airplane, while the last frame reveals the airplane’s
body. In this case, FILM fails to produce a linear motion path, instead showing the airplane’s shape
converging toward the middle frame from both end frames, resulting in the airplane’s body being
disconnected by the 18th frame. While TRF and Generative Inbetweening show sequential move-
ment, the airplane’s shape becomes distorted. In contrast, our method preserves the airplane’s shape
while effectively capturing its gradual motion. Furthermore, it can be observed from the second and
third cases from Fig. 4 that our method generates temporally coherent results while semantically
adhering to the input frames. In TRF, the shapes of the robot and the dog become blurred due to
the denoising paths deviating from the manifold during the fusion process, leading to artifacts in the
image. While Generative Inbetweening mitigated this off-manifold issue through temporal attention
rotation and model fine-tuning, artifacts still persist. In contrast, our method preserves the shapes of
both the robot and the dog, generating frames with strong temporal consistency.

Quantitative evaluation. For quantitative evaluation, we used LPIPS (Zhang et al., 2018) and FID
(Heusel et al., 2017) to assess the quality of the generated frames, and FVD (Unterthiner et al., 2019)
to evaluate the overall quality of the generated videos. As shown in Table 1, our method surpasses
the other baselines in terms of fidelity. Moreover, it achieves superior perceptual quality, particularly

2Unofficial implementation: https://github.com/YingHuan-Chen/Time-Reversal
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Method NFE Train Inference time (s) Frame # Resolution

TRF 120 ✗ 443 25 1024 × 576
DynamiCrafter 50 ✔ 42 16 512 × 320

Generative Inbetweening 300 ✔ 1,222 25 1024 × 576
Ours 50 ✗ 195 25 1024 × 576

Table 2: A comprehensive comparison of our method with other diffusion-based approaches.

Figure 6: Effect of CFG++ guidance scale. The rows, from top to bottom, correspond to the
CFG++ scales of 0.6, 0.8, and 1.0.

Metrics 0.6 0.8 1.0

LPIPS ↓ 525.36 424.03 399.15
FID ↓ 52.5059 40.4968 35.6594
FVD ↓ 0.2697 0.2394 0.2355

Table 3: Quantitative analysis on CFG++ guidance scale ω. Effective results are obtained at the
scale of 1.0.

in scenarios involving dynamic motions (DAVIS), indicating that our approach effectively addresses
the issue of deviations from the diffusion manifold, resulting in improved video generation quality.
For a more comprehensive comparison, we present quantitative evaluations using PSNR and SSIM
metrics in Appendix B.1. Nonetheless, it is important to note that these metrics primarily evaluate
pixel-wise accuracy, which does not always align with human perceptual preferences. Within the
scope of video generative models that align better with human perceptual preferences, our proposed
method outperformed all baseline methods.

4.3 COMPUTATIONAL EFFICIENCY

We performed comparative studies on the computational cost of diffusion models, as presented
in Table 2. In the training stage, DynamiCrafter undergoes additional training with a large-scale
image-to-video model for the frame interpolation task, while Generative Inbetweening also neces-
sitates SVD model fine-tuning, both of which demands significant computational resources. During
the inference stage, both TRF and Generative Inbetweening generate videos in 25 ∼ 50 steps for
each forward and backward direction, with additional noise injection steps that further increase the
number of function evaluations (NFE) and inference time. However, our method does not require
additional training or fine-tuning and completes the process in just 25 steps per direction, without
requiring multiple re-noising.

4.4 ABLATION STUDIES

Bidirectional sampling and conditional guidance. The effectiveness of bidirectional sampling can
be validated in the vanilla version without any conditional guidance, such as CFG++ or DDS. As
demonstrated in Table 1, our vanilla model outperforms TRF across all three metrics, supporting
the claim that fusing time-reversed denoising paths leads to off-manifold issues, which our method
addresses through bidirectional sampling. In addition, with conditional guidance from CFG++ and
DDS, we could achieve even better results and outperform DynamicCrafter and Generative Inbe-
tweening which further train the image-to-video models. This is consistent with Fig. 5, which il-
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Figure 7: Application to keyframe interpolation with various boundary conditions. The end
image a is identical to the start image. End images b-c represent dynamic boundaries sampled from
different time points.

lustrates that frames generated by TRF exhibit blurry shapes of the golfer and unnecessary camera
movement. In contrast, the body shape of the golfer and the golf club are progressively better pre-
served as additional conditional guidance is incorporated.

CFG++ guidance scale. As shown in Fig. 6, at higher CFG++ scales, the semantic information
of the input frames is better preserved in the generated intermediate frames, resulting in improved
fidelity. For instance, while the small person in the first input frame disappears in the intermediate
frames at CFG++ scales of 0.6 and 0.8, the person remains visible across all the intermediate frames
at a scale of 1.0. Additionally, as the CFG++ scale decreases, the blurriness of the chairlift in the
output frames gradually worsens. This aligns with the findings presented in Table 3. The LPIPS,
FID, and FVD values are lowest at a CFG++ scale of 1.0 and highest at a scale of 0.6, indicating
that CFG++ contributes to improving the perceptual quality of the generated videos.

4.5 IDENTICAL AND DYNAMIC BOUNDS

Our method is applicable not only to dynamic bounds, where the start and end frames are different,
but also to static bounds, where the start and end frames are identical. As illustrated in Fig. 7, our
method successfully generates temporally coherent videos with identical start and end images (a).
For example, the wave line also consistently fluctuates with the progression of time. Furthermore,
as seen in the fifth and sixth rows of Fig. 7, our method effectively generates intermediate frames
based on varying end frames (b and c). Given that the end images of the two rows differ, the resulting
intermediate frames are generated accordingly.

5 CONCLUSION

We present Video Interpolation using Bidirectional Diffusion Sampler (ViBiDSampler), a novel
approach for keyframe interpolation that leverages bidirectional sampling and advanced manifold
guidance techniques to address off-manifold issues inherent in time-reversal-fusion-based methods.
By performing denoising sequentially in both forward and backward directions and incorporating
CFG++ and DDS guidance, ViBiDSampler offers a reliable and efficient framework for generating
high-quality, temporally coherent, and vivid video frames without requiring fine-tuning or repeated
re-noising steps. Our method achieves state-of-the-art performance in keyframe interpolation, as
evidenced by its ability to generate 25-frame video at high resolution in a short processing time.
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A ALGORITHM

Algorithm 2 ViBiDSampler (Vanilla)
Require: xT , Istart, Iend, {σt}Tt=1

1: cstart, cend ← encode(Istart, Iend)
2: for t = T : 1 do
3: x̂0,cstart , x̂0,∅ ←Dθ(xt;σt, cstart) ▷ EDM denoised estimate with cstart
4: xt−1,cstart ← x̂0,cstart +

σt−1

σt
(xt − x̂0,cstart)

5: xt,cstart ← xt−1,cstart +
√
σ2
t − σ2

t−1ϵ ▷ Re-noise
6: x′

t,cstart
← flip(xt,cstart) ▷ Time reverse

7: x̂′
0,cend

, x̂′
0,∅ ←Dθ(x

′
t,cstart

;σt, cend) ▷ EDM denoised estimate with cend

8: x′
t−1 ← x̂′

0,cend
+ σt−1

σt
(x′

t,cstart
− x̂′

0,cend
)

9: xt−1 ← flip(x′
t−1) ▷ Time reverse

10: end for
11: return x0

B ADDITIONAL RESULTS AND DISCUSSION

B.1 QUANTITATIVE EVALUATION RESULTS

In addition to the perceptual quality evaluations presented in Table 1, we provide the PSNR and
SSIM scores for our method and baseline models to offer a clearer understanding of our work.
These metrics were obtained by comparing the generated video frames with their corresponding
ground truth frames. As shown in Table 4, FILM achieved the highest PSNR and SSIM scores
among the evaluated video generative models, which can be attributed to its training strategy that
employs PSNR-oriented loss functions, such as the L1 loss calculated between the ground truth
and output frames. However, within the scope of video generative models that align better with
human perceptual preferences, our proposed method outperformed all baseline models, recording
the highest PSNR and SSIM scores on both the DAVIS and Pexels datasets. These results highlight
our model’s ability to generate videos that are both visually realistic and exhibit superior fidelity.

Method DAVIS Pexels

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
FILM 22.5521 0.5346 31.3986 0.8418
TRF 16.4078 0.4040 19.2670 0.5346

Generative Inbetweening 16.0377 0.4255 20.8624 0.6334
Ours 17.5215 0.4387 21.4235 0.5939

Table 4: Quantitative evaluation on DAVIS and Pexels datasets. We conducted a comparative
analysis of our method with FILM, TRF and Generative Inbetweening in terms of PSNR and SSIM.
Bold and underline refer to the best and the second best, respectively.

B.2 ABLATION STUDIES ON ADVANCED GUIDANCES

To emphasize the importance of bidirectional sampling, we conducted additional ablation studies on
the guidance techniques, CFG++ and DDS, using the Pexels dataset. These studies involved evaluat-
ing the results of the vanilla models and comparing them with the models enhanced by incorporating
the guidance techniques.

As shown in Table 5, our vanilla bidirectional sampling consistently outperforms TRF across all
metrics. This demonstrates that bidirectional sampling alone effectively addresses off-manifold is-
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sues, mitigating the artifacts commonly observed in TRF. Unlike Generative Inbetweening, which
requires fine-tuning of the diffusion model, our method operates entirely in a training-free manner.

When comparing models enhanced with guidance techniques, our method demonstrates superior
performance compared to both TRF and Generative Inbetweening. Notably, TRF also shows im-
provements with the addition of guidance techniques, as reflected in the quantitative metrics in Ta-
ble 5 and the qualitative results available on our anonymous Project page. The results indicate more
stable motion and better preservation of bounding frame information. However, its performance
remains lower than that of our full method, highlighting the critical role of bidirectional sampling
in addressing off-manifold issues and enabling the generation of more accurate and higher-quality
videos. In contrast, the integration of guidance techniques into Generative Inbetweening does not
yield substantial improvements. This limited effect may be due to the interference between its fine-
tuning process and rotated temporal attention, which could hinder the effectiveness of the guidance
techniques.

We strongly encourage readers to visit our anonymous Website for a deeper understanding of the
distinct roles of bidirectional sampling and guidance methods.

Method Vanilla CFG++ & DDS

LPIPS ↓ FID ↓ FVD ↓ LPIPS ↓ FID ↓ FVD ↓
TRF 0.2222 80.618 880.97 0.2010 52.738 778.69

Generative Inbetweening 0.1523 40.470 746.26 0.1662 42.487 747.95
Ours 0.2074 63.241 717.37 0.1366 37.341 452.34

Table 5: Ablation study on CFG++ and DDS. Bold and underline refer to the best and the second
best, respectively.

B.3 DISCUSSIONS ON THE ROLES OF CFG++ AND DDS

CFG++. CFG++ is a guidance technique designed to improve alignment between images and text
conditions. By applying CFG++ guidance to our model, the generated videos achieve better align-
ment with the image conditions and maintain semantic consistency with the given frames, Istart,
and Iend. This enhancement positively impacts the perceptual quality of the videos.

DDS. SVD, an image-to-video diffusion model, generates 25-frame videos based on an initial frame
condition, without utilizing a final frame condition. To address the absence of a last frame condition
within the video interpolation framework, we incorporated DDS guidance. This approach ensures
alignment of the last frame with cend in the temporally forward path and cstart in the temporally
backward path, thereby enhancing the temporal consistency of the generated videos.

B.4 ABLATION STUDY ON SVD VERSION.

Since we employed SVD-XT, which is the fine-tuned version of the original SVD, we checked the
performance of our method with SVD. As shown in the Table 6, we see the performance increment
in better video generation models.

Method (Pexels) FVD ↓ LPIPS ↓
SVD 608.07 0.1577

SVD-XT (ours) 452.34 0.1366

Table 6: Ablation study on SVD version. Bold refer to the best.
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B.5 FUTURE WORK AND DISCUSSIONS

Our proposed method demonstrates exceptional performance in generating intermediate frames from
two bounding frames. However, as the model is based on Stable Video Diffusion, which employs
image embeddings as conditions for cross-attention instead of textual prompts, we have not con-
sidered the incorporation of text conditioning. Nonetheless, when bidirectional sampling is applied
to other image-to-video (I2V) diffusion models, such as DynamiCrafter, we believe that it becomes
feasible to guide actions based on textual conditions. Extending our method to support text-based
control presents a promising avenue for future research.
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B.6 ADDITIONAL EXPERIMENTAL RESULTS

Figure 8: Additional comparison with baseline methods.
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Figure 9: Additional comparison with baseline methods.
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Figure 10: Additional comparison with baseline methods.
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