
A Closed form expressions for the robust risks

In Section A.1 and A.2 we derive closed-form expressions of the standard and robust risks from
Equations (1),(2) for the settings studied in Section 3,4. We use those expressions repeatedly in our
proofs. Furthermore, Section A.3 discusses that the robust risk (2) upper-bounds the worst case risk
under distributional mean shifts.

A.1 Closed-form of robust risk for regression

The following lemma provides a closed-form expression of the robust risk for the linear regression
setting studied in Section 3. A similar result for inconsistent attacks has already been shown before
(Lemma 3.1. in [25]); we only include the proof for completeness.
Lemma A.1. Assume that PX is the isotropic Gaussian distribution. Then, for the square loss, the
robust risk (2) with respect to `2-perturbations is given by

Rε(θ) = ‖θ? − θ‖22 + 2ε
√

2/π‖Π⊥θ‖2‖θ? − θ‖2 + ε2‖Π⊥θ‖22. (11)

Proof. Define ỹi = yi − 〈xi, θ〉, and note that using similar arguments as in Section 6.2. [25]

max
δi∈U2(ε)

(ỹi − 〈δi, θ〉)2 = ( max
δi∈U2(ε)

|ỹi − 〈δi, θ〉|)2

= (|ỹi|+ max
‖δi‖2≤ε,δi⊥θ?

|〈δi, θ〉|)2

= (|ỹi|+ ε‖Π⊥θ‖2)2.

With this characterization, we can derive a convenient expression for the robust risk:

Rε(θ) = EX(|〈X, θ? − θ〉|+ ε‖Π⊥θ‖q)2

= EX(〈X, θ? − θ〉)2
+ 2εEX |〈X, θ? − θ〉|‖Π⊥θ‖2 + ε2‖Π⊥θ‖22. (12)

Since we assume isotropic Gaussian features, that is PX = N (0, I), we can further simplify

Rε(θ) = ‖θ − θ∗‖22 + 2ε
√

2/π‖Π⊥‖2‖θ − θ∗‖2 + ε2‖Π⊥‖22
which concludes the proof.

A.2 Closed-form of robust risk for classification

Similarly to linear regression, we can express the robust and standard risk for the linear classification
model in Section 4 as stated in the following lemma.
Lemma A.2. Assume that PX is the isotropic Gaussian distribution and θ? = (1, 0, · · · , 0)>. Then,

1. For any non-decreasing loss ` : R→ R we have

max
δi∈U∞(ε)

`(yi 〈xi + δi, θ〉) = `(yi 〈xi, θ〉 − ε‖Π⊥θ‖1). (13)

2. For the 0-1 loss the robust risk (2) with respect to `∞-perturbations is given by

Rε(θ) =
1

π
arccos

( 〈θ?, θ〉
‖θ‖2

)
+

1

2
erf

(
ε‖Π⊥θ‖1√

2‖θ‖2

)
+ I

(
ε‖Π⊥θ‖1
‖θ‖2

,
〈θ?, θ〉
‖θ‖2

)
, (14)

with

I(t, u) :=

∫ t

0

1√
2π

exp

(
−x

2

2

)
Φ

(
xu√

2
√

1− u2

)
dx. (15)

Proof. We first prove Equation (13). Because ` is non-increasing, we have

max
δi∈U∞(ε)

`(yi 〈xi + δi, θ〉) = `( min
δi∈U∞(ε)

yi 〈xi + δi, θ〉)

= `(yi 〈xi, θ〉+ min
‖δi‖∞≤ε,δi⊥θ?

〈δi, θ〉)

= `(yi 〈xi, θ〉 − ε‖Π⊥θ‖1),
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which establishes Equation (13). Note that for the last equation we used that, while minimiza-
tion over δ has no closed-form solution in general, for our choice of θ? = (1, 0, · · · , 0), we get
min‖δi‖∞≤ε,δi⊥θ? 〈δi, θ〉 = −ε‖Π⊥θ‖1.

We now prove the second part of the statement. Let 1{E} be the indicator function, which is 1 if the
event E occurs, and 0 otherwise. Since `(·) = 1·≤0 is non-increasing we can use (13) and write

Rε(θ) = EX max
δ∈U∞(ε)

1{sgn(〈X, θ?〉)〈X + δ, θ〉 ≤ 0}

= EX1{sgn(〈X, θ?〉)〈X, θ〉 − ε‖Π⊥θ‖1 ≤ 0}.

Let Π̂‖ := 1
‖θ‖22

θθ> be the projection onto the subspace spanned by θ and Π̂⊥ := Id − Π̂‖ the
projection onto the orthogonal complement. SinceX is a vector with i.i.d. standard normal distributed
entries, we equivalently have

Rε(θ) = EZ1,Z21{Z1 sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
− ε‖Π⊥θ‖1‖θ‖2

≤ 0}, (16)

with Z1, Z2 two independent standard normal random variables. For brevity of notation, de-
fine ν = ε‖Π⊥θ‖1

‖θ‖2 and b(Z1, Z2) = sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
=: sgn(β>Z) with

β> = (‖Π̂‖θ?‖2, ‖Π̂⊥θ?‖2).

Define the event A = {sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
− ε‖Π⊥θ‖1

‖θ‖2 ≤ 0}. Because Z2 is symmet-
ric, the distribution of Z1b(Z1, Z2) is symmetric, hence we can rewrite the risk

Rε(θ) = P(b(Z1, Z2) ≤ 0|Z1 ≥ 0)︸ ︷︷ ︸
T1

+ P(Z1 ≤ ν, b(Z1, Z2) ≥ 0|Z1 ≥ 0)︸ ︷︷ ︸
T2

(17)

and derive expression for T1, T2 separately.

Step 1: Proof for T1 Note that due to ‖θ?‖2 = 1 we have ‖β‖2 = 1 and recall that
T1 = P(β>Z ≤ 0|Z1 ≥ 0). Using the fact that both Z1 and Z2 are independent standard nor-
mal distributed random variables, a simple geometric argument then yields that T1 = α

π with

α = arc cos

(
β1√
β2

1+β2
2

)
= arc cos(β1). Noting that β1 = ‖Π̂‖θ?‖2 = 〈θ?,θ〉

‖θ‖2 then yields

T1 = 1
π arccos

(
〈θ?,θ〉
‖θ‖2

)
.

Step 2: Proof for T2 First, assume that 〈θ?, θ〉 ≥ 0. We separate the event
V = {Z1 ≤ ν, b(Z1, Z2) ≥ 0} into two events V = V1 ∪ V2

V1 = {Z1 ≤ ν, Z2 ≥ 0} and V2 = {Z1 ≤ ν, b(Z1, Z2) ≥ 0, Z2 ≤ 0}.
The conditional probability of the first event is directly given

P(V1|Z1 ≥ 0) = P(Z2 ≥ 0)P(Z1 ≤ ν|Z1 ≥ 0) =
1

2
erf

(
ν√
2

)
.

Hence it only remains to find an expression for P(V2|Z1 ≥ 0). Letting µ denote the standard normal
distribution, we can write

P(Z1 ≤ ν, Z2 ≤ 0, b(Z1, Z2) ≥ 0|Z1 ≥ 0) = 2

∫ ν

0

∫ β1x
β2

0

dµ(y)dµ(x) =

∫ ν

0

1

2
erf

(
β1x

β2

)
dµ(x).

Together with Step 1, Equation (14) follows by noting that β2
1 + β2

2 = 1. Finally, the proof for the
case where 〈θ?, θ〉 ≤ 0 follows exactly from the same argument and the proof is complete.

A.3 Distribution shift robustness and consistent adversarial robustness

In this section we introduce distribution shift robustness and show the relation to consistent `p-
adversarial robustness for certain types of distribution shifts.
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When learned models are deployed in the wild, test and train distribution might not be be the same.
That is, the test loss might be evaluated on samples from a slightly different distribution than used to
train the method. Shifts in the mean of the covariate distribution is a standard intervention studied
in the invariant causal prediction literature [10, 11]. For mean shifts in the null space of the ground
truth θ? we define an alternative evaluation metric that we refer to as the distributionally robust risk
defined as follows:

R̃ε(θ) := max
Q∈Vq(ε;P)

EX∼Q`test(〈θ,X + δ〉, 〈θ?, X〉), with

Vp(ε; P) := {Q ∈ P : ‖µP − µQ‖p ≤ ε and 〈µP − µQ, θ
?〉 = 0},

where Vp is the neighborhood of mean shifted probability distributions.

A duality between distribution shift robustness and adversarial robustness has been established in
earlier work such as [48] for general convex, continuous losses `test. For our setting, the following
lemma holds.
Lemma A.3. For any ε ≥ 0 and θ, we have R̃ε(θ) ≤ Rε(θ).

Proof. The proof follows directly from the definition and consistency of the perturbations Up(ε)
and orthogonality of the mean shifts for the neighborhood Vp. By defining the random variable
W = X − µP for X ∼ P we have the distributional equivalence

X ′ = µP + δ +W
d
= x+ δ

for X ′ ∼ Q and X ∼ P with µQ − µP = δ and hence

R̃ε(θ) = max
Q∈Vp(ε)

EX∼Q`test(〈θ,X〉, 〈θ?, X〉) = max
‖δ‖p≤ε,δ⊥θ?

EX∼P`test(〈θ,X + δ〉, 〈θ?, X〉)

≤ EX∼P max
‖δ‖p≤ε,δ⊥θ?

`test(〈θ,X + δ〉, 〈θ?, X〉) = Rε(θ)

where the first line follows from orthogonality of the mean-shift to θ?.

B Experimental details

In this section we provide additional details on our experiments. All our code including
instructions and hyperparameters can be found here: https://github.com/michaelaerni/
interpolation_robustness.

B.1 Neural networks on sanitized binary MNIST

Figure 1a shows that robust overfitting in the overparameterized regime also occurs for single hidden
layer neural networks on an image dataset that we chose to be arguably devoid of noise. We consider
binary classification of MNIST classes 1 vs 3 and further reduce variance by removing “difficult”
samples. More precisely, we train networks of width p ∈ {101, 102, 103} on the full MNIST training
data and discard all images that take at least one of the models more than 100 epochs of training to
fit. While some recent work argues that such sanitation procedures can effectively mitigate robust
overfitting [16], we still observe a significant gap between the best (early-stopped) and final test
robust accuracies in Figure 1a.

We train all networks on a subset of n = 2× 103 samples using plain mini-batch stochastic gradient
descent with learning rate νp =

√
0.1/p that we multiply by 0.1 after 300 epochs. This learning rate

schedule minimizes the training loss efficiently; we did not perform tuning using test or validation
data. For the robust test error, we approximate worst-case `∞-perturbations using 10-step SGD
attacks on each test sample.

B.2 Linear and logistic regression

If not mentioned otherwise, we use noiseless i.i.d. samples from our synthetic data model as described
in Section 2.1 for our empirical simulations. We calculate all risks in closed-form without noise
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and, in the robust case, with consistent perturbations. However, we approximate the integral for the
robust 0-1 risk in Theorem 4.1 using a numerical integral solver since we cannot obtain a solution
analytically.

For linear regression, we always sample a training set of size n = 103 and run zero-initialized gradient
descent for 2 × 103 iterations. The learning rate depends on the data dimension d as νd =

√
1/d.

Since we observed the training to be initially unstable for large overparameterization ratios d/n,
we linearly increase the learning rate from zero during the first 250 gradient descent iterations. For
evaluation, the linear regression robust population risk always uses consistent `2-perturbations of
radius ε = 0.4. For the noisy case in Figure 1b we set σ2 = 0.2.

We fit all logistic regression models except in Figure 3b by minimizing the (regularized) logistic
loss from Equation (6) using CVXPY in combination with the Mosek convex programming solver.
Whenever the max-`2-margin solution is feasible for λ→ 0, the problem in Equation (6) has many
optimal solutions. In that case, we directly optimize the constrained problem from Equation (7)
instead. For Figure 3b, we run zero-initialized gradient descent on the unregularized loss (λ = 0) for
5× 105 iterations. We start with a small initial step size of 0.01 that we double every 3× 104 steps
until iteration 3× 105. Next, we perform all simulations in Figure 5 on n = 103 samples from our
data model with d = 8× 103. Both training and evaluation use consistent `∞-perturbations of radius
ε = 0.1. Lastly, for the noisy case in Figure 1c, we flip 2% of all training sample labels.

B.3 Theoretical predictions

In order to obtain the asymptotic theoretical predictions for logistic regression in Figure 4b corre-
sponding to the empirical simulations with n = 103 and ε = 0.05, we obtain the solution of the
optimization problems in Theorem F.1,F.2 with ε0 = 0.05

√
103γ by solving the system of equations

∇C = 0 (with C the optimization objective form Theorem F.1,F.2) using MATLAB’s optimization
toolbox where we approximate expectations via numerical integration. We note that the optimization
problem is numerically challenging to solve, in particular for small values of γ.

C Linear regression – additional insights

In Appendix C.1 we give an intuitive explantion for the robust overfitting phenomenon described in
Section 3. Furthermore, in Appendix C.2 we discuss how inconsistent adversarial training prevents
interpolation for linear regression.

C.1 Intuitive explanation

We now shed light on the phenomena revealed by Theorem 3.1 and Figure 2. In particular, we
discuss why regularization can reduce the robust risk even in a noiseless setting and why the effect is
indiscernible for the standard risk.

For this purpose, we examine the robust risk as a function of λ, depicted in Figure 7a for different
overparameterization ratios γ > 1 and ε = 0.4. The arrows point in the direction of increasing
λ. We observe how the minimal robust risk is achieved for a λopt bounded away from zero and
how the optimum increases with the overparameterization ratio d/n→ γ, indicating that stronger
regularization is needed the more overparameterized the estimator is.

In order to understand this overfitting phenomenon better, we decompose the ridge estimate θ̂λ into
its projection Π‖ onto the ground truth direction θ? and the projection Π⊥ onto the orthogonal
complement, i.e., θ̂λ = Π‖θ̂λ + Π⊥θ̂λ. For the noiseless setting (σ2 = 0), substituting this
decomposition into Equation (2) yields the following closed-form expression of the robust risk
which now involves the parallel error ‖θ? −Π‖θ̂λ‖22 and the orthogonal error ‖Π⊥θ̂λ‖22:

Rε(θ̂λ) = ‖θ? −Π‖θ̂λ‖22 + (1 + ε2)‖Π⊥θ̂λ‖22 +

√
8ε2

π
‖Π⊥θ̂λ‖22(‖θ? −Π‖θ̂λ‖22 + ‖Π⊥θ̂λ‖22).

(18)
We provide the proof in Appendix A.1.

Figure 7b shows that, as λ increases, the orthogonal error decreases faster than the parallel error
increases. Since, by Equation (18), the orthogonal error is weighted more heavily for large enough
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Figure 7: Theoretical curves depicting the robust risk with ε = 0.4 (a) and decomposed terms (b) as
λ increases (arrow direction) for different choices of the overparameterization ratio d/n→ γ. In (b)
we observe that for large γ > 1, as λ increases, the orthogonal error ‖Π⊥θ̂λ‖2 decreases whereas
the parallel error ‖θ? − Π‖θ̂λ‖2 increases. For ε > 0, the optimal λ is large enough to prevent
interpolation.

perturbation strengths ε, some nonzero ridge coefficient yields the best trade-off. On the other hand,
the standard risk with ε = 0 weighs both errors equally, resulting in an optimum at λ→ 0.

C.2 Inconsistent adversarial training

As shown in [25] and using the same arguments as in Section A.1, the robust square loss under
inconsistent `2-perturbations can be reformulated as

Lε(θ) =
1

n

n∑
i=1

(|yi − 〈xi, θ〉|+ ε‖θ‖2)2

=
1

n

n∑
i=1

(yi − 〈xi, θ〉)2 + ε2‖θ‖22 +
2ε

n
‖θ‖2

n∑
i=1

|yi − 〈xi, θ〉|.

Thus, we can see that adversarial training with inconsistent perturbations prevents interpolation even
when d > n, that is, Lε(θ) = 0 is unattainable for any ε > 0. Nevertheless, we note that optimizing
the reformulated robust square loss is equivalent to `2-regularized linear regression with λ = ε2 and
an additional term involving both the weight norm and absolute prediction residuals. We can observe
this effect in Figure 4 of [25] where larger ε yield similar effects to larger ridge penalties λ.

D Logistic regression – additional insights

In this section we further discuss robust logistic regression studied in Section 4. Appendix D.1
presents further experiments to contrast consistent and inconsistent perturbations for adversarial train-
ing. Furthermore, for completeness, we investigate standard training (that is, ε = 0) in Section D.2
and note that it yields significantly worse standard and robust prediction performance.

D.1 Inconsistent adversarial training

As observed in Section 4.4, label noise can prevent interpolation and hence improve the robust risk
of an unregularized estimator with λ → 0. We now show similar empirical effects of inconsistent
training perturbations with large enough radius ε.

Concretely, we perform unregularized (λ→ 0) adversarial training using consistent vs. inconsistent
`∞-perturbations for different ε on fixed n = 200, 103 and d = 500. Figure 8a displays the robust
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Figure 8: Comparison of logistic regression adversarial training with consistent vs. inconsistent
`∞-perturbations. (a) Robust risks of the unregularized estimators (λ → 0) for n = 200, 1000 as
ε increases. While for small ε, consistent and inconsistent perturbations yield similar robust risks,
inconsistent perturbations with large ε outperform consistent perturbations in terms of robustness.
We provide an explanation in (b) where we focus on n = 1000. In contrast to training with consistent
perturbations, inconsistent perturbations may prevent the training loss from vanishing as ε grows
large enough. Hence, inconsistent training perturbations can induce spurious regularization effects.
We average all experiments over five independent dataset draws from our data model with fixed
d = 500 and indicate one standard deviation via error bars.

risks of the resulting estimators. For small ε, all risks behave very similarly, further corroborating
our observations in Figure 4a. However, as the perturbation radius ε grows large, inconsistent
perturbations for unregularized adversarial training yield estimators with better robust risk compared
to consistent perturbations.

In order to understand this phenomenon, we focus on n = 103 and depict the robust risk as well as
the robust (unregularized) logistic training loss in Figure 8b. We observe that, for large ε, inconsistent
adversarial training fails to achieve a vanishing loss. Hence, large enough inconsistent perturbations
induce noise which prevents interpolation. This observation is similar to the observation made in
Section 4.4, where explicit label noise can have spurious regularization effects and in turn, lead to a
lower robust risk.

D.2 Standard vs. adversarial training

Throughout this paper, we focus on adversarial training for logistic regression. For completeness, we
also provide simulation results for standard training (ε = 0) in Figure 9a. We again use a dataset of
size n = 103. In contrast to adversarial training with ε > 0, we do not observe overfitting for neither
the standard nor robust risk. However, for d > n, the robust risk exhibits its maximum possible value
and hence fails to provide any insights. We note that our observations are consistent with [46].

D.3 Adversarial training with `2-perturbations

As mentioned in Section 4, we focus on `∞-perturbations in the context of logistic regression but
for completeness also discuss `2-perturbations. Following the same argument as in Lemma A.2, it is
trivial to see that `2-perturbations punish the `2-norm of the estimator. Intuitively, we therefore expect
that adversarial training with `2-perturbations results in an estimator θ̂λ that is close to a rescaled
version of the estimator obtained if training without adversarial perturbations. Since both the robust
and standard risk are independent of the estimator scale, we hence do not expect any benefits from
explicit `2-regularization, i.e., no robust overfitting. Indeed, our simulation results in Figure 9b show
almost no regularization benefits for neither the standard nor robust risk.
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(b) Adversarial training with `2-perturbations

Figure 9: Additional logistic regression simulations using n = 103 training samples from our
data model for varying degrees of overparameterization d/n. (a) Standard training evaluated using
consistent `∞-perturbations of radius ε = 0.1. (b) Adversarial training using inconsistent `2-
perturbations of radius ε = 0.5 for training and the corresponding consistent perturbation set for
evaluation. In both settings, the robust risks are large and not even an optimally weighted ridge
penalty helps to reduce them.

E Proof of Theorem 3.1

In this section, we provide a proof of Theorem 3.1, which characterizes the asymptotic risk of the
linear regression estimator θ̂λ defined in Equation (3).

We first introduce some notation and give the standard closed form solution for the ridge regression
estimate θ̂λ. Denoting the input data matrix by X ∈ Rd×n, the observation vector y ∈ Rn reads
y = X>θ? + ξ where ξ ∼ N (0, I) is the noise vector. The noise vector contains i.i.d. zero-mean
σ2-variance Gaussian noise as entries. Defining the empirical covariance matrix as Σ̂ = 1

nX>X
yields the ridge estimate

θ̂λ =
1

n
(λId + Σ̂)−1X>y

= (λId + Σ̂)−1Σ̂θ? +
1

n
(λId + Σ̂)−1X>ξ.

(19)

For λ→ 0, we obtain the min-norm interpolator

θ̂0 = lim
λ→0

θ̂λ = Σ̂†X>y,

where Σ̂† denotes the Moore-Penrose pseudo inverse.

We now compute the adversarial risk of this estimator. By Equation (11), the adversarial risk depends
on the estimator only via the two terms ‖θ̂λ−θ?‖2 and ‖Π⊥θ̂λ‖2. To characterize the asymptotic risk,
we hence separately derive asymptotic expressions for each of both terms. The following convergence
results hold almost surely with respect to the draws of the train dataset, with input features X and
observations y, as n, d→∞.

Step 1: Characterizing ‖θ̂λ − θ?‖22. Here, we show that

‖θ̂λ − θ?‖22 → Rλ = B + V, (20)

where B = λ2m′(−λ) and V = σ2γ(m(−λ)− λm′(−λ)) are the asymptotic bias and variance.
Hastie et al. [23] considers a similar setup and Theorem 5 of [23] show that Eξ‖θ̂λ − θ?‖22 → B + V
and the expectation is taken over the observation noise ξ in the train dataset. In this paper, we define
the population risks without the expectation over the noise. Hence, in a first step, the goal is to extend
Theorem 5 [23] for the standard risk R(θ̂λ) = ‖θ̂λ − θ?‖22 such that (20) holds almost surely over the
draws of the training data.
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Using Equation (19) we can rewrite

‖θ̂λ − θ?‖22 = ‖
(
Id − (λId + Σ̂)−1Σ̂

)
θ? +

1

n
(λId + Σ̂)−1X>ξ‖22

= ‖
(
Id − (λId + Σ̂)−1Σ̂

)
θ?‖22︸ ︷︷ ︸

T1

+ 〈 ξ√
n
, (λId + Σ̂)−2Σ̂

ξ√
n
〉︸ ︷︷ ︸

T2

+

〈
X>√
n

(λId + Σ̂)−1
(
Id − (λId + Σ̂)−1Σ̂

)
θ?,

ξ√
n

〉
︸ ︷︷ ︸

T3

,

where we used for the second equality that 〈 ξ√
n
, X√

n
(λId + Σ̂)−2X>

√
n

ξ√
n
〉 = 〈 ξ√

n
, (λId + Σ̂)−2Σ̂ ξ√

n
〉.

The first term T1 → B follows directly via Theorem 5 [23]. We next show that T2 → V and T3 → 0
almost surely, which establishes Equation 20.

Proof that T2 → V: While Theorem 5 [23] also shows that Eξ tr
(

1
nξξ
>Σ̂(λId + Σ̂)−2

)
→ V ,

we require the convergence almost surely over a single draw of ξ. In fact, this directly follows from
the same argument as used for the proof of Theorem 5 [23] and the fact that ‖ ξ√

n
‖22 → σ2. Hence

〈 ξ√
n
, (λId + Σ̂)−2Σ̂ ξ√

n
〉 → V almost surely over the draws of ξ.

Proof that T3 → 0: This follows straight forwardly from sub-Gaussian concentration inequalities
and from the fact that∥∥∥∥ X√

n
(λId + Σ̂)−1

(
Id − (λId + Σ̂)−1Σ̂

)
θ?
∥∥∥∥

2

= O(1),

which is a direct consequence of the Bai-Yin theorem [4], stating that for sufficiently large n, the
non zero eigenvalues of Σ̂ can be almost surely bounded by (1 +

√
γ)2 ≥ λmax(Σ̂) ≥ λmin(Σ̂) ≥

(1−√γ)2. Hence we can conclude the first part of the proof.

Step 2: Characterizing ‖Π⊥θ̂λ‖2. Here, we show that

‖Π⊥θ̂λ‖22 → Rλ − λ2(m(−λ))2 =: Pλ. (21)

We assume without loss of generality that ‖θ?‖2 = 1 and hence Π⊥ = Id − θ?(θ?)>. It follows that

‖Π⊥θ̂λ‖22 = ‖θ̂λ‖22 −
(
〈θ̂λ, θ?〉

)2

= ‖θ? − θ̂λ − θ?‖22 −
(

1− 〈θ? − θ̂λ, θ?〉
)2

= ‖θ? − θ̂λ‖22 − 2〈θ? − θ̂λ, θ?〉+ 1−
(

1− 〈θ? − θ̂λ, θ?〉
)2

= ‖θ? − θ̂λ‖22 −
(
〈θ? − θ̂λ, θ?〉

)2

.

The convergence of the first term is already known form step 1. Hence, it is only left to find an
asymptotic expression for 〈θ? − θ̂λ, θ?〉. Inserting the closed form expression from Equation (19),
we obtain:

〈θ? − θ̂λ, θ?〉 = 〈Id −
(
λId + Σ̂)−1Σ̂

)
θ?, θ?〉 − 〈(λId + Σ̂)−1 X>ξ

n
, θ?〉. (22)

Note that 〈(λId + Σ̂)−1 Xξ
n , θ

?〉 vanishes almost surely over the draws of ξ using the same reasoning
as in the first step. Hence, we only need to find an expression for the first term on the RHS of
Equation (22). Note that we can use Woodbury’s matrix identity to write:

〈Id −
(
λId + Σ̂)−1Σ̂

)
θ?, θ?〉 = λ〈(λId + Σ̂)−1θ?, θ?〉.
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However, the expression on the RHS appears exactly in the proof of Theorem 1 [23] (Equation 116),
which shows that λ〈(λId + Σ̂)−1θ?, θ?〉 → λm(−λ) with m(z) as in Theorem 3.1. Hence the proof
of almost sure convergence (21) of ‖Π⊥θ̂λ‖2 is complete.

Substituting Equations (20) and (21) into robust risk (11) expression yields:

Rε(θ̂λ)
a.s.−→ Rλ + ε2Pλ +

√
8ε2

π
PλRλ = Rε,λ.

Finally, we note that limλ→0Rε,λ exists and is finite for any γ 6= 1 since: limλ→0m(−z) = 1
1−γ

for γ < 1 and limλ→0m(−z) = 1
γ(γ−1) for γ > 1, limz→0 zm

′(−z) = 0, limz→0 z
2m′(−z) = 0

for γ < 1 and limz→0 z
2m′(−z) = 1− 1

γ for γ > 1 (see also Corollary 5 in [23]). Hence, we can

conclude from the continuity of the risk that Rε(θ̂0)
a.s.−→ limλ→0Rε,λ and therefore, the proof is

complete.

F Details on Theorem 4.1

In this section we give a formal statement for Theorem 4.1. The results are based on the Convex
Gaussian Minimax Theorem (CGMT) [20, 51]. We first prove the case when training with consistent
perturbations (9) and noiseless observations. Then, we show how the theorems extend to the case
when training with inconsistent perturbations (8) and training label noise.

The results presented in this section have similarities with the ones in [24]. However, we study
a discriminative data model with features drawn from a single Gaussian and a 1-sparse ground
truth. In contrast, the authors of [24] study a generative data model with features drawn from two
Gaussians. Furthermore, several papers study logistic regression for isotropic Gaussian features in
high dimensions [46, 50], but focus their analysis on the standard risk and do not consider adversarial
robustness.

An immediate consequence of the proof of Lemma A.2 is that the adversarial loss from Equation (6)
with respect to consistent `∞-attacks (9) for the 1-sparse ground truth has the closed-form equivalent

Lε,λ(θ) =
1

n

n∑
i=1

`train(yi〈θ, xi〉 − ε‖Π⊥θ̂‖1) + λ‖θ‖22, (23)

where Π⊥ is the projection matrix to the orthogonal subspace of θ?.

LetMf (x, t) = miny
1
2t (x−y)2 +f(y) be the Moreau envelope and let Z‖, Z⊥ be two independent

standard normal random variables. We can now state Theorem F.1 that describes the asymptotic risk
of θ̂λ(ε), for λ > 0 and for the asymptotic regime where d, n→∞. The proof of the theorem can be
found in Appendix F.1.
Theorem F.1. Assume that we have i.i.d. random features xi drawn from an isotropic Gaussian,
noiseless observations yi = sgn(〈xi, θ?〉), and ground truth θ? = (1, 0, . . . , 0)>. Further, assume
that λ > 0 and ε = ε0/

√
d, where ε0 is a numerical constant. Let (ν?⊥, ν

?
‖ , r

?, δ?, µ?, τ?) be the
unique solution of

min
ν⊥≥0,τ≥0,
ν‖,δ≥0

max
r≥0,
µ≥0

EZ‖,Z⊥

[
M`(|Z‖|ν‖ + Z⊥ν⊥ − ε0δ,

τ

r
)
]
− δµ+

rτ

2
+ λ(ν2

⊥ + ν2
‖)

− ν⊥

√√√√[(µ2 + γr2)− (µ2 + γr2)erf(µ/(
√
γr
√

2))−
√

2

π

√
γrµ exp(−µ2/(γr22))

]
.

(24)

Then, for λ > 0, the estimator θ̂λ(ε) from Equation (6) with the logistic loss and consistent `∞-
perturbations satisfies asymptotically as d, n→∞ and d/n→ γ that

1√
d
‖Π⊥θ̂λ(ε)‖1 → δ? and 〈θ̂0(ε), θ?〉 → ν?‖ and ‖θ̂λ(ε)‖22 → ν?2‖ + ν?2⊥ . (25)

The convergences hold in probability.
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For λ > 0, the loss in Equation (23) has a unique minimizer. In contrast, for λ = 0, the minimizer
of Equation (23) is not unique. In the latter case, we study the robust max-`2-margin solution
from Equation (7), which corresponds to the limit when λ → 0 (see Section 4.1). Theorem F.2
characterizes the asymptotic behavior of the corresponding solution, with proof in Appendix F.2.
Theorem F.2. Assume that we have i.i.d. random features xi drawn from an isotropic Gaussian,
noiseless observations yi = sgn(〈xi, θ?〉), and θ? = (1, 0, · · · , 0)>. Further, assume that λ = 0 and
ε = ε0/

√
d, where ε0 is a numerical constant. Let (ν?⊥, ν

?
‖ , r

?, δ?, ζ?, κ?, τ?) be the unique solution
of

max
r≥0,
ζ≥0

min
ν⊥≥0,
ν‖,δ≥0

max
κ≥0

min
τ≥0

ν2
‖ − κν⊥ − δζ −

γr2

4(1 + κ
2τ )

+r

√
EZ‖,Z⊥

[
max

(
0, 1 + ε0δ − |Z‖|ν‖ + Z⊥ν⊥

)2]
+

1

2(1 + κ
2τ )

(
γr2 + ζ2

2
erf

(
ζ√

2
√
γr

)
− ζ2

2
+

√
γrζ√
2π

exp

(
− ζ2

2γr2

))
+
κτ

2
.

(26)

Then, the estimator θ̂0(ε) from Equation (7) with the logistic loss and consistent `∞-perturbations
satisfies asymptotically as d, n→∞ and d/n→ γ that

1√
d
‖Π⊥θ̂0(ε)‖1 → δ? and 〈θ̂0(ε), θ?〉 → ν?‖ and ‖θ̂0(ε)‖22 → ν?2‖ + ν?2⊥ . (27)

The convergences hold in probability.
Remark F.3. Theorem 4.1 follows from Theorems F.1 and F.2 when inserting the expression from
Equations (25),(27) into the expression of the risk in Lemma A.2.

Inconsistent adversarial attacks We now show that Theorems F.1,F.2 also hold when training
with inconsistent attacks (8).

For inconsistent adversarial attacks, we simply need to change ε‖Π⊥θ‖1 to ε‖θ‖1 = ε‖Π⊥θ‖1 +
ε‖Π‖θ‖1 in the optimization objective in Equations (28),(38). To show that these modifications
do not change the asymptotic solution as d, n → ∞, note that ε‖Π‖θ‖1 = ε0√

n
‖Π‖θ‖1 → 0 which

follows from the fact that ‖Π‖θ‖1 remains bounded as d, n→∞.

Label noise While our results assume noiseless observations yi = sgn(〈xi, θ?〉), Theorem F.1,F.2
can be extended to the case where additional label noise is added to the observations. That is, we
observe yi = sgn(〈xi, θ?〉)ξi with ξi i.i.d., P(ξi = 1) = 1− σ and P(ξi = −1) = σ, where σ is the
strength of the label noise.

Note that, as discussed in Section D.1, the robust max-margin solution (7) might not exist for noisy
observations. In that case, the robust logistic regression estimate (6) has a unique solution for λ = 0.
In fact, following the same argument as in [24], asymptotically, we can find a threshold γ? such that
for any γ < γ?, the robust max-`2-margin solution does not exist, and for any γ ≥ γ?, the robust
max-`2-margin solution exists. The threshold can be found using the CGMT when following the
same argument as in Theorem 6.1 of [24].

Finally, we remark that, when λ > 0 or λ = 0 and γ < γ?, we can extend Theorem F.1 by replacing
|Z‖| with ξ|Z‖|, where ξ is drawn from the same distribution as ξi defined above. Similarly, for
λ = 0 and γ ≥ γ?, we can extend Theorem F.2 by replacing |Z‖| with ξ|Z‖|.

Outline of the proof The proof of Theorems F.1,F.2 heavily relies on the proofs of Theo-
rem 6.3 and 6.4 in [24]. In particular, our proof essentially follows the same structure by first
reducing the problem via an application of the Lagrange multiplier to an expression that suits the
CGMT framework. This allows us to instead study the auxiliary optimization problem as described in
Equation (31), which we then simplify to a scalar optimization problem using standard concentration
inequalities of Gaussian random variables.

The major difference to Theorems 6.3 and 6.4 in [24] is that we study a discriminative data model
with a sparse ground truth, whereas Theorem 6.3 and 6.4 in [24] assume a generative data model and,
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in particular, do not allow sparse ground truth vectors θ?. This is due to the different attack sizes as
we choose ε = ε0/

√
d while Theorems 6.3 and 6.4 in [24] assume a constant attack size ε = ε0.

F.1 Proof of Theorem F.1

Denote with X ∈ Rn×d the input data matrix and with y ∈ Rn the vector containing the observations.
Recall that the estimator θ̂ is given by

θ̂ = arg min
θ

1

n

n∑
i=1

`(yi〈xi, θ〉 − ε‖Π⊥θ‖1) + λ‖θ‖22

= arg min
θ,v

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) + λ‖θ‖22 such that v = DyXθ, (28)

where `(x) = log(1+exp(−x)) is the logistic loss, X ∈ Rn×d is the data matrix andDy the diagonal
matrix with entries (Dy)i,i = yi. We can then introduce the Lagrange multipliers u ∈ Rn to obtain

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXθ − 1

n
u>v + λ‖θ‖22.

Furthermore, we can separate X = XΠ⊥ + XΠ‖, which yields

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXΠ‖θ +

1

n
u>DyXΠ⊥θ −

1

n
u>v + λ‖θ‖22. (29)

Convex Gaussian Minimax Theorem We can now make use of the CGMT, which states that

min
θ∈Uθ

max
u∈Uu

u>Xθ + ψ(u, θ), (30)

with ψ convex in θ and concave in u, has asymptotically, when d, n→∞, d/n→ γ, pointwise the
same solution as

min
θ∈Uθ

max
u∈Uu

‖u‖2g>θ + u>h‖θ‖2 + ψ(u, θ), (31)

where g ∈ Rd and h ∈ Rn are random vectors with i.i.d. standard normal entries, and Uθ and Uu are
compact sets. As is common in the literature, we call Equation (30) the primal optimization problem
and Equation (31) the auxiliary optimization problem. Several works have already used the CGMT
to study high dimensional asymptotic logistic regression [46], also when training with adversarial
attacks [24]. We omit the precise statement and refer the reader to [51]. However, we note that we
can apply the CGMT due to the following observations:

1. The objective (29) is concave in u and convex in v, θ.

2. We can restrict u, v, θ to compact sets without changing the solution. For θ, we note that
this is a consequence of λ > 0, and for u, v, we note that the stationary condition requires
ui = `′(vi − ε‖Π⊥θ‖1).

3. XΠ⊥ is independent of the observations y and of XΠ‖.

Therefore, as a consequence of the CGMT, we can show that the solution of the primal optimization
problem (29) asymptotically concentrates around the same value as the solution of the following
auxiliary optimization problem:

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXΠ‖θ +

1

n
‖u>Dy‖2g>Π⊥θ

+
1

n
u>Dyh‖Π⊥θ‖2 −

1

n
u>v + λ‖θ‖22,

where g ∈ Rd and h ∈ Rn are vectors with i.i.d. standard normal entries.
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Scalarization of the optimization problem We now aim to simplify the optimization problem.
In a first step, we maximize over u. For this, define r = ‖u‖2/

√
n, which allows us to equivalently

write

min
θ,v

max
r≥0

1

n

n∑
i=1

`(vi− ε‖Π⊥θ‖1)+
r√
n
‖DyXΠ‖θ+Dyh‖Π⊥θ‖2−v‖2 +

1√
n
rg>Π⊥θ+λ‖θ‖22,

where we have used the fact that ‖u>Dy‖2 = ‖u‖2. In order to proceed, we want to separate Π⊥θ
from the loss `(v,Π⊥θ) := 1

n

∑n
i=1 `(vi − ε‖Π⊥θ‖1). Denoting the conjugate of ` by ˜̀, we can

write `(v,Π⊥θ) in terms of its conjugate with respect to Π⊥θ:

`(v,Π⊥θ) = sup
w

1√
d
w>Π⊥θ − ˜̀(v, w)

= sup
w

1√
d
w>Π⊥θ − sup

δ≥0

(√
d√
d
δ‖w‖∞ −

1

n

n∑
i=1

`(vi −
√
dεδ)

)

= sup
w

inf
δ≥0

1√
d
w>Π⊥θ − δ‖w‖∞ +

1

n

n∑
i=1

`(vi − ε0δ),

where, for the second identity, we use the derivation for the conjugate of ` from Lemma A.2 in the
paper [24]. Hence, we obtain:

max
r≥0

min
θ,v

max
w

min
δ≥0

1

n

n∑
i=1

`(vi − ε0δ) +
r√
n

∥∥DyXΠ‖θ +Dyh‖Π⊥θ‖2 − v
∥∥

2
+ λ‖θ‖22 (32)

+
1√
d
w>Π⊥θ − δ‖w‖∞ +

1√
n
rg>Π⊥θ. (33)

In particular, note that the problem is concave in r, w and convex in θ, v, δ. Thus, we can interchange
the order of maximization and minimization:

max
r≥0

min
v

min
δ≥0

max
w

min
θ

1

n

n∑
i=1

`(vi − ε0δ) +
r√
n

∥∥DyXΠ‖θ +Dyh‖Π⊥θ‖2 − v
∥∥

2
+ λ‖θ‖22

(34)

+
1√
d
w>Π⊥θ − δ‖w‖∞ +

1√
n
rg>Π⊥θ.

Next, we simplify the optimization over θ. Write Π‖θ = Π‖1ν‖ with ν‖ ∈ R (here we use the fact
that θ? = (1, 0, · · · , 0)) and let ν⊥ = ‖Π⊥θ‖2. We can simplify:

max
r≥0

min
ν⊥≥0,
δ≥0,
ν‖,v

max
w

1

n

n∑
i=1

`(vi − ε0δ) +
r√
n
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖2 + λ(ν2

‖ + ν2
⊥) (35)

− 1√
d
ν⊥‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

In order to obtain a low dimensional scalar optimization problem, we still need to scalarize the
optimization over w and v. For this, we replace the term ‖DyXΠ‖1ν‖ + Dyhν⊥ − v‖2 with its
square, which is achieved by using the following identity minτ≥0

x2

2τ + τ
2 = x. Hence,

max
r≥0

min
ν⊥≥0,τ≥0
δ≥0,
ν‖,v

1

n

n∑
i=1

`(vi − ε0δ) +
r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

τr

2
+ λ(ν2

‖ + ν2
⊥)

+ max
w

[
− 1√

d
ν⊥‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

]
.

We can now separately solve the following two inner optimization problems:

max
w
− ν⊥

1

d
‖Π⊥(w −√γrg)‖2 − δ‖w‖∞ (36)

min
v

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

n∑
i=1

`(vi − ε0δ) (37)
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Equation (36) Let STt(x) =

{
0 |x| ≤ t

sgn(x)(|x| − t) else
be the soft threshold function. We have

max
w
− ν⊥

1√
d
‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

= −min
w

ν⊥
1√
d
‖Π⊥(w −√γrg)‖2 + δ‖w‖∞

µ=‖w‖∞
= −min

µ≥0
ν⊥

√√√√1

d

d∑
i=2

(STµ (
√
γrgi))

2
+ δµ

LLN as d→∞→ −min
µ≥0

ν⊥

√
EZ (STµ (

√
γrZ))

2
+ δµ,

where we used in the third line that the ground truth θ? is 1-sparse and in the last line that the
expectation exists for Z ∼ N (0, 1). Finally, we can further simplify

EZ (STµ (
√
γrZ))

2
= γr2EZ

(
STµ/(√γr) (Z)

)2
= γr2EZ(Z − µ/(√γr))2 − EZ1|Z|≤µ/(√γr)(Z − µ/(

√
γr))2

= (µ2 + γr2)
(

1− erf(µ/(
√

2γr))
)
−√γrµ

√
2

π
exp(−µ/(2γr2)).

Hence, we can conclude the first term.

Equation (37) For the second term we also aim to apply the law of large numbers. We have

min
v

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

1

n

n∑
i=1

`(vi − ε0δ)

ṽ=v−εδ
= min

ṽ

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − ṽ − ε0δ‖22 +

1

n

n∑
i=1

`(ṽi)

= min
ṽ

1

n

n∑
i=1

r

2τn

(
(DyXΠ‖1ν‖)i + (Dyhν⊥)i − ṽi − ε0δ

)2
+ `(ṽi)

LLN→ EZ‖,Z⊥

[
M`(|Z‖|ν‖ + Z⊥ν⊥ − ε0δ,

τ

r
)
]
,

where in the last line we used that (DyXΠ‖1)i = yix
>
i θ

? = sgn(x>i θ
?)x>i θ

? has the same distribu-
tion as |Z‖| with Z‖ ∼ N (0, 1). Further, to apply the law of large numbers, we need to show that
the Moreau envelope exists. Similarly to Theorem 1 [46], this follows immediately when noting that
M`(x, µ) ≤ `(x) = log(1 + exp(−x)) ≤ log(2) + |x|. Finally, we obtain the desired optimization
problem in Equation (24) when combining these results.

Convergence One can check that the optimization problems defined in Equations (24),(28) are
convex in the variables that we minimize over, and concave in the variables that we maximize over.
Indeed, Equation (28) is immediate and Equation (24) follows straightforwardly from the fact that
the problem in Equation (32) is convex and concave as desired. Therefore, also the problem in
Equation (24) satisfies the convexity and concavity properties that we need. Hence, both problems in
Equations (24),(28) have a unique solution. Finally, note that the optimum δ? in Equation (32) satisfies
δ? = 1√

d
‖Π⊥θ‖, and similarly the optima ν?⊥ and ν?‖ in Equation (35) satisfy ν?⊥ = ‖Π⊥θ‖2 and

ν?‖ = 〈θ, θ?〉. We can therefore conclude the proof as the solutions of the optimization problems (24),
(28) concentrate asymptotically around the same optima as d, n→∞.

F.2 Proof of Theorem F.2

Recall the robust max-margin solution from Equation (7):

min
θ,δ
‖θ‖22 such that 〈θ, xi〉 − δ ≥ 1 for all i and ε‖Π⊥θ‖1 = δ (38)
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Like in the previous section, after introducing the Lagrange multipliers ζ and u we can equivalently
write

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u> (1 + 1ε0δ −DyXθ) + ζ

(‖Π⊥θ|1√
d
− δ
)
, (39)

and again separating X = XΠ⊥ + XΠ‖, we get

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u>
(
1 + 1ε0δ −DyXΠ‖θ −DyXΠ⊥θ

)
+ ζ

(‖Π⊥θ‖1√
d
− δ
)
. (40)

Convex Gaussian Minimax Theorem Since the adversarial attacks are consistent and the observa-
tions are noiseless, we know the solution in Equation (38) exists for all d, n. Yet, in order to apply
the CGMT, we have to show that we can restrict u and θ to compact sets. This follows from a simple
trick as explained in Section D.3.1 in [24]. Hence, the primal optimization problem from Equation
(40) can be asymptotically replaced with the following auxiliary optimization problem, where, as
before, g ∈ Rd and h ∈ Rn are random vectors with i.i.d. standard normal entries:

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u>
(
1 + 1ε0δ −DyXΠ‖θ +Dyh‖Π⊥θ‖2

)
+

1

n
‖u‖2g>Π⊥θ + ζ

(‖Π⊥θ‖1√
d
− δ
)
.

(41)

Scalarization of the optimization problem The goal is again to scalarize the optimization problem.
As a first step, we can solve the optimization over u when defining r = ‖u‖2√

n
:

min
θ,δ≥0

max
r≥0,
ζ≥0

‖θ‖22 +
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ +Dyh‖Π⊥θ‖2

)
‖2

+
r
√
γ√
d
g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
,

where max applies element-wise over the vector. We can now swap maximization and minimization
since the objective is convex in θ, δ and concave in r:

max
r≥0,
ζ≥0

min
θ,δ≥0

‖θ‖22 +
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ +Dyh‖Π⊥θ‖2

)
‖2

+
r
√
γ√
d
g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
.

We now want to separate ‖Π⊥θ‖2 from the term in max. This is achieved by introducing the variable
ν⊥ ≥ 0 and the Lagrange multiplier κ. Further, we set ν‖ = 〈θ?,Π‖θ〉 (recall that θ? = (1, 0, · · · , 0)),
which allows us to equivalently write

max
r≥0,
ζ≥0

min
ν⊥≥0,

ν‖,δ≥0,Π⊥θ

max
κ≥0

ν2
‖ + ‖Π⊥θ‖22 + κ(‖Π⊥θ‖2 − ν⊥)

+
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ

∗ν‖ +Dyhν⊥
)
‖2

+
r
√
γ√
d
g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
.

(42)

Next, we use again the trick minτ≥0
x2

2τ + τ
2 = x, which yields

max
r≥0,
ζ≥0

min
ν⊥≥0,

ν‖,δ≥0,Π⊥θ

max
κ≥0

min
τ≥0

ν2
‖ + ‖Π⊥θ‖22 − κν⊥ +

κ

2τ
‖Π⊥θ‖22

+
κτ

2
+

r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ

∗ν‖ +Dyhν⊥
)
‖2

+
r
√
γ√
d
g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
.

(43)
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In a next step, note that due to high dimensional concentration, we have that
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ

∗ν‖ +Dyhν⊥
)
‖2

LLN→ r

√
EZ‖,Z⊥

[
max

(
0, 1 + ε0δ − |Z‖|ν‖ + Z⊥ν⊥

)2]
=:
√
T ,

where Z‖, Z⊥ are standard Gaussian distributed random variable. Next, by completion of the squares
we get

max
r≥0,
ζ≥0

min
ν⊥≥0,

ν‖,δ≥0,Π⊥θ

max
κ≥0

min
τ≥0

ν2
‖ + (1 +

κ

2τ
)‖Π⊥θ +

r
√
γ√

d2(1 + κ
2τ )

g‖22 −
r2γ

4(1 + κ
2τ )
‖g/
√
d‖22

− κν⊥ +
√
T + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
+
κτ

2

with ‖g/
√
d‖22 → 1. Next, note that we can again swap minimization and maximization due to the

convexity and concavity, respectively, of the optimization. Hence, we can rewrite

max
r≥0,
ζ≥0

min
ν⊥≥0,
ν‖,δ≥0

max
κ≥0

min
τ≥0,Π⊥θ

ν2
‖ + (1 +

κ

2τ
)‖Π⊥θ +

r
√
γ√

d2(1 + κ
2τ )

g‖22 −
r2γ

4(1 + κ
2τ )
‖g/
√
d‖22

− κν⊥ +
√
T + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
+
κτ

2
.

Finally, to obtain the desired optimization problem, we only need to solve the inner optimization over
Π⊥θ. For this, we can write:

min
Π⊥θ

(1 +
κ

2τ
)‖Π⊥θ +

r
√
γ√

d2(1 + κ
2τ )

g‖22 + ζ
‖Π⊥θ‖1√

d

θ̃⊥=
Π⊥θ√
d

= min
θ̃⊥

1

d
(1 +

κ

2τ
)‖θ̃⊥ +

r
√
γ

2(1 + κ
2τ )

g‖22 + ζ
‖Π⊥θ‖1

d

=
1

d

d∑
i=2

min
(θ̃⊥)i

(1 +
κ

2τ
)((θ̃⊥)i +

r
√
γ

2(1 + κ
2τ )

gi)
2 + ζ|(θ̃⊥)i|

=
1

d
2(1 +

κ

2τ
)

d∑
i=2

min
(θ̃⊥)i

1

2
((θ̃⊥)i +

r
√
γ

2(1 + κ
2τ )

gi)
2 +

ζ

2(1 + κ
2τ )
|(θ̃⊥)i|

=
1

d
2(1 +

κ

2τ
)

d∑
i=2

`H(− r
√
γ

2(1 + κ
2τ )

gi,
ζ

2(1 + κ
2τ )

)

→2(1 +
κ

2τ
)EZ `H

(
r
√
γ

2(1 + κ
2τ )

Z,
ζ

2(1 + κ
2τ )

)
where we solve the optimization in the fourth line with `H being the Huber loss, given by

`H(x, y) =

{
0.5x2 |x| ≤ y
y(|x| − 0.5y)

. Finally, we can conclude the proof from

EZ `H (aZ, b) =
a2 + b2

2
erf

(
b√
2a

)
− b2

2
+

ab√
2π

exp

(
− b2

2a2

)
.

Convergence One can check that the optimization problems defined in Equations (26),(40) are
convex in the variables which we minimize over and concave in the variables which we maximize over.
Indeed, Equation (40) is immediate and Equation (26) follows straightforwardly, like before, from the
fact that the desired convexity and concavity are satisfied for the problem defined in Equation (43).
Thus, both problems defined in Equations (26),(40) have unique solutions. We note again that the
optimum δ? in Equation (39) satisfies δ? = 1√

d
‖Π⊥θ‖, and similarly the optima ν?⊥ and ν?‖ in

Equation (43) satisfy ν?⊥ = ‖Π⊥θ‖2 and ν?‖ = 〈θ, θ?〉. Hence we can conclude the proof as the
solutions of problems (26), (40) concentrate asymptotically as d, n→∞ around the same optima.
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