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ONLINE EPSILON NET & PIERCING SET FOR
GEOMETRIC CONCEPTS∗

Sujoy Bhore† Devdan Dey‡ Satyam Singh§

ABSTRACT

VC-dimension (Vapnik & Chervonenkis (1971)) and ε-nets (Haussler & Welzl
(1987)) are key concepts in Statistical Learning Theory. Intuitively, VC-dimension
is a measure of the size of a class of sets. The famous ε-net theorem, a fundamental
result in Discrete Geometry, asserts that if the VC-dimension of a set system is
bounded, then a small sample exists that intersects all sufficiently large sets.
In online learning scenarios where data arrives sequentially, the VC-dimension
helps to bound the complexity of the set system, and ε-nets ensure the selection of
a small representative set. This sampling framework is crucial in various domains,
including spatial data analysis, motion planning in dynamic environments, opti-
mization of sensor networks, and feature extraction in computer vision, among
others. Motivated by these applications, we study the online ε-net problem for ge-
ometric concepts with bounded VC-dimension. While the offline version of this
problem has been extensively studied, surprisingly, there are no known theoreti-
cal results for the online version to date. We present the first deterministic online
algorithm with an optimal competitive ratio for intervals in R. Next, we give a ran-
domized online algorithm with a near-optimal competitive ratio for axis-aligned
boxes in Rd, for d ≤ 3. Furthermore, we introduce a novel technique to analyze
similar-sized objects of constant description complexity in Rd, which may be of
independent interest.
Next, we focus on the continuous version of this problem (called online piercing
set), where ranges of the set system are geometric concepts in Rd arriving in an
online manner, but the universe is the entire ambient space, and the objective is to
choose a small sample that intersects all the ranges. Although online piercing set is
a very well-studied problem in the literature, to our surprise, very few works have
addressed generic geometric concepts without any assumption about the sizes. We
advance this field by proposing asymptotically optimal competitive deterministic
algorithms for boxes and ellipsoids in Rd, for any d ∈ N.

1 INTRODUCTION

The concepts of Vapnik–Chervonenkis dimension (VC-dimension) and ε-net theory are fundamen-
tal components in Statistical Learning Theory. VC-dimension, introduced by Vapnik & Chervo-
nenkis in their seminal work Vapnik & Chervonenkis (1971), is a tighter measure of the com-
plexity of concept classes. We need some key definitions to discuss the notion of VC-dimension
formally. A set system (also known as range space) (X ,R) is defined by a set X and a class R
(known as ranges) of subsets of X . For instance, consider a set system: X = {1, 2, 3, 4} and
R = {{1, 2}, {2, 3}, {2, 3, 4}, {1, 2, 4}}. (see also Figure 1 for a geometric example). In learning
theory, the set X is the instance space, and R is the class of potential hypotheses, where a hypothesis
r is a subset of X . A set system (X ,R) shatters a set A if each subset of A can be expressed as
A ∩ r for some r in R. The VC-dimension of R is the size of the largest set shattered by R. Due
to Vapnik & Chervonenkis (1971), it is known that for any range space (X ,R) with VC-dimension
bounded by a constant d, for any ε > 0, a randomly chosen small subset of X will hit every range
containing at least ε|X | points from X , with high probability. Haussler & Welzl (1987) showed that
the size of the small subset, called an ε-net (for formal definition, see Definition 1 in Section 2), is
bounded by O

(
d
ε log

d
ε

)
, where d is the VC-dimension of the range space. This result is famously
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known as the ε-net theorem, and is a celebrated result in Discrete Geometry. One of the central open
questions in the theory of ε-nets is whether the logarithmic factor log 1

ε in the upper bound on their
size is truly necessary. Pach & Woeginger (1990) showed for d ≥ 2, logarithmic factor is necessary,
but d = 1 the net size can be bounded by max

(
2,
⌊
1
ε

⌋
− 1
)
. In the last three decades, remarkable

progress has been made on the size of ε-net for geometric set families by exploiting various intrinsic
geometric properties (we briefly discuss these results in Section 1.1).

In this work, we focus on the ε-net problem in the online setup. In the online ε-net problem, the set
X is known in advance, but the objects of R arrive one at a time, without advance knowledge, and
we need to maintain a valid net N ⊂ X for the input objects. The performance of an online ε-net
algorithm is measured by the competitive ratio, which is (informally) defined as the maximum ratio
between the performance of the algorithm and the offline optimal net (see Section 2 for a formal
definition).

Besides its underlying deep theoretical nature, online ε-nets have found many applications in mod-
ern machine learning, particularly in areas like active learning, adversarial robustness, efficient sam-
pling, etc. In active learning, ε-nets help to select representative samples from large datasets. This
process allows the models to be trained with minimal labelled data while maintaining accuracy (see,
e.g., Hanneke & Yang (2015); Balcan et al. (2010)). Moreover, online ε-nets play an important role
in adversarial robustness by covering potential adversarial regions of the input space, ensuring that
models are less susceptible to attacks (see, e.g., Madry et al. (2017); Cullina et al. (2018); Montasser
et al. (2019)). In this work, we primarily focus on the theoretical aspects of online ε-nets, which
form a crucial component of Statistical Learning Theory, contributing to our understanding of gen-
eralization, sample complexity, and robustness in machine learning models (Vapnik (2013); Laan
et al. (2006)).

Figure 1: An example of a geometric range space (X ,R). Here, the set X is the collection of points,
while R is the collection of rectangles.

Continuous Setup: Towards Piercing Set. Given a set R of n geometric objects in Rd, a subset
P ⊂ Rd is a piercing set of R if every object of R contains at least one point of P . The minimum
piercing set (MPS) problem asks for a piercing set P of the smallest size. The problem has numerous
applications in facility location, wireless sensor networks, learning theory, etc. See Sharir & Welzl
(1996); Huang et al. (2004); Ben-Moshe et al. (2000); Katz et al. (2003); Mustafa (2022). The
problem can be viewed as a “continuous” version of 1

n -net problem, also known as the geometric
hitting set problem. The geometric hitting set, in turn, corresponds to geometric set cover in the
dual range space1. Hence, by the standard greedy algorithm for set cover, one can compute an
O(log n)-approximation to the minimum piercing set in polynomial time for any family of piercing
set with constant description complexity (since it suffices to work with a discrete set of O(nd)
candidate points). For geometric set families, a range of sophisticated approximation schemes have
been proposed over the years (see Section 1.1 for a brief discussion).

In online piercing set, the point set Rd is known beforehand, but the set R of geometric objects
is not known in advance. Here, the geometric objects arrive one by one. An online algorithm
must maintain a valid piercing set for all objects arrived so far. Upon the arrival of a new object
σ, the algorithm must maintain a valid piercing set. Note that an online algorithm may add points
to the piercing set but cannot remove points from it, i.e., all the decisions taken by the algorithm
are irrevocable. The problem aims to minimize the cardinality of the piercing set. In the online
hitting set, X ⊂ Rd such that |X | = n. Charikar et al. (2004) initiated the study of the online
piercing set problem for unit balls in Rd. They proposed an online algorithm having a competitive
ratio of O(2dd log d). Moreover, they proved that Ω(log d/ log log log d) is the (deterministic) lower
bound of the competitive ratio for this problem. Later, Dumitrescu et al. (2020) improved both the

1Given a finite family R of ranges in Rd, the dual range space induced by them is defined as a set system
on the underlying set R, consisting of the sets Rx := {R | x ∈ R ∈ R}, for all x ∈ Rd.
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upper and lower bounds of the competitive ratio to O(1.321d) and Ω(d + 1), respectively. For unit
hypercube in Rd, Dumitrescu & Tóth (2022) proved that the competitive ratio of any deterministic
online algorithm for the unit covering problem is at least 2d. Then, for integer hypercubes in Rd,
they proposed a randomized online algorithm with a competitive ratio of O(d2) and a deterministic
lower bound of d + 1. For similar size α-fat objects in Rd, De et al. (2024a) gave a deterministic
algorithm with competitive ratio O(( 2

α + 2)d logM), and a lower bound of Ω(d logM + 2d). Note
that a set S is said to be similarly sized α-fat objects when the ratio of the largest width of an α-fat
object (for the definition of α-fat object, see Section 2) in S to the smallest width of an α-fat object
in S is bounded by a fixed constant M > 0. See Section 1.1 for further discussion on this.

An online ε-net can be viewed as a specific type of online piercing set where the focus is on main-
taining coverage with respect to the measure of the sets rather than merely ensuring intersection.
Consequently, both structures aim to address the complexities of dynamic data scenarios by provid-
ing robust sampling and representation mechanisms.

1.1 RELATED WORK

ε-net: The ε-net theory has seen remarkable growth in the last few decades. Here, we provide a
very concise summary of this. Matoušek (1992) demonstrated that for range spaces (X ,R) where
X is a finite set of points in R2 (or R3) and R consists of half-spaces, the size of the ε-net can
be reduced to O(

(
1
ε

)
eliminating the logarithmic factor. Aronov et al. (2009) showed the exis-

tence of ε-nets of size O
(
1
ε log log

1
ε

)
for planar point sets and axis-aligned rectangles. Clarkson &

Varadarajan (2005) made an important breakthrough by establishing a connection between the size
of ε-nets for dual range space (X ,R) associated with geometric objects and their union complexity2.
In particular, they showed if the union complexity is o(n log n), then dual set systems admit ε-net of
size o(1/ε log(1/ε)). On the lower bound side, one can typically find approximately 1/ε pairwise
disjoint, ε-heavy ranges in R. For these cases, the size of any ε-net must be at least Ω

(
1
ε

)
. For

many years, it has been widely conjectured that for geometric set families, this bound is tight (see
Matoušek et al. (1990)). Alon (2012) proved the conjecture false by giving examples of geometric
range spaces of small VC-dimension, e.g., straight lines, rectangles, or infinite strips in the plane,
that do not have ε-net of size O(1/ε). Later, Pach & Tardos (2011) showed that range spaces with
VC-dimension 2 have a smallest ε-net of size Ω(1/ε log 1/ε). They also proved lower bound on size
of ε-net for axis-parallel rectangle in R2 is Ω(1/ε log log 1/ε).

Piercing Set. In the offline setting, the piercing set problem is a well-studied problem in Com-
putational Geometry. The problem is NP-complete even for a set of unit squares Garey & Johnson
(1979). For geometric set families, e.g., unit squares/hypercubes, unit disks/balls, or more generally,
near-equal-sized fat objects in Rd, various approximation schemes have been developed; see Chan
(2003); Efrat et al. (2000); Katz et al. (2003)). For arbitrary boxes in Rd, the current best approxi-
mation scheme is via ε-net (see Agarwal et al. (2024)). Recently, Bhore & Chan (2025) obtained a
dramatic improvement over the running time.

Online Piercing & Hitting. Alon et al. (2009) in their seminal work initiated the study of the hitting
set problem in the online setting. They proposed an online algorithm having a competitive ratio
of O(log n logm), where |X | = n and |R| = m. Moreover, they establish a nearly matching
Ω
(

logm logn
log logm+log logn

)
lower bound for the problem. In the geometric setting, Even & Smorodinsky

(2014) proposed online algorithms having an optimal competitive ratio of Θ(log n), where X is
a finite subset of points and R consists of half-planes in R2, and also when R consists of unit
disks. Khan et al. (2023) obtained an optimal Θ(logN)-competitive algorithm when X is a finite
set of points from Z2 and R consists of integer squares (whose vertices have integral coordinates)
S ⊆ [0, N)2 in R2. Recently, De et al. (2024b) also obtained an optimal competitive ratio of
Θ(log n) when X is a finite set of points from R2 and R consists of translates of either a disk or
a regular k-gon. For a special case, when the point set is entire Zd, De & Singh (2024) studied
the problem for unit balls and hypercubes in Rd. Alefkhani et al. (2023) considered this variant for
α-fat objects in (0, N)d, and proposed a deterministic online algorithm with a competitive ratio of
( 4
α + 1)2d logN . Recently, De et al. (2024b) obtained improved upper and lower bounds.

2The complexity of the boundary of the union of a set of objects (see Clarkson & Varadarajan (2007)).
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1.2 OUR CONTRIBUTIONS.

We study the online ε-net and online piercing set for a wide range of geometric objects. For some
of the objects, we designed online algorithms which achieve asymptotically tight competitive ratios.
We summarize our results below.

Online ε-net. We present the first deterministic online algorithm for intervals in R with an optimal
competitive ratio of Θ(log 1

ε ). This result is tight, as we also establish a lower bound of Ω(log 1
ϵ )

for online ε-net for intervals. Next, for axis-aligned rectangles in R2 and boxes in R3, we devise
randomized algorithms with near-optimal competitive ratios of O(log 1

ε ) and O(log3 1
ε ), respec-

tively. We make significant progress on classical ε-net in the online regime, for which no prior
upper bounds were known.

Online piercing set. Starting from the work of Charikar et al. (2004), online piercing set has
been studied extensively over the years (see Dumitrescu et al. (2020); Dumitrescu & Tóth (2022)).
However, it is impossible to obtain sublinear competitive ratios for any geometric families due to
a hopeless lower bound of Ω(n), which even holds for arbitrary intervals, where n is the length of
the input sequence. Several works addressed this issue by making assumptions on the object types
(fatness) or aspect ratio of the input objects (see De et al. (2024a); Khan et al. (2023)). Surprisingly,
very little is known when these constraints do not hold. We present the first deterministic online al-
gorithm for axis-aligned boxes and ellipsoids in Rd, with an optimal competitive ratio of O(logM).
These results are asymptotically tight due to the existing lower bound of Ω(logM) for hypercubes
and balls in Rd (De et al. (2024b)). Additionally, we introduce a novel technique to analyze similar-
sized fat objects of constant description complexity in Rd. Although the result slightly improves
the existing upper bound of De et al. (2024a), we believe the technique may be useful to other on-
line geometric algorithms. Due to paucity, we move the proofs of several lemmas, theorems, and
pseudo-codes in the Appendix. The missing proofs are marked by ⋆.

2 NOTATION AND PRELIMINARIES

We use Z+ and R+ to denote the set of positive integers and positive real numbers, respectively. We
use [n] to represent the set {1, 2, . . . , n}, where n ∈ Z+. For any β ∈ R, we use βZ to denote the
set {βz | z ∈ Z}, where Z is the set of integers. For any point p ∈ Rd, we use p(xi) to denote the
ith coordinate of p, where i ∈ [d]. The point p is an integer point if for each i ∈ [d], the coordinate
p(xi) is an integer. By an object, we refer to a compact set in Rd having a nonempty interior. Let
d∞(., .) represents the distance under the L∞-norm. Given a set system (X ,R) and any set Y ⊆ X ,
the projection of R onto Y is defined as the set system: R|Y = {Y ∩r : r ∈ R}. The VC-dimension
of R, denoted by VC-dim(R) is the size of the largest Y ⊆ X for which R|Y = 2Y .
Definition 1. (ε-net) Given a set system (X ,R) (also known as range space) consists of a finite set
X and a class R of subsets of X . An ε-net N ⊂ X such that any range r ∈ R with |r∩X | ≥ ε · |X |
intersects N . In other words, any range that has at least a proportion ε of the elements of P must
also intersect the ε-net N .
Theorem 1. (Epsilon-net Theorem) [Haussler & Welzl (1987)] Let (X ,R) be a set system with
VC-dim(R) ≤ d for some constant d, and let ε > 0 be a given parameter. Then there exists an
absolute constant ca > 0 such that a random N constructed by picking of X independently with
probability

(
ca.(

1
ε|X| ) log

1
γ + d

ε|X| log
(
1
ε

))
is an ε-net for R with probability at least 1− γ.

Online ε-Net. Let Σ = (X ,R) be a set system, where X is a universe of points in Rd and R is a
set of ranges defined over X . We assume that X is fixed in advance and the ranges in R are coming
one by one. Let ALG be an algorithm for online ε-net for Σ. The expected competitive ratio of
ALG with respect to Σ = (X ,R) is defined by, ρ(ALG) = supσ

[
ALG(σ)
OPT(σ)

]
, where the supremum

is taken over all input sequences σ, OPT(σ) is the minimum cardinality ε-net for σ, and ALG(σ)
denotes the size of the net produced by ALG for this input. The objective is to design an algorithm
that obtains the minimum competitive ratio. If the ALG is a randomized algorithm, then we replace
ALG(σ) by E[ALG(σ)] (Borodin & El-Yaniv, 1998, Ch. 1).

α-Fat Objects. The notions of fatness have been heavily exploited in high-dimensional Geometry
and Learning Theory. There exists several definitions of fatness in the literature due to Alefkhani
et al. (2023); Chan (2003); De et al. (2024a). We use the most standard definition here which is
defined with respect to the aspect ratio of the objects. Let σ be an object. For any point x ∈ σ,
we define α(x) =

miny∈∂σ d∞(x,y)
maxy∈∂σ d∞(x,y) . The aspect ratio α(σ) = max{α(x) : x ∈ σ}. An object is
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considered an α-fat object if its aspect ratio is at least α. A point c ∈ σ with α(c) = α(σ) is defined
as a center of the object σ. The minimum (respectively, maximum) distance from the center to the
boundary of the object is referred to as the width (respectively, height) of the object. A set S of
objects is considered fat if there exists a constant 0 < α ≤ 1 such that each object in S is α-fat.
Note that for a set S of fat objects, each object σ ∈ S does not need to be convex or connected. For
an α-fat object, the value of α is invariant under translation, reflection, and scaling. A set S is said
to be similarly sized fat objects when the ratio of the largest width of an object in S to the smallest
width of an object in S is bounded by a fixed constant.

3 ONLINE ε-NET
In Section 3.1, we analyze the performance of a simple deterministic algorithm for online ε-net
of arbitrary intervals, which gives asymptotically tight competitive ratios. Then, in Section 3.2, we
analyse the performance of a randomized algorithm for online ε-net of arbitrary boxes in Rd(d ≤ 3).

3.1 ONLINE ε-NET FOR ARBITRARY INTERVALS

In this section, we consider a finite range space (X ,R), where X is a set of n points in R, and R is
the set of arbitrary intervals. In the online setting, the set X is known in advance, and the adversary
introduces the intervals one by one at each step. Our objective is to construct an ε-net N ⊂ X for
(X ,R) that hits each ε-heavy interval in R.

We present a deterministic online algorithm ALGO-INTERVAL, which maintains an ε-net N . Ini-
tially, N = ∅. At each step, we update the set to hit all the ε-heavy intervals observed so far. Here,
OPT refers to the optimal ε-net produced by an offline algorithm that computes the best possible
solution.

Let σ be an interval containing n points. We partition the interval σ into 2 disjoint smaller sub-
intervals, each containing at most ⌊n/2⌋ points. Let P j

σ be a jth sub-interval of σ, where j ∈ {ℓ, r}.
Online algorithm. We can now present our online algorithm ALG. The algorithm maintains a
piercing set H for all intervals that have been part of the input so far. Initially, H = ∅. Upon the
arrival of a new interval σ, if |σ∩X | < ε|X |, then ignore σ; else we do the following. If it is already
hit by H, ignore σ. Otherwise, sort the points of σ ∩ X in the increasing order, say p1, . . . , p|σ∩X|,

and hit σ by the point indexed
⌊
|σ∩X|

2

⌋
and

⌈
|σ∩X|

2

⌉
. Add the above-mentioned points points to H.

For a concise description of pseudo-code, see Algorithm 1 in Appendix C.

Since we hit all the ε-heavy unhit sets at each step, clearly, ALGO-INTERVAL produces an ε-net. We
need to prove that the size of the net N produced by ALGO-INTERVAL is at most 2

(
log
(
1
ε

)
+ 1
)

times the size of the offline optimal net OPT.

Theorem 2 (⋆). For online ε-net of arbitrary intervals, there exists a deterministic online algorithm
with a competitive ratio of 2

(
log
(
1
ε

)
+ 1
)
, for any ε ∈ (0, 1]. This result is tight: the competitive

ratio of any deterministic online algorithm for this problem is at least log 1
ε + 1.

3.2 ONLINE ε-NET FOR ARBITRARY AXIS-ALIGNED RECTANGLES IN R2

In this section, we consider a finite range space (X ,R), where X is a set of n points in R2, and
R is the set of axis-aligned rectangles. In the online setup, the points are known in advance, and
the rectangles are introduced one by one. Our goal is to construct an ε-net N for (X ,R) that hit
all ε-heavy rectangles in R. Before describing the online algorithm, we first introduce some crucial
ingredients that will play an essential role in designing the algorithm.
Construction of the balanced binary tree T . We construct a balanced binary search tree T over
the point set X , where |X | = n. Without loss of generality, assume n = 2k for some k ∈ Z+. The
root node at level 0 contains all n points. At each level, the parent node splits into two child nodes,
each containing half of the points of its parent. This process continues until each node has fewer
than εn points, resulting in a tree of depth O

(
log
(
1
ε

))
, with each leaf containing O(εn) points.

Construction of a random sample. Let P be a random sample of size O
(
ε log log

(
1
ε

))
, where

ε ∈
(
1
C , 1

]
for sufficiently large constant C > 1. The points are drawn uniformly at random from

X with a probability of π = O

(
ε log log( 1

ε )
n

)
. Note that the selection of P and its size is extremely

crucial, as it directly influences the competitive ratio of the algorithm.
Connection between the tree and the random sample. Each node v of the tree T is associated
with a subset Xv ⊆ X (and similarly, Pv ⊆ P) containing the points of X (resp. P) stored in the
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subtree rooted at v. A line lv corresponding to each internal node v divides the point set Xv into two
subsets, Xv1 and Xv2 , associated with the children v1 and v2 of v, respectively. Corresponding to
each node vi (except root) and it’s parent v, lines lvi and lv define the strip svi .

Construction of maximal Pv-unhit open rectangles set Mv . For each node v in strip sv , con-
taining |Pv| points from P , located between lines lv and lparent(v). Without loss of generality, let lv
be the left boundary of sv . We need at most three points from Pv to create a P-unhit open rectangle
M . A triplet of points (a, b, c) defines three sides of a rectangle M : right (a), top (b), and bottom
(c), with the left side determined by the line lv (refer figure 2a). If either b or c is missing, the cor-
responding side is extended infinitely (see Figures 2b). If a is missing, the right side of M extends
until it reaches the right boundary line of the strip sv (see Figure 2c). For each point a ∈ Pv , the
nearest top-left (b) and bottom-left (c) neighbors define the upper and lower boundaries of the rect-
angle. If no such neighbors exist, those sides are extended to infinity. This process generates up to
|Pv| rectangles, where each right side is defined by a point from Pv (Figure 2d). Rectangles defined
solely by the top and/or bottom points (b and/or c) are formed by pairing consecutive points along
the y-axis, with the right side extending to the opposite boundary of the strip (Figure 2e). This leads
to the construction of |Pv| + 1 rectangles. Thus, each strip sv contains up to 2|Pv| + 1 maximal
P-unhit rectangles.
From the above description, the number of maximal Pv-unhit open rectangles Mv within each strip
s is bounded by O(|P|). Since the number of nodes in the tree T is O(2log

1
ε ), the total number of

maximal P-unhit open rectangles across all strips is at most O
(
|P| · 1

ε

)
.

b

a

c

(a)

b

a

(b)

b

c

(c)

y

x

z

(d)

x

z

y

(e)

Figure 2: (a) A triplet of points (a, b, c) defines three sides of a rectangle M . (b) If either top or
bottom point is missing, the corresponding side is extended infinitely. (c) If right point is missing,
the right side of M extends until it reaches the right boundary line of the strip. (d) Rectangles defined
solely by right side point. (e) Rectangles defined solely by top and/or bottom side point.

Finding a suitable Pv-unhit open rectangle. If an ε-heavy rectangle σ arrives and is not hit by
P , let v be the highest node of T such that associated line lv intersects σ. We take the sub-rectangle
σ′, which contains at least εn

2 points. Next, we extend σ′ to the right until it hits a point of Pv or
reaches the opposite boundary of the strip sv . Similarly, we extend it upwards (resp., downwards)
until it intersects a point of Pv , or treat it as an open rectangle. This extended rectangle contains σ′

and is included in the set Mv .
Construction of safety-net. For each node v of T and each rectangle M ∈ Mv , define the weight
as wM = s|M∩X|

n , where s = 2
εδ, and δ is a small constant greater than 1. Using the ε-net theorem,

we can construct a 1
wM

-net, denoted as NM , for each M ∩Xv , of size O(wM logwM ). These serve
as safety-nets that hit every ε-heavy input rectangle σ that intersects the strip sv but is not hit by P .

The final ε-net N for (X ,R) is the union of P with the safety-nets NM for all M . Now, we have all
the necessary ingredients to describe the algorithm.
Online algorithm. Let P ⊆ X be a random sample of size O

(
ε log log

(
1
ε

))
. In addition to P , the

algorithm also maintains a safety-net SN , with N = P ∪ SN . Initially, I, P , and SN are empty.
For each new rectangle σ presented, update I = I ∪ σ. If σ contains any point from P , then we
are done. If not, check whether σ intersects any point from the current safety-net SN . If it does, no
further action is needed. Otherwise, find the highest node v in the tree T where the associated line
lv intersects σ. Identify a sub-rectangle σ′ ⊆ σ containing at least εn

2 points, then extend σ′ to form
a Pv-unhit rectangle M . Finally, add all points from the 1

wM
-net NM to the safety-net SN . For a

concise description of the pseudo-code, see Algorithm 2 in Appendix C.

Readers familiar with the technique of Aronov et al. (2009) will recognize the similarities between
our approach and theirs. However, the key distinctions in our algorithm lie in a different selection
of the random sample, a different weight assigned to each constructed rectangle M ∈ M, and
consequently, the size of the resulting online ε-net changes.
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Correctness. Note that N consists of a random sample P ⊆ X along with wM -net for each
M ∈ M. Let σ be a ε-heavy rectangle. If the input rectangle σ is hit by P , we are done. If σ does
not contains any point from P , then we will show that σ will be hit by a point from the safety-net
NM , corresponding to some P-unhit open rectangle M . Recall that if an ε-heavy rectangle σ arrives
and is not hit by P , we consider the highest node v of T such that the associated line lv intersects σ.
We take the sub-rectangle σ′, which contains more than half points of σ. Next, we find the maximal
Pv-unhit open rectangle M ∈ Mv such that σ′ is completely contained in M . Also, recall that the
weight of every M was wM = s|M∩X|

n , where s = 2δ
ε . Due to ε-net theorem, for any M ∈ Mv

we can construct 1/wM -net, NM for M . Note that |σ′∩X|
|M∩X| ≥ εn/2

nwM/s ≥ 1
wM

. Hence, due to the
definition of ε-net that NM hits σ′.
Theorem 3. For the online ε-net problem with arbitrary axis-aligned rectangles, there exists an
algorithm with an expected competitive ratio of at most O

(
log
(
1
ε

))
. Here, ε ∈

(
1
C , 1

]
, where C is

a sufficiently large constant.
Proof. Now, we will show that the expected competitive ratio of the algorithm is O

(
log
(
1
ε

))
. Let I

be the collection of all input rectangles arrived one by one to the algorithm. First, we will compute
how many points are placed by our algorithm for the input sequence I. Let N and OPT be the
epsilon-net constructed by our online algorithm and best offline optimum for input sequence I.
Recall that the net N constructed by our algorithm is the union of P and wM -net for all M ∈ M,
where M is the collection of all P-unit open rectangles. Now, we consider

E[|N |] =E[|P|+
∑
v∈T

∑
M∈Mv

(wM logwM )] ≤ E[|P ′|] + E[|M|(wM logwM )]

=E[|P ′|] + (wM logwM )E[|M|] ≤ O

((
E[|P|]

ε

)
wM logwM

)
(Since, E[|M|] dominates over E[|P ′|])

=O

(
log log

(
1

ε

))
× (wM logwM ) = O

(
log log

(
1

ε

))
×O

((
1

ε

)
log

(
1

ε

))
.

(Since, wM = O(s) and s = 2δ
ε )

Due to Pach & Tardos (2011), for (X ,R), where X is a finite set of points, and R consists of
axis-aligned rectangles, the size of the smallest ε-net (for ε ∈ (0, 1]) is at least Ω( 1ε log log

1
ε ).

Thus, the offline optimal OPT for any input sequence I will have size at least O(
(
1
ε log log

1
ε

)
).

So, the expected competitive ratio of the algorithm will be E[|N |]
OPT ≤ O(log log( 1

ε )×O(( 1
ε ) log(

1
ε )))

O(( 1
ε ) log log( 1

ε ))
=

O
(
log
(
1
ε

))
. Hence, the theorem follows.

Since we are using the Pach & Tardos (2011) result as a lower bound, the claimed upper bounds
are not instance-optimal. Achieving instance-optimal bounds would require an online lower bound
for these objects. To the best of our knowledge, such a result has not yet been established in the
literature, making it an intriguing open problem.

3.2.1 EXTENSION TO HIGHER DIMENSIONS.
Our approach can be extended from R2 to R3. We begin by selecting a random sample P ⊆ X in
R3 of size O

(
ε log log 1

ε

)
, similar to the case in R2. Then, we construct a three-level range tree T

over the points of X using standard methods from Computational Geometry (see Berg et al. (2008)).
This three-level range tree will help in construction of at most O

(
|P| · 1

ε log
2 1

ε

)
many safety-nets.

(For the complete construction see Appendix A.2). Thus, we have the following theorem.
Theorem 4 (⋆). For the online ε-net problem with arbitrary axis-aligned boxes in R3, there exists
an algorithm with an expected competitive ratio of at most O

(
log3

(
1
ε

))
. Here, ε ∈

(
1
C , 1

]
, where

C is a sufficiently large constant.
Remark 1. For dimensions d ≥ 4, the number of maximal P-unhit open orthants within each octant
containing k points from P may no longer be linear in k. In fact, it can grow as Θ(k⌊d/2⌋), which
is at least quadratic for d ≥ 4 (see Kaplan et al. (2008)). This contrasts with instances in R2 or
R3, where the number of such maximal unhit boxes is linear in k, allowing us to efficiently bound
the net size, which results in a small net size and a favorable competitive ratio. However, due to
the potentially non-linear growth in higher dimensions, it is unclear whether the tree construction
algorithm used to find a small ε-net will yield similarly efficient results for d ≥ 4.
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4 ONLINE PIERCING SET PROBLEM

In this section, we study the online piercing set problem for various families of geometric objects. In
Section 4.1 and 4.2, we analyze the performance of a simple deterministic algorithm ALGO-CENTER
for piercing axis-aligned boxes and ellipsoids in Rd, respectively, which gives the desired competi-
tive ratios. Then, in Section 4.3, we analyse the performance of a deterministic algorithm ALGO-FAT
for piercing fat objects in Rd.

In what follows, we first describe a simple deterministic algorithm.

Online algorithm: ALGO-CENTER. Let N be the piercing set maintained by our algorithm to
pierce the incoming object. Initially, N = ∅. Our algorithm does the following on receiving a new
input object σ. If the existing piercing set pierces σ, do nothing. Otherwise, our online algorithm
adds the center of σ to N .

The analysis of the algorithm is similar in nature for fat objects, axis-aligned boxes and ellipsoids
in Rd. To bound the competitive ratio, we determine the number of points placed by algorithm
against each point p in an offline optimum. To compute the number of piercing points placed by
our algorithm, we consider the region containing all objects that can be pierced by the point p. We
have partitioned this region into O(logM) regions such that our algorithm places the same number
of piercing points in each of these regions. Finally, we give an upper bound on the total number
of points placed by our algorithm in each of these regions. The competitive ratio is O(logM)
multiplied by this number. Proofs not included in the main body of this section are presented in
Appendix B.

4.1 ONLINE PIERCING FOR AXIS-ALIGNED BOXES IN Rd

In this section, we study the piercing set problem for (X ,R), where the set X is the entire Rd and
R is a family of axis-aligned arbitrary boxes from [1, N ]d having side lengths in [1,M ]. Note that
boxes can have arbitrary aspect ratios, thus they are not necessarily fat objects. Hence, the result
for piercing α-fat objects (De et al. (2024b)) does not apply to boxes in Rd. In fact, surprisingly, no
online algorithm is known to date even for rectangles in R2. For a fixed d ∈ Z+, for piercing axis-
aligned boxes in Rd, we propose a simple deterministic algorithm ALGO-CENTER which obtains a
competitive ratio O(logM)) (Theorem 6). There exists a randomized lower bound for hypercubes
in Rd of Ω(logM) (De et al. (2024b)), which also holds for axis-aligned rectangles in Rd. Thus, the
competitive ratio obtained by our algorithm is asymptotically tight.

In this section, we first present the analysis of ALGO-CENTER for rectangles in R2. Later, we gen-
eralize it for higher dimensions (see 4.1.1). Throughout the section, all distances are L∞ distances,
and all boxes are axis-aligned, unless stated otherwise.

Theorem 5. For piercing axis-aligned rectangles in R2 having the length of each side in the range
[1,M), ALGO-CENTER has a competitive ratio of at most O(logM).

Proof. Let I be the set of rectangles presented to the online algorithm. Let N and OPT denote the
piercing set returned by the online algorithm ALGO-CENTER and an offline optimal for I. Consider
a point p ∈ OPT and let Ip ⊆ I be the collection of all the rectangles arrived so far and contain
the point p. Let N p ⊆ N be the set of piercing points placed by ALGO-CENTER to pierce all the
input rectangles in Ip. Clearly, we have N =

⋃
p∈OPT N p. Consequently, the competitive ratio of

our algorithm is upper bounded by maxp∈OPT |N p|.
Now, consider any point a ∈ N p. Since a is the center of a rectangle σ ∈ Ip that contains the point
p and has a side length of at most M , the distance between a and p is at most M

2 . As a result, a
square S of side length M , centered at p, will contain all the points in N p. Next, partition the square
S into (⌊logM⌋+ 1) smaller nested squares. For i ∈ [(⌊logM⌋+ 1)], let Si be a square with sides
of length M

2i−1 . Define the annular region Ai = Si \ Si+1, where i ∈ [(⌊logM⌋ + 1)]. Notice that
the annular region Ai contains all the rectangles of Ip whose length of both the sides are at least
M

2i−1 . Let N p
i = N p ∩Ai be the subset of N p that is contained in the region Ai.

Lemma 1 (⋆). |N p
i | ≤ 12.

Since
⋃
N p

i = Np and due to Lemma 1 we have N p
i ≤ 12, therefore |Np| ≤ 12× (⌊logM⌋+1) =

O(logM). Hence, the theorem follows.
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4.1.1 GENERALIZATION TO HIGHER DIMENSIONAL BOXES

Similar to R2, we have a hypercube H of side length M centered at p ∈ OPT, containing all the
centers of the objects in Ip. We can partition the hypercube H into ⌊logM⌋+1 smaller hypercubes
Si. Specifically, the hypercube Si has all sides is of length M

2i−1 . Similar to the two dimensional
case, here also we define the annular region Ai = Si \ Si+1, where i ∈ [(⌊logM⌋ + 1)]. Notice
that the annular region Ai contains all the boxes of Ip such that the length of all the sides are at
least M

2i−1 . Let N p
i = N p ∩ Ai be the subset of N p that is contained in the region Ai. For each

i ∈ [(⌊logM⌋+1)], we show that |N p
i | ≤ 2d(2d−1) = O(4d) (due to Lemma 2). Since ∪N p

i = Np.
Thus, we have the following theorem.
Theorem 6 (⋆). For a fixed d ∈ Z+, for piercing arbitrary box in Rd having the length of each side
in [1,M), ALGO-CENTER has a competitive ratio of at most O(logM).

4.2 ONLINE PIERCING FOR ELLIPSOID IN Rd

In this section, we study the piercing set problem for a family of ellipsoids having length of axis-
aligned semi-major and semi-minor axes in [1,M ], where M > 1. Similar to rectangles, ellipses can
also have arbitrary aspect ratios and are not assumed to be fat. Surprisingly, no online algorithm is
known to date, even for ellipses in R2. In this section, for a fixed d ∈ Z+, we show that for piercing
ellipsoids in Rd,. ALGO-CENTER achieves a competitive ratio of at most O(logM) (Theorem 8).
The competitive ratio obtained by our algorithm is asymptotically tight, due to lower bound of De
et al. (2024a) for ball is Ω(logM).

Here, we first present the analysis of the algorithm for the case of ellipses in R2. Later, in
Section 4.2.1, we generalize the analysis of the algorithm for the higher dimensional ellipsoids
(see 4.2.1). The proof of the following theorem is similar to the proof of Theorem 6.

p

r D

C(θ, r)

2θ

(a)

2θ

p

o

ℓ

ri+1

m
ri

n
ri

Ci,θ

(b)

Figure 3: (a) Partitioning the disk D of radius r using circular sector C(θ, r); (b) Description of
circular sector C(θ, ri) and circular block Ci,θ.

Theorem 7 (⋆). For piercing ellipses in R2 having length of axis aligned semi-major and semi-
minor axis in the range [1,M ], ALGO-CENTER achieves a competitive ratio of at most O(logM).

4.2.1 GENERALIZATION TO HIGHER DIMENSIONAL ELLIPSOIDS

Similar to the two-dimensional case, we construct a d-dimensional ball B of radius M centered at
p ∈ OPT, containing all the centers of the d-dimensional ellipsoids in Ip. We can partition the d-
dimensional ball B into ⌊logM⌋+1 smaller concentric d-dimensional balls Bi. Specifically, the d-
dimensional ball ball Bi has radius M

2i−1 . Similar to the two dimensional case, here also we define the
annular region Ai = Bi\Bi+1, where i ∈ [(⌊logM⌋+1)]. Notice that the annular region Ai contains
all the d-dimensional ellipsoids of Ip such that the length of all the principal semi-axes is at least
M

2i−1 . We prove that for each i ∈ [(⌊logM⌋+ 1)], we have |N p
i | ≤

((
1 + 1

sin(θ/2)

)d
− 1

)
, where

θ = 1
2 cos

−1
(

1
2 + 1

1+
√
1+4α2

)
and x =

√
5−1
2 . Since ∪N p

i = Np. Thus, similar to Theorem 7, we
have the following theorem.
Theorem 8 (⋆). For a fixed d ∈ Z+, for piercing d-dimensional ellipsoids having the length of
all the axis-aligned principal semi-axes in [1,M), ALGO-CENTER has a competitive ratio of at
most O(logM).

4.3 ONLINE PIERCING FOR α-FAT OBJECTS IN Rd

In this section, we focus on piercing α-fat objects in Rd. Currently, the best known bound on
competitive ratio is O

(
( 2
α + 2)d logM

)
(De et al. (2024a)). We improve this result for (α ∈

9
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1
2 , 1] by introducing a simple deterministic algorithm with a slightly better competitive ratio of
O
(
( 2
α + 7

8 )
d logM

)
. This resolves an open problem posed by De et al. (2024a), which seeks to

narrow the gap between the lower and upper bounds for piercing α-fat objects in higher dimensions.
We consider all the distances in this section to be under L∞-norm, unless stated otherwise.

Before describing the algorithm, we first present some essential ingredients that will be used for
describing the algorithm. For any j ∈ 2[⌊logM⌋] ∪ {0}, let ℓj = 2.2

j
2+1 and uj = 3.2

j
2+1 if j is

even, and ℓj = 3.2
j−1
2 +1 and uj = 4.2

j−1
2 +1 if j is odd.

Layer of the objects. We partition the set of all similarly-sized fat objects into [2⌊logM⌋+1]∪{0}
layers. When j is even (respectively, odd), the layer Lj contains the fat objects having widths in
[ℓj , uj).

Lattice. Let Πj
d = {α1ℓje1 + α2ℓje2 + . . .+ αdℓjed | (α1, α2, . . . , αd) ∈ Zd} be a d-dimensional

lattice spanned by the standard unit vectors. To visualize Πj
1,Π

j
2 and Πj

3, we refer to Figure 4.

(b) (c)

P−ℓj

(a)
P0

Pℓj

ℓj

ℓj

ℓj

ℓj

ℓj

Figure 4: The points of Πj
d are drawn (a) for d = 1, (b) for d = 2, (c) for d = 3. In (c), the

projections of planes Pℓj , P0 and P−ℓj over a rectangular region is depicted. Here, for any k′ ∈ R,
Pk′ = {y ∈ Rd | y(xd) = k′} is a hyper-plane.

Now, we present a simple deterministic online algorithm for piercing fat objects in Rd.

Online algorithm ALGO-FAT. Let N be the piercing set maintained by our algorithm to pierce the
incoming fat objects. Initially, N = ∅. On receiving a new input object σ with width s, we do the
following. If it is already hit by N , then ignore σ. Otherwise, first determine the layer Lj in which
σ belongs, where j = log 3

2
s. Then, our algorithm choose the closest point r from Πj

d ∩ σ, and adds
r to H.

For the correctness, efficient implementation and analysis of the online algorithm, see Appendix B.3.

Theorem 9 (⋆). For piercing similarly-sized fat objects with widths in [1,M), ALGO-FAT has a
competitive ratio of at most O(⌊ 2

α + 7
8⌋

d logM).

5 CONCLUSION

We studied the online ε-net and online piercing set problems for a wide range of geometric objects.
For the online ε-net, we have obtained asymptotically tight bounds for the competitive ratios for
some of these objects. Two future directions particularly arise from our work. What happens to
other geometric objects? We believe that some techniques used in this work could be extended to
other related geometric objects of constant description complexity in Rd, for d ≤ 3. Obtaining
tight bounds for all objects of bounded VC-dimension is an interesting open problem. Moreover,
to ensure the cardinality of an optimal sample size, we used the value of ε within a certain regime.
Designing online algorithms for any ε > 0 is an interesting open problem. For online piercing
set, we have established asymptotically tight bounds on the competitive ratios for piercing hyper-
rectangles and ellipsoids in Rd, for any d ∈ N. A challenging open question remains whether it is
possible to remove the dependence on the dimension from the competitive ratios bound for classes
of objects of bounded VC-dimension.
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Hai Huang, Andréa W. Richa, and Michael Segal. Approximation algorithms for the mobile piercing
set problem with applications to clustering in ad-hoc networks. Mob. Networks Appl., 9(2):151–
161, 2004. doi: 10.1023/B:MONE.0000013626.53247.1C. URL https://doi.org/10.
1023/B:MONE.0000013626.53247.1c.

Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal range
counting. SIAM Journal on Computing, 38(3):982–1011, 2008. doi: 10.1137/070684483. URL
https://doi.org/10.1137/070684483.

Matthew J. Katz, Frank Nielsen, and Michael Segal. Maintenance of a piercing set for intervals
with applications. Algorithmica, 36(1):59–73, 2003. doi: 10.1007/s00453-002-1006-1. URL
https://doi.org/10.1007/s00453-002-1006-1.

12

https://proceedings.neurips.cc/paper/2018/hash/8f85517967795eeef66c225f7883bdcb-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8f85517967795eeef66c225f7883bdcb-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0304397524000677
https://www.sciencedirect.com/science/article/pii/S0304397524000677
https://doi.org/10.1007/s00453-024-01244-1
https://arxiv.org/abs/2409.11166
https://arxiv.org/abs/2409.11166
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1007/s00453-021-00916-6
https://doi.org/10.1007/s00453-021-00916-6
https://doi.org/10.1016/j.tcs.2019.12.010
https://doi.org/10.1016/j.tcs.2019.12.010
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/j.dam.2014.06.019
https://doi.org/10.1016/j.dam.2014.06.019
http://dblp.uni-trier.de/rec/bib/books/fm/GareyJ79
http://dblp.uni-trier.de/rec/bib/books/fm/GareyJ79
https://dl.acm.org/doi/10.5555/2789272.2912111
https://dl.acm.org/doi/10.5555/2789272.2912111
https://api.semanticscholar.org/CorpusID:27638326
https://api.semanticscholar.org/CorpusID:27638326
https://doi.org/10.1023/B:MONE.0000013626.53247.1c
https://doi.org/10.1023/B:MONE.0000013626.53247.1c
https://doi.org/10.1137/070684483
https://doi.org/10.1007/s00453-002-1006-1


Published as a conference paper at ICLR 2025

Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese. Online and
dynamic algorithms for geometric set cover and hitting set. In 39th International Symposium on
Computational Geometry, SoCG 2023, volume 258 of LIPIcs, pp. 46:1–46:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.SOCG.2023.46. URL https:
//doi.org/10.4230/LIPIcs.SoCG.2023.46.

Mark J van der Laan, Sandrine Dudoit, and Aad W van der Vaart. The cross-validated adaptive
epsilon-net estimator. Statistics & Decisions, 24(3):373–395, 2006.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. stat, 1050(9), 2017. URL https:
//doi.org/10.48550/arXiv.1706.06083.
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A MISSING PROOFS OF SECTION 3

A.1 MISSING PROOFS OF SECTION 3.1

Theorem 2. For online ε-net of arbitrary intervals, there exists a deterministic online algorithm with
a competitive ratio of 2

(
log
(
1
ε

)
+ 1
)
, for any ε ∈ (0, 1]. This result is tight: the competitive ratio

of any deterministic online algorithm for this problem is at least log 1
ε + 1.

Proof. Upper Bound. Let I be a collection of intervals presented to the online algorithm. Let S ⊆
I be the collection of intervals [a, b] such that |[a, b] ∩ X | ≥ ε|X |. For each i ∈

[
⌈ log2 1

ε⌉
]
∪ {0},

let Si be the collection of intervals [x, y] in S such that |[x, y] ∩ X | ∈
[
2iε|X |, 2i+1ε|X |

)
. Let N

and OPT denote the sub-collection of ε-nets returned by the online algorithm and an optimal offline
algorithm, respectively, for S. Let p be a point in OPT. Let S(p) ⊆ S be the set of intervals that
contains the point p. For each i ∈

[
⌈ log2 1

ε⌉
]
∪ {0}, let Si(p) = S(p) ∩ Si. Let Ni(p) ⊆ N be the

set of points that are placed by the online algorithm to hit an input interval in Si(p) which is not hit.
We claim that our online algorithm places at most 2 points for all intervals in Si(p). Without loss of
generality, let us assume that σ ∈ Si(p) is the first input interval that is not hit upon its arrival. In
order to hit σ, our online algorithm adds the points indexed

⌊
|σ∩X|

2

⌋
and

⌈
|σ∩X|

2

⌉
to Ni(p). Notice

that we can partition σ into two disjoint sub-intervals P ℓ
σ and P r

σ such that they contain
⌊
|σ∩X|

2

⌋
and⌈

|σ∩X|
2

⌉
points, respectively. Let P t

σ contains the point p, where t ∈ {ℓ, r}. Let σ′(̸= σ) ∈ Si(p)

be any interval. Observe that, |P t
σ| <

⌊
|σ∩X|

2

⌋
< 2iε|X |. Also, by definition, σ′ ∈ Si(p) contains

at least 2iε|X | points, and σ′ ∩ P t
σ ̸= ∅. As a result, σ′ hit by either the point of σ indexed

⌊
|σ∩X|

2

⌋
or
⌈
|σ∩X|

2

⌉
. Therefore, our algorithm does not add any point to Nj(p) for σ′. Thus, N (p) contains

at most 2
(
⌈ log2 1

ε⌉+ 1
)

points.

Lower Bound. To prove the lower bound, we can think it as a game between the adaptive adversary
and online algorithm. Let σ1 be the first interval containing all the n points presented by the adver-
sary to the online algorithm. Let p1 be a point placed by the online algorithm to pierce the interval
σ1. The point p1 partitions the interval σ1 into two parts, of which, let σL

1 be a part containing at
least n

2 points that does not contain the point p1. Now, the adversary can present an interval σ2 ⊆ σL
1

containing exactly n
2 points.For the new interval σ2, any online algorithm needs a new piercing point

p2. Now again, one can define a partition σL
2 of σ2 depending on the position of the point p2 such

that σL
2 contains at least n

4 points and does not contain p2. The adversary will present an interval
σ3 ⊆ σL

2 containing exactly n
4 points. In this way, the adversary can adaptively construct log 1

ε + 1

intervals (last interval containing εn points) for which any online algorithm needs log 1
ε +1 distinct

points to pierce, while an offline optimum needs only one point. Hence, the lower bound of the
competitive ratio is log 1

ε + 1.

Hence, we conclude the proof of the theorem.

A.2 MISSING PROOFS OF SECTION 3.2

Theorem 4. For the online ε-net problem with arbitrary axis-aligned boxes in R3, there exists an
algorithm with an expected competitive ratio of at most O

(
log3

(
1
ε

))
. Here, ε ∈

(
1
C , 1

]
, where C

is a sufficiently large constant.

Before presenting the proof of the theorem, we first define some important ingredients that will play
an essential role in proving the above-mentioned theorem.

We begin by selecting a random sample P ⊆ X in R3 of size O
(
ε log log 1

ε

)
, similar to the case in

R2. Then, we construct a three-level range tree T over the points of X . This can be obtained by fol-
lowing standard methods from Computational Geometry (see Berg et al. (2008)). The construction
of the range tree proceeds as follows: in the primary tree, the points are sorted by their x-coordinates,
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in the secondary tree by their y-coordinates, and in the tertiary tree by their z-coordinates. Each node
u in the primary tree T is associated with a subset Ru ⊆ X , and it a secondary tree Tu on this subset.
Each node v in Tu is similarly associated with a subset Ru,v ⊆ Ru and a tertiary tree Tu,v on this
subset. Finally, each node w in a tertiary tree Tu,v corresponds to a subset Ru,v,w ⊆ Ru,v .

For each internal node u in the primary tree, we associate a plane hu orthogonal to the x-axis
that splits the points into subsets and stored at its children (analogous to the line lu for each node
u). Similarly, for each node v in Tu and each node w in Tu,v , we associate planes hu,v and hu,v,w

orthogonal to the y-axis and z-axis, respectively. Trees of each level has a depth of at most O(log 1
ε ),

and the total number of nodes in the range tree T is O
(
1
ε log

2 1
ε

)
.

These orthogonal planes define octants su,v,w for each node w of the tertiary tree, analogous to the
strips in the R2. For each octant, we construct a set Mu,v,w of maximal P-unhit boxes. Each box M
requires at most three points from Pu,v,w to define its boundaries on each distinct facets. Similar to
the case in R2, the number of maximal boxes |Mu,v,w| is at most |Pu,v,w|+1 = O(|P|). Therefore,
the total number of maximal boxes across all octants is not more than O

(
1
ε log

2 1
ε · |P|

)
.

To handle an input box σ that is ε-heavy but not hit by P , we follow a similar procedure like the
R2: Identify the lowest-level plane intersecting σ, extend σ to the boundary of the octant or until it
intersects a point from Pu,v,w, and form a box that belongs to the set Mu,v,w. Finally, we define
weights wM for each M ∈ Mu,v,w and construct safety nets NM as in the planar case. The final
ε-net in R3 is the union of P with all the safety nets NM . Using the similar reasoning described in
Section 3.2, it is possible to show that the constructed set N is indeed an ε-net, where ε ∈ [1/C, 1)
for any sufficiently large constant C > 1. Now, the proof of Theorem 4 is as follows.

Proof. The expected size of N is given as,
E[|N |] = E

[
|P ′|+

∑
u∈T

∑
v∈Tv

∑
w∈Tu,v

∑
M∈Mu,v,w

wM logwM

]
, which can be bounded as

E[|P ′|] +O
(
|P| · 1

ε log
2 1

ε

)
wM logwM .

Finally, applying the lower bound results from Pach & Tardos (2011), one can establish that the
competitive ratio for the R3 case is:

E[|N |]
|OPT |

≤
O
(
log2 1

ε · log log 1
ε ×O

(
1
ε log

1
ε

))
O
(
1
ε log log

1
ε

) = O

(
log3

1

ε

)
This shows that the competitive ratio is O

(
log3 1

ε

)
.

B MISSING PROOFS OF SECTION 4

B.1 MISSING PROOFS OF SECTION 4.1

Lemma 1. |N p
i | ≤ 12.

Proof. Since Ai = Si \ Si+1, the distance (under L∞ norm) from the center p to the boundary of
Si and Si+1 is M

2i−1 and M
2i , respectively. Thus, the annular region Ai can contain squares of side

length M
2i+1 .

Claim 1. The annular region Ai is the union of at most 12 disjoint squares, each having side length
M

2i+1 .

Proof. To calculate the number of such squares S of side length M
2i+1 in the annular region Ai, we

need to find the ratio of area of Ai with respect to the area of square S. The area of Ai is equals to
the area of Si minus the area of Si+1. Thus, the area of Ai is 3M2

4 . The area of S is M2

16 . Thus the
ratio will be 12. Hence, the claim follows.

To complete the proof, next, we argue that our online algorithm places at the most one piercing point
in each of these squares to pierce the objects in Ip. Let S be any such square of side length M

(2)i+1 ,
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and let q1 ∈ S be a piercing point placed by our online algorithm. For a contradiction, let us assume
that our online algorithm places another piercing point q2 ∈ H , where q2 is the center of an object
σ ∈ Ip. Since σ contains both the points p and q2, the distance (under L∞ norm) between them is
at least M

2i1
. Note that the distance (under L∞ norm) between any two points in S is at most M

2i+1 , as
a result, σ is already pierced by q1, since σ is a rectangle of side length at least M

2i . This contradicts
our algorithm. Thus, the region H contains at most one piercing point of N p

i . Hence, the lemma
follows.

Lemma 2. |N p
i | ≤ 2d(2d − 1) = O(4d).

Proof. Since Ai = Si \ Si+1, the distance (under L∞ norm) from the center p to the boundary of
Si and Si+1 is M

2i−1 and M
2i , respectively. Thus, the annular region Ai can contain squares of side

length M
2i+1 .

Claim 2. The annular region Ai is the union of at most 12 disjoint squares, each having side length
M

2i+1 .

Proof. To calculate the number of such hypercubes H of side length M
2i+1 in the annular region Ai,

we need to find the ratio of the volume of Ai with respect to the volume of hypercube S. The area
of Ai is equals to the volume of Si minus the volume of Si+1. Thus, the area of Ai is (2d−1)Md

2d
.

The area of S is M2

4d
. Thus the ratio will be 2d(2d − 1). Hence, the claim follows.

To complete the proof, next, we argue that our online algorithm places at the most one piercing point
in each of these squares to pierce the objects in Ip. Let S be any such square of side length M

(2)i+1 ,
and let q1 ∈ S be a piercing point placed by our online algorithm. For a contradiction, let us assume
that our online algorithm places another piercing point q2 ∈ H , where q2 is the center of an object
σ ∈ Ip. Since σ contains both the points p and q2, the distance (under L∞ norm) between them is
at least M

2i1
. Note that the distance (under L∞ norm) between any two points in S is at most M

2i+1 , as
a result, σ is already pierced by q1, since σ is a rectangle of side length at least M

2i . This contradicts
our algorithm. Thus, the region H contains at most one piercing point of N p

i . Hence, the lemma
follows.

B.2 MISSING PROOFS OF SECTION 4.2

Theorem 7. For piercing ellipses in R2 having length of axis aligned semi-major and semi-minor
axis in the range [1,M ], ALGO-CENTER achieves a competitive ratio of at most O(logM).

Proof. Let I be the set of input ellipses in R2 presented to the algorithm. Let N and OPT be two
piercing sets for I returned by ALGO-CENTER and the offline optimal, respectively. Let p be any
piercing point of the offline optimal OPT. Let Ip ⊆ I be the set of input ellipses pierced by the
point p. Let Np be the set of piercing points placed by our algorithm to pierce all the ellipses in Ip.
To prove the theorem, we will give an upper bound of |Np|.
Let us consider any point a ∈ Np. Since a is the center of an ellipse σ ∈ Ip (containing the point
p) having length of semi-minor and semi-major axes at most M , the distance between a and p is
at most M

2 . Therefore, a disk D of radius M , centered at p, contains all the points in Np. Let
x =

√
5−1
2 be a positive constant. Let Di be a disk centered at p having radius ri = M

(1+x)i−1 ,
where i ∈ [(⌊logM⌋ + 1)]. Note that D1, D2, . . . , Dm are concentric disks, centered at p. Let
θ = 1

2 cos
−1
(

1
2 + 1

1+
√
5

)
be a constant angle in (0, π

10 ]. Similar to the case of rectangles, now we
define the annular region Ai = Di \Di+1. Let C(θ, ri) be a circular sector obtained by taking the
portion of the disk Di by a conical boundary with the apex at the center p of the disk and θ as the
half of the cone angle (for an illustration see Figure 3a). For any i ∈ [⌊logM⌋ + 1], let us define
the ith circular block Ci,θ = C(θ, ri) \ C(θ, ri+1) (for an illustration see Figure 3b). Notice that
all the ith circular blocks contain all the ellipses of Ip having length of both the semi-major and
semi-minor axes at least ri.
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Similar to Lemma 1, we have the following lemma.

Lemma 3. |N p
i | ≤ ⌈π

θ ⌉.

Proof. Notice that the total angle of any disk D centered at p is 2π. If any cone having apex at p
and angle 2θ, then at most ⌈π

θ ⌉ cones will cover the entire D. Thus, it is easy to observe that
⌈
2π
2θ

⌉
circular blocks will entirely cover Ai, there are at most π

θ circular blocks Ci,θ in Ai. Now, we will
show that in each circular block our algorithm places only one point. Let q1 be the first piercing point
placed by ALGO-CENTER in Ci,θ. For a contradiction, let us assume that ALGO-CENTER places
another piercing point q2 ∈ Ci,θ, where q2 is center of some ellipse σ ∈ Ip. Since σ contains points
p and q2, and the distance between them is at least ri. Note that the maximum distance between any
two points in Ci,θ is at most max{ln, on}. It is easy to observe that max{ln, on} is at most ri. As
a result, σ is already pierced by q1. This contradicts that our algorithm places two piercing points in
Ci,θ. Hence, ALGO-CENTER places at most one piercing point in the circular block Ci,θ to pierce
an ellipse in Ip. Hence, the lemma follows.

Since ∪N p
i = Np and due to Lemma 3 we have |N p

i | ≤ π
θ , therefore |Np| ≤ ⌈π

θ ⌉×(⌊logM⌋+1) =
O(logM). Hence, the theorem follows.

Theorem 8. For a fixed d ∈ Z+, for piercing d-dimensional ellipsoids having the length of
all the axis-aligned principal semi-axes in [1,M), ALGO-CENTER has a competitive ratio of at
most O(logM).

Proof. Let I be the set of input ellipsoids in Rd presented to the algorithm. Let N and OPT be two
piercing sets for I returned by ALGO-CENTER and the offline optimal, respectively. Let p be any
piercing point of the offline optimal OPT. Let Ip ⊆ I be the set of input ellipsoids pierced by the
point p. Let Np be the set of piercing points placed by our algorithm to pierce all the ellipsoids in
Ip. To prove the theorem, we will give an upper bound of |Np|.
Let us consider any point a ∈ Np. Since a is the center of an ellipsoids σ ∈ Ip (containing
the point p) having length of principal semi-axes is at most M , the distance between a and p is
at most M

2 . Therefore, a ball B of radius M , centered at p, contains all the points in Np. Let
x =

√
5−1
2 be a positive constant. Let Di be a disk centered at p having radius ri = M

(1+x)i−1 ,
where i ∈ [(⌊logM⌋ + 1)]. Note that D1, D2, . . . , Dm are concentric balls, centered at p. Let
θ = 1

2 cos
−1
(

1
2 + 1

1+
√
5

)
be a constant angle in (0, π

10 ]. Similar to the case of rectangles, now we
define the annular region Ai = Di \ Di+1. Let H(θ, ri) be a hyper-spherical sector obtained by
taking the portion of the ball Bi by a conical boundary with the apex at the center p of the ball and θ
as the half of the cone angle. For any i ∈ [⌊logM⌋+ 1], let us define the ith hyper-spherical block
Hi,θ = H(θ, ri)\H(θ, ri+1). Notice that all the ith hyper-spherical blocks contain all the ellipsoids
of Ip having length of all the principal semi-axes is at least ri.

Since ∪N p
i = Np and due to Lemma 3 we have |N p

i | ≤
((

1 + 1
sin(θ/2)

)d
− 1

)
, therefore |Np| ≤((

1 + 1
sin(θ/2)

)d
− 1

)
× (⌊logM⌋+ 1) = O(logM). Hence, the theorem follows.

Similar to Lemma 1, we have the following lemma.

Lemma 4. |N p
i | ≤

((
1 + 1

sin(θ/2)

)d
− 1

)
, where θ = 1

2 cos
−1
(

1
2 + 1

1+
√
1+4α2

)
and x =

√
5−1
2 .

Proof. Due to (Devroye et al., 1996, Lemma 5.3), for any fixed θ ∈ (0, π/2), we need at most((
1 + 1

sin(θ/2)

)d
− 1

)
hyper-cones with angle 2θ completely cover Rd. As a result, for any fixed

θ ∈ (0, π/2), we need at most
((

1 + 1
sin(θ/2)

)d
− 1

)
hyper-spherical blocks H(i, θ) to completely
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cover the annular region Ai. Now, we will show that in each hyper-spherical block our algorithm
places only one point. Let q1 be the first piercing point placed by ALGO-CENTER in Hi,θ. For a
contradiction, let us assume that ALGO-CENTER places another piercing point q2 ∈ Hi,θ, where q2
is center of some ellipsoid σ ∈ Ip. Since σ contains points p and q2, and the distance between them
is at least ri. Due to Claim 3 the maximum distance between any two points in Hi,θ is at most ri. As
a result, σ is already pierced by q1. This contradicts that our algorithm places two piercing points in
Hi,θ. Hence, ALGO-CENTER places at most one piercing point in the hyper-spherical block Hi,θ to
pierce an ellipse in Ip.Hence, the lemma follows.

Claim 3. The distance between any two points in Hi,θ is at most ri.
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Figure 5: (a) Description of the plane P. (b) Illustration of triangles △my′x′ and △ny′x′. (c)
Illustration of triangles △oox′n and △ℓx′n (d) Illustration of triangles △ox′m and △x′ℓm, in Ti,θ.

Proof. Observe Figure 5, where a detail of the projection hyper-spherical block is depicted. Note
that the maximum distance between any two points in Ti,θ is at most max{ln, on}. First, consider
the triangle △ℓpn (see Figure 5). By the cosine rule of the triangle, we have:

ℓn
2
=pℓ

2
+ pn2 − 2pℓ pn cos (2θ)

=

(
M

(1 + x)i−1

)2

+

(
M

(1 + x)i−2

)2

− 2

(
M

(1 + x))i−1

)(
M

(1 + x))i−2

)
cos(2θ)

=

(
M

(1 + x)i−2

)2
((

1

(1 + x)

)2

+ 1− 2

(
1

(1 + x)
cos (2θ)

))

=

(
M

(1 + x)i−1

)2 (
1 + (1 + x)2 − 2(1 + x) cos (2θ)

)
Since θ = 1

2 cos
−1
(

1
2 + 1

1+
√
5

)
and x =

√
5−1
2 , cos(2θ) = (x+2)

2(x+1) and x2 + x = 1. Now
substituting these values in the above equation, we get

ℓn
2
= r2i

(
1 + (1 + x)2 − (2 + x)

)
= r2i

(
1 + 1 + x2 + 2x− 2− 2x

)
= r2i

(
x2 + x

)
= (ri)

2
.

Now, consider the triangle △opn (see Figure 5). Here we have:

on2 =2

(
M

α(1 + x)i−2

)2

− 2

(
M

α(1 + x)i−2

)2

cos (2θ) = 2

(
M

α(1 + x)i−2

)2

(1− cos (2θ))

=2

(
M

α(1 + x)i−1

)2

(1 + x)2 (1− cos (2θ)) = 2r2i (1 + x)2 (1− cos (2θ)) .

Now substituting the values of cos(2θ) = (x+2)
2(x+1) and x2 + x = 1 in the above equation, we get

on2 =2r2i (1 + x)2
(
1− (x+ 2)

2(x+ 1)

)
=2r2i (1 + x)2

(
2(x+ 1)− (x+ 2)

2(x+ 1)

)
=r2i (1 + x)x = (ri)

2
.
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Note that ln = on = ri. Thus ri is the maximum distance between any two points in the region
Hi,θ.

B.3 MISSING PROOFS OF SECTION 4.3

Efficient implementation of the algorithm. For the efficient implementation of the algorithm,
given a fat object σ ∈ Rd centered at q with width s, it is crucial to determine the layer Lj to which
the fat object belongs. This can be done in O(1) time, since j = log 3

2
s. Next, identifying the closest

point from Πj
d to the fat object’s centre c is important, and according to the following lemma, it can

be done in O(d) time.

Lemma 5. For any point q in Rd, there exists a point r in Πj
d such that d∞(q, r) ≤ ℓj

2 . Given the
center, q of the fat object, the closest point r ∈ Πj

d can be found in O(d) time.

Proof. Notice that for any point r ∈ Πj
d, each coordinate of r is an integral multiple of ℓj . For

any point q ∈ Rd, for each j ∈ [d], the jth coordinate of the point q can be uniquely written as
q(xj) = zj + yj , where zj ∈ ℓjZ and yj ∈ [0, ℓj). Here, by βZ we mean the set

{
βz
∣∣∣ z ∈ Z

}
.

Now, we define the best point r of Πj
d depending on the coordinates of q. For each j ∈ [d], we set

the jth coordinate of r as follows.

r(xj) =

{
zj , if yj ∈

[
0,

ℓj
2 )

zj + ℓj , if yj ∈ [
ℓj
2 , ℓj).

As per the construction of the point r, we have |r(xj) − q(xj)| ≤ ℓj
2 for each j ∈ [d]. As a result,

d∞(r, q) = maxj∈[d] |r(xi)− q(xi)| ≤ ℓj
2 .

Correctness of the algorithm. Due to Lemma 5, there exists a point r ∈ Πj
d such that d∞(c, r) ≤

ℓj . Recall that any fat object in Lj has width at least ℓj , it contains a hypercube with side length at
least ℓj . Thus, σ ∈ Lj must contain at least r. Hence, the above-mentioned online algorithm is a
feasible algorithm.

Analysis of the algorithm. Let I be a set of input fat objects presented to the algorithm. For each
j ∈ [2⌊logM⌋+1]∪{0}, let Ij be the collection of all fat objects in I belonging to the layer Lj . Let
N and OPT be two piercing sets for I returned by our algorithm and an offline optimal, respectively,
for the input sequence I. Let Nj be the piercing sets returned by our algorithm for Ij . Let p be any
piercing point of an offline optimal OPT. Let Ip ⊆ I be the set of input fat objects pierced by the
point p. For each j ∈ [2⌊logM⌋+1]∪ {0}, let Ip,j = Ip ∩ Ij . Let Np be the set of piercing points
placed by our algorithm to pierce all the fat objects in Ip. For each j ∈ [2⌊logM⌋ + 1] ∪ {0}, let
Np,j = Np∩Nj be the set of piercing points explicitly placed by our algorithm to hit hypercubes in

Ip,j . It is easy to see that N = ∪p∈OPTNp = ∪p∈OPT

(
∪⌊logM⌋
j=0 Np,j

)
. Therefore, the competitive

ratio of our algorithm is upper bounded by maxp∈OPT (2⌊logM⌋+ 1)×maxj |Np,j |).

Let c be the center of an object σ ∈ Ip,j . To hit σ, our algorithm adds a point r ∈ Πj
d such that

d(r, c) ≤ ℓj
2 (due to Lemma 5). Since c is the center of σ ∈ Ip,j having a width strictly less than uj

and p ∈ σ, we have d(c, p) < uj

α . Now, using triangle inequality, we have d(r, p) ≤ d(r, c)+d(c, p).
Consequently, we have d(r, p) ≤ uj

α +
ℓj
2 . Hence, an open hypercube Hj of side length 2uj

α + ℓj ,
centered at p, contains all points in Np,j . Notice that uj ≥ 4

3ℓj . As a result, Hj is open hypercube
of side length uj(

2
α + 3

4 ).
Observation 1. Let σ be a hypercube with side lengths between ℓβ and rβ, where ℓ, r, and β are
positive real numbers such that ℓ < r. Then, the object σ contains at least ⌊ℓ⌋d and at most ⌊r+1⌋d
points from (βZ)d.

Due to Observation 1, any open hypercube of side length 2i+1( 2
α + 1) contains at most ⌊ 2

α + 7
8⌋

d

points from Πj
d. Thus, we have |Np,j | ≤ ⌊ 2

α + 7
8⌋

d. Recall that |Np| = ∪⌊logm⌋
i=0 |Np,i|. Thus, we

have |Np| ≤ ⌊ 2
α + 7

8⌋
d(⌊2 logM⌋+ 1).
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C PSEUDO-CODES

Algorithm 1 Algorithm ALGO-INTERVAL for Construction of Online ε-Net N for arbitrary inter-
vals

1: Initialize net N = ∅
2: while new interval σ arrives do
3: if |σ ∩ X | < ε|X | then
4: Ignore σ.
5: else
6: if σ is already hit by N then
7: Ignore σ.
8: else
9: Sort the points in σ ∩ X as p1, p2, . . . , p|σ∩X|.

10: Hit σ with points indexed by ⌊ |σ∩X|
2 ⌋ and ⌈ |σ∩X|

2 ⌉.
11: Add these points to N .
12: end if
13: end if
14: end while
15: Return N

Algorithm 2 Construction of Online ε-Net N for axis-aligned rectangles

1: Fix a random sample P ⊆ X
2: Construct a balanced binary tree T over P
3: For each node v, construct the set of maximal open Pv-unhit rectangles Mv

4: For each rectangle M ∈ Mv define, wM = s|M∩X|
n .

5: Construct the safety-net NM for each M ∈ Mv

6: Initialize empty set: SN = ∅
7: while an input ε-heavy rectangle σ introduced do
8: if σ ∩ P = ∅ then
9: if σ ∩ SN = ∅ then

10: Find the highest node v such that lv intersects σ.
11: Identify a subrectangle σ′ ⊆ σ s.t |σ′| ≤ εn

2 .
12: Extend σ′ to form a P-unhit rectangle M ∈ Mv .
13: Add points from safety-net NM to SN .
14: end if
15: end if
16: end while
17: return the final online net N = P ∪ SN .
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