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Abstract

Optimal transport (OT) is a powerful geometric tool used to compare and align1

probability measures following the least effort principle. Among many successful2

applications of OT in machine learning (ML), domain adaptation (DA) – a field of3

study where the goal is to transfer a classifier from one labelled domain to another4

similar, yet different unlabelled or scarcely labelled domain – has been historically5

among the most investigated ones. This success is due to the ability of OT to6

provide both a meaningful discrepancy measure to assess the similarity of two7

domains’ distributions and a mapping that can project source domain data onto the8

target one. In this paper, we propose a principally new OT-based approach to DA9

that uses the closed-form solution of the OT problem given by an affine mapping10

and learns an embedding space for which this solution is optimal. We show that11

our approach works in both homogeneous and heterogeneous DA settings and12

outperforms or is on par with other famous baselines based on both traditional OT13

and OT in incomparable spaces.14

"To design is to devise courses of action aimed at changing
existing situations into preferred ones.”

Herbert Simon, Nobel Prize winner, 1969.
15

1 Introduction16

Optimal Transportation (OT) theory provides researchers with a large variety of tools to compare17

and align probability measures that are omnipresent in today’s Machine Learning (ML) tasks. When18

the goal is to find a mapping for two continuous probability measures, one usually seeks to solve19

the original Monge OT formulation [1], while when one looks for soft-correspondences between20

the points in the supports of two empirical measures, Kantorovich formulation [2] of OT problem21

is usually considered. Due to its versatility, OT has recently become popular with its applications,22

spanning such diverse tasks and areas as unsupervised learning [3, 4], natural language processing23

[5, 6, 7], generative modelling [8, 9], computer vision [10, 11] and computational biology [12].24

Limitations In practice, finding an optimal map or consistently estimating OT costs on real-world25

high-dimensional and large-scale data is hard, due to the curse of dimensionality of OT on the one26

hand [13, 14], and its high computational complexity on the other [15]. One popular approach to27

mitigate the curse of dimensionality is to consider adversarial lower-dimensional projections of the28

input measures [16, 17, 18] and solve OT on the projected measures. Another example is given29

by the famous sliced Wasserstein distances [19, 20], which leverage the closed-form solution of30

the OT problem in 1-dimensional space to calculate the OT cost through averaging over several31

such projections. These approaches, however, does not allow obtaining the mapping between the32

distributions, but only the OT cost. Another case of interest is the OT problem between Gaussian33
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Figure 1: Illustration of the proposed approach for two datasets in R3. In the original 3D space, the
projection obtained via linear Monge mapping (yellow points) between the two 3D datasets fails to
align the datasets as the data in the original space neither follows a Gaussian distribution, nor it is
linked through an affine transformation. Our approach learns an embedding space where the linear
Monge map becomes optimal, while ensuring that the embeddings are discriminative for downstream
tasks.

probability measures [21], and random variables linked through an affine transformation [22, 23], for34

which OT can be calculated in closed-form. However, as real-world data rarely corresponds to such35

favourable scenarios, this closed-form solution was only used scarcely in practice [24, 11].36

Our contributions In this paper, we motivate our main proposal by the following question:37

Can representation learning help to find an embedding space where the Monge38

mapping can be calculated explicitly for two discrete measures?39

We answer this question positively and provide a new OT-based algorithm for DA having the following40

attractive properties:41

1. We define a new framework of learning linearly alignable representations for DA that can42

be used to match the two domains’ distributions embedded in a space where they become43

linked through an affine transformation. This is a generalization of the popular invariant44

representation learning [25] framework where the goal is find an invariant representation for45

both domains.46

2. Once such representations are obtained, we use a closed-form linear Monge mapping that has47

a very appealing computational complexity and benefits from strong theoretical guarantees48

for DA. This is contrary to previous works on OT that either use neural networks to49

parametrize and approximate the Monge map between high-dimensional input distributions50

[26, 27] or use high-dimensional optimal couplings that do not scale with the increasing51

sample size [28, 29, 30, 31, 32].52

3. Our learning framework covers both the case when the two domains’ input spaces are the53

same (homogeneous DA) or different (heterogeneous DA). This is contrary to previous54

works on OT in DA that need to consider OT formulations on incomparable spaces to handle55

the heterogeneous DA setting.56

The rest of the paper is organized as follows. Section 2 presents the necessary preliminary knowledge57

on DA and the use of OT in DA. Section 3 outlines our main contributions and provides a theoretical58

analysis for DA with linearly alignable representations. In Section 4, we evaluate our proposal on59

tasks for homogeneous unsupervised and heterogeneous semi-supervised DA where OT methods60

have previously shown to be efficient. We conclude this paper in Section 5.61
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2 Preliminary knowledge62

Notations In what follows, we will use the following notations. We denote spaces and sets by63

black-board upper-case letters (e.g. X,Y,R), probability measures are denoted by calligraphic upper-64

case letters (e.g. S, T ), bold upper-case and lower-case Greek letters denote matrices (e.g. X,γ)65

and bold lower-case letters denote vectors (e.g. x,b). We denote the marginal distribution of S with66

respect to X by SX and denote by P(X) the space of probability measures supported on X with finite67

second moments.68

Below, we present some background knowledge used in the following sections of this paper.69

Domain adaptation Let XS ,XT be two subsets of Rd and Y be a discrete set of outputs. Given
two datasets

S = {xs
i , y

s
i }ns

i=1 ∼ S(XS × Y), and T = {xt
j , y

t
j}

nl
t

j=1 ∼ T (XT × Y) ∪ {xt
i}

nu
t

i=1 ∼ TX,

the goal of domain adaptation (DA) [33, 34] is to learn a hypothesis function h : XT → Y from70

some hypothesis class H using the data from S and T such that the true target risk RT (h) :=71

ET [ℓ(h(x
t), yt)] is as small as possible for some loss function ℓ : Y× Y → R. In what follows, we72

distinguish between unsupervised DA, ie, nl
t = 0 and, semi-supervised DA, ie, 0 < nl

t ≪ nu
t . We73

also deploy the term heterogeneous when considering a setup where XS ̸= XT .74

The vast majority of algorithms solving DA follow the theoretical foundation laid out in the seminal75

works on DA theory [35] (surveyed in [36]). This latter can be summarized by the following learning76

bound:77

RT (h) ≤ RS(h) + div(SX, TX) + min
h∈H

(RT (h) + RS(h)), for h ∈ H, (1)

where div(·, ·) is some divergence or distance on the space of probability measures. Equation (1)78

suggests the idea of learning an invariant feature transformation [25] function g : XS ∪XT → Z such79

that div(Sg
X, T

g
X ) = 0 for the distributions Sg

X, T
g
X induced by g while ensuring that RS(h ◦ g) is as80

small as possible. One should note that, in general, g can also be applied to one of the domains only81

such that div(Sg
X, TX) = 0. This approach is often referred to as asymmetric feature transformation.82

As finding a way to minimize RS(h◦g) presents a common well-studied supervised learning problem,83

the main challenge of solving DA was thus to find a meaningful measure of divergence div(·, ·) and a84

learning strategy to find the desired g minimizing it. Below, we discuss how optimal transportation85

(OT) theory has been recently used to achieve this.86

Optimal transport OT and its associated metrics have become a popular choice to find g in order87

to solve both homogeneous [28, 37, 29, 30, 38, 39, 40, 27] and heterogeneous DA [31, 32]. For88

the former setting, an assymetric feature transformation function g : XS → XT can be obtained89

as a solution to the Monge problem defined for two metric spaces XS , XT , and a cost function90

c : XS × XT → R as follows:91

g ∈ argmin
g:g#SX=TX

Exs∼SX [c(x
s, g(xs))]. (2)

Here g#SX denotes the push-forward measure, which is equivalent to the law of g(xs), for xs ∼ SX.92

Unfortunately, solving (2) is very hard in practice as its constraints are non-convex and the solutions93

for it may not exist in discrete case when SX and TX are empirical measures.94

A more widely adapted approach is to consider instead the Monge-Kantorovich problem [2] and the95

Wasserstein distance associated to it. The latter is defined as a value at the solution of the former as96

follows:97

Wc(SX, TX) = min
γ∈Π(SX,TX)

Eγc(x
s,xt), (3)

where Π(SX, TX) is the space of probability distributions over XS × XT with marginals SX and TX.98

When the squared Euclidean cost function c(·, ·) = || · − · ||22 is used, we write simply W 2
2 . Once γ is99

obtained, one usually uses the so-called barycentric mapping[41] to define g as follows:100

g : xs → argmin
x

Eγ(·|xt)c(x,x
t). (4)
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3 Proposed contributions101

3.1 Motivation102

Previous OT-based DA methods have several important drawbacks. On one hand, the methods103

based on deriving the barycentric mapping from the high-dimensional optimal coupling, such as104

[28, 29, 30, 31], are unsuitable for large-scale applications as shown in [26]. On the other hand, DA105

methods based on Monge mapping estimation [26, 27] rely on parametrizing the Monge mapping106

with neural networks that may fail to converge to the true solution [42].107

In this section, we present a method that relies on a closed-form solution of the Monge problem in the108

particular case of random variables linked through an affine transformation. As for real-world data109

used in DA the relationship between the random variables following source and target distributions is110

unlikely to be linear, we first present the framework of learning linearly alignable representations111

that generalizes the idea of learning invariant feature transformations for DA [25] to learning feature112

transformations that are invariant modulo an affine transformation. In practice, we propose to achieve113

this by embedding the data into a space where the affine transformation between the source and target114

samples becomes nearly optimal. We now proceed by defining this idea more formally.115

3.2 Linearly alignable representations116

We propose to use representation learning, and, more particularly, generative modeling, to find a new117

data representation for which source and target distributions are linearly alignable. Of these, the latter118

can be formally defined based as follows.119

Definition 3.1. Given two distributions SX ∈ P(XS) and TX ∈ P(XT ), the feature transformation120

functions gs : XS → ZS , gt : XT → ZT are called linearly alignable (LA) for SX and TX if121

∃T : z → Az+ b with an invertible matrix A and a translation vector b such that T#Sgs
X = T gt

X .122

One should note that this definition generalizes the invariant feature transformation learning, as the123

latter is a special case with A = Id,b = 0 and gs = gt = g. This implies, in particular, that the124

space of solutions to the problem of finding an invariant feature transformation function is included125

into that of finding linearly alignable feature transformation functions. Consequently, it may be easier126

to solve the latter problem as it allows for more degrees of freedom.127

Given Definition 3.1, learning LA representations thus boils down to identifying two major ingredients:128

1) the alignability criterion forcing (gs, gt) to provide LA representations for samples drawn from two129

distributions; 2) the data fidelity term forcing (gs, gt) to truthfully reflect the statistical distribution of130

the input samples in the embedding space. We discuss our choices for both these ingredients below.131

Linear Monge mapping When SX and TX are linked through an affine transformation T with a
positive definite matrix A, the OT problem admits a simple solution that can be calculated based on
the Gaussian approximations N (mS ,ΣS) and N (mT ,ΣT ) of SX and TX [22, 23]. In particular, we
have that for two such distributions, the Wasserstein distance between SX and TX admits a closed-form
expression for the quadratic cost Wasserstein distance:

W 2
2 (SX, TX) = ||mS −mT ||22 + tr(ΣS) + tr(ΣT )− 2tr(Σ

1
2

TΣSΣ
1
2

T )
1
2

and the optimal transport map Taff of the corresponding Monge problem is given by:132

T
[SX,TX]
aff (x) = Ax+ b,

A = Σ
1
2

T (Σ
1
2

TΣSΣ
1
2

T )
− 1

2Σ
1
2

T , b = mT −AmS . (5)

When dealing with empirical measures ŜX and T̂X, ΣS , ΣT , mS and mT are replaced with their133

empirical (biased) counterparts defined from available finite samples from the supports of the two134

distributions. In the sequel, we denote those with a hat as well, ie, Â is defined in terms of the135

empirical covariance matrices Σ̂S , Σ̂T and empirical means m̂S , m̂T .136

Based on this, we propose to define the alignability for two distributions SX and TX as the Wasserstein
distance between the push-forward of SX with T [SX,TX] and TX, ie,

LLA(SX, TX) := W 2
2 (T

[SX,TX]
aff #SX, TX),
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Figure 2: Illustration of the embeddings (light blue and orange points) and linear Monge mapping
projection (blue points) obtained by our approach for different values of λ for gs, gt : R20 → R2. We
can see that the linear Monge mapping becomes more and more optimal in the embedding space, as
confirmed by the Wasserstein distance after the projection that reduces when λ increases.

where Taff is defined as in (5). The intuition behind this is that when this distance is close to 0, the137

linear Monge mapping Taff becomes the optimal mapping between the two distributions implying138

that they become linearly alignable with Taff.139

Data fidelity To preserve the information contained in the samples drawn from SX and TX when140

making them linearly alignable, we propose to model gs : XS → ZS and gt : XT → ZT as encoders141

of two different auto-encoders with the same size of the embedding space k, ie, ZS ,ZT ⊆ Rk. More142

formally, we have the following reconstruction term:143

LRec.(SX, TX) := Exs∼SX ||xs − (gs ◦ decs)xs||22 + Ext∼TX ||xt − (gt ◦ dect)xt||22, (6)

where the decoders decs : ZS → XS , dect : ZT → XT seek to reconstruct the learned embeddings144

by mapping them back into the original space.145

Using two separate auto-encoders with two feature transformation functions brings two benefits.146

First, it allows to deal with the heterogeneous DA by initializing the input layers of the used auto-147

encoders with different widths; second, it adds more expressiveness allowing to learn richer individual148

representations for samples from two different domains and to adjust the complexity of the used149

architecture depending on the quality of the input data accordingly.150

Optimization problem Putting all the ingredients together, we propose to optimize the following151

objective function:152

min
gs,gt,decS ,decT

LRec.(SX, TX) + λLLA(Sgs
X , T gt

X ), (7)

where λ is a hyper-parameter controlling the degree to which the linear alignability is promoted as153

illustrated in Figure 2. In a nutshell, (7) seeks to embed the data from two distributions supported on154

potentially different metric spaces into two representation spaces for which there exists an affine map155

– given by the linear Monge map – that aligns them. This idea is illustrated in Figure 1.156

Complexity analysis As noted in [22], the sample complexity of linear Monge mapping estimation157

is dimension-free and addresses the curse of dimensionality of solving the original OT problem.158

Given two samples of the same size n from Rd, the latter is known to have a sample complexity of159

O(n− 1
d ), while the former is O(n− 1

2 )(Theorem 1, [22]). Similarly, the computational complexity160

of calculating the linear Monge map is O(nd2 + d3) which is particularly attractive for large-scale161

applications due to its linearity in n. The dependence on dimensionality is alleviated by the fact that162

we estimate it in the embedding space of dimensionality k ≪ d.163

Lifting to the input space Minimizing (7) allows to obtain new low-dimensional embeddings of164

the input measures for which the linear Monge mapping is optimal. One may wonder, however,165

whether it is possible to lift the obtained mapping back to the original space. This question was166

studied in [43] where the authors showed how a Monge mapping that is optimal on a subspace can167

be used to define an optimal mapping, or a coupling, in the original space as well. In the particular168

case of our work that uses closed-form Monge mapping, [43] shows that it can be used to define an169

optimal coupling in a closed-form based on the subspace optimal solution. Unfortunately, gs and gt170

are not subspace projectors in our case, meaning that identifying whether the linear Monge mapping171

is optimal on the input measures is much harder. We leave this idea for future investigation.172
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3.3 Theoretical guarantees for domain adaptation173

The simplicity of the proposed approach, and the closed-form expression of the Monge mapping in174

the embedding space, allow us to rely on theoretical guarantees for the performance of a classifier175

transferred from Sgs
X to T gt

X via Taff[Sgs
X , T gt

X ]. Before introducing these guarantees, we recall the176

definition of the Lipschitz function used in the statements.177

Definition 3.2. A function h : X → Y is called M -Lipschitz if ||h(x)− h(x′)|| ≤ M ||x− x′|| for178

all x,x′ ∈ X.179

We now present our main theoretical results for the DA task and postpone all the proofs of this paper180

to the Supplementary materials.181

Theorem 3.1. (Best-case bound) Let h ∈ H be Mh-Lpschitz and the loss function ℓ be Mℓ-Lipschitz182

in its second argument. Then, if there exists a mapping m such that m#Sgs = T gt ,m(zs, ys) =183

m(T
[Sgs

X ,T gt
X ]

aff (zs), yt) and linearly alignable feature transformation functions gs and gt for SX and184

TX, we have that185

RT gt

(
h ◦ (T [Sgs

X ,T gt
X ]

aff )−1
)
≤ RSgs (h) +MhMℓ||Â−1||O

(
max(ns, nt)

− 1
2

)
, (8)

As mentioned in Section 2, previous works on DA theory introduced the learning bounds on the target186

error following the general shape of (1). For instance, in [44, 37] the obtained bounds corresponded187

exactly to (1) with div(SX, TX) = W||·||1(SX, TX) while in [29] a similar bound was obtained with188

W||·||1(S, T ) where T was defined with pseudo-labels. In the case of linear Monge mapping, however,189

the learning bound on the target error becomes much simpler and does not involve any additional190

terms under the introduced assumptions. Furthermore, it can be improved using [22, Theorem 2]191

where under some additional assumptions, one can show that the true target error of the hypothesis192

calculated from the available source data, ie, h∗ ∈ argmin
h∈H

R̂Sgs (h) converges to the optimal target193

classifier h∗
t = argmin

h∈H
RT gt (h), even despite the absence of labelled data in the target domain. This194

remarkable result thus motivates our framework of learning linearly alignable representations as it195

provably transposes the problem of DA to a much more favourable setting.196

To complete this section, we also present a more general learning bound close in spirit to that given197

in (1). For this result, we do not assume the existence of a mapping m that allows to remove the198

ideal joint error term minh(RT gs (h) + RSgs (h)), and do not assume that our feature transformation199

functions are linearly alignable. We only assume that the linear Monge mapping is used to align the200

two distributions in the embedding space.201

Theorem 3.2. (Worst case bound) Let h ∈ H be Mh-Lipschitz. Denote by T [Sgs
X ] := T

[Sgs
X ,T gt

X ]
aff #Sgs

X202

and let fS : ZS → Y and fT : ZT → Y be the true labelling function associated to T [Sgs
X ] and T gt

X ,203

respectively. Then, for two arbitrary feature transformation functions gs and gt, we have that204

RT gt
X
(h, ft) ≤ RT [Sgs

X ](h, fs) + 2
√
2Mhtr(ΣT gt

X
)

1
2 +min

h∈H
RT gt

X
(h, ft) + RT [Sgs

X ](h, fs). (9)

This result is the worst-case scenario for our proposed framework as it bounds the Wasserstein205

distance between T [Sgs
X ] and T gt

X by its largest possible value given by tr(ΣT gt
X
)

1
2 . As in practice206

our learning algorithm solves a non-convex optimization problem and can, in principle, converge to207

approximatively linearly alignable feature transformations gs and gt, this result suggests controlling208

the variance of the target embedded features to avoid having a target latent space ZT that is too spread209

along all k directions in the embedding space.210

3.4 Related works211

Our work is situated at the cross-roads of computational OT and transfer learning. Below, we review212

the related approaches and point out their differences with respect to our proposal.213

Monge mapping estimation Estimating the OT map from finite samples drawn from two prob-214

ability distributions is a very active research topic nowadays. The vast majority of such methods215
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(see Table 1 in [42] and references therein) parametrize the Monge mapping, or the potential that216

defines it following Brenier theorem [45], using either a traditional or an input convex neural network217

[46]. Our work is principally different from this line of research in two main aspects. First, these218

contributions use the high expressive power of NNs and ICNNs to solve the hard problem of finding219

a mapping between two continuous high-dimensional measures. Our work instead uses the power220

of representation learning to find a new space where the problem of mapping two distributions221

becomes easy. As such, neural OT methods and our proposal solve different problems and cannot be222

used interchangeably. Finally, [47] approximates the barycentric mapping from (4) using a linear223

mapping either in the original or in the similarity-induced space. Contrary to it, we use a closed-form224

expression of the true Monge mapping that is optimal in the embedding space and scales better as it225

never explicitly calculates the high-dimensional coupling used by the latter method.226

Subspace learning for OT Our approach is related to OT methods that use a projection of the data227

to a low-dimensional subspace [19, 48, 43, 49] to accelerate OT computation. In [19] (and follow-up228

works [50, 51]), the authors propose sliced Wasserstein distance computed as an average of the229

Wasserstein distances over one-dimensional projections of the high-dimensional distributions where230

the Wasserstein distance can be calculated in closed-form. Sliced Wasserstein distances are commonly231

used as a way to compute the approximate OT cost faster, for instance in generative modelling [20],232

yet they do not provide a meaningful mapping between the considered distributions. In [48], the233

authors embed the data into a new space where the Euclidean distance between the embedded samples234

corresponds to the Wasserstein distance between the empirical measures supported on these samples235

in the original space. The purpose of their method is thus different as it aims primarily to accelerate236

the OT computation. [43] is much closer in spirit to what we propose: their idea is to extend the237

Monge map that is optimal on the low-dimensional subspace to be optimal on the full space. This idea238

is further extended to Gromov-Wasserstein distance in [49]. Our approach learns a new representation,239

rather than finding a subspace of the original space, for which the optimal Monge map is easy to240

compute and does not seek to lift it to the original space.241

OT in DA We now briefly discuss other OT-based DA works here. [28] is the seminal work that242

proposed to use OT in DA. The authors solve (3) with entropic and class-based regularizations243

and then use (4) to project source data to the target domain. This method was further extended to244

the alignment of joint probability distributions in [29] and its deep version [38]. Another line of245

work on OT in DA is concerned with target shift [30] and generalized target shift [40, 27] where246

S ̸= T due to SY ̸= TY for target shift and S(X|y) ̸= T (X|y) in addition to it for generalized247

target shift. Several methods also follow the invariant feature transformation framework such as248

[37, 39]. Finally, [31, 32] tackle the heterogeneous DA setup using Gromov-Wasserstein [52] and249

Co-Optimal transport problem problems in [32]. Our work is different from all these methods as it250

relies on closed-form Monge mapping and allows to unify both heterogeneous and homogeneous DA251

setups in one approach. Additionally, its simplicity also allows us to benefit from stronger theoretical252

guarantees in the embedding space that are unavailable for other existing methods. For a general253

survey on DA, we refer to [34, 53, 54].254

4 Experimental evaluations255

In this section, we evaluate our method, termed LaOT (Linearly Alignable Optimal Transport)256

against other OT-based methods for commonly considered unsupervised homogeneous (UDA) and257

semi-supervised heterogeneous DA (HDA) tasks. For both evaluations we use Office/Caltech10258

dataset [55] that consists of 4 different domains, namely: Amazon (A) (958 images), Caltech (C)259

(1123 images), Webcam (W) (295 images) and DSLR (D) (157 images) from 10 overlapping classes.260

Given a pair "Source → Target", for both settings the final goal is to learn a classifier using only261

the available labelled data in the source domain to further evaluate it in the target domain. We now262

present in more detail the evaluation setup for each of the two settings considered below.263

Implementation details We use fully connected NNs with 1 hidden layer for gs, gt, decs, dect with264

ReLU activation function. In all experiments, the size of the hidden layer is fixed to half of the size265

of the input layer. The classifier used for UDA is a fully connected NN with softmax function applied266

to the output. For HDA, none of the considered baselines learns a classifier simultaneously to solving267

the OT problem so that in this case we minimize (7) without any additional terms. The optimization268
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is carried out using Adam optimizer [56] in PyTorch [57] with gradient normalization and default269

initialization of the weights. We also use POT library [58] to minimize W 2
2 . The code, as well as270

the visualizations of the learned embeddings and several ablation studies are provided as part of the271

Supplementary material.272

Model selection As suggested in [30], we use reverse validation [59] with 3NN classifier for273

our method in order to choose the best hyperparameters that include the size of the embedding274

space k ∈ [64, 128, 256], regularization strength α ∈ [0.1, 0.05, 0.01], batch size ∈ [32, 64, 128]275

and learning rate ∈ [5e − 5, 1e − 4, 5e − 4]. We perform 10 runs of 10 epochs for each set of276

hyperparameters and pick the model having the lowest variance of the reverse validation score. We277

also report the best model chosen by reverse validation, i.e. without using target labels unavailable278

during learning, over the runs. This latter metric is common for deep DA methods [37] as the279

considered datasets are rather small and may lead to a model converging to bad local minima.280

4.1 Homogeneous unsupervised DA281

Tasks Base OT-IT OT-MM JDOT LaOT
A→C 84.77 85.93 87.36 85.22 86.02 (84.93±0.77)
A→D 86.62 77.71 79.62 87.90 92.36 (88.85±2.55)
A→W 79.32 74.24 85.08 84.75 96.95 (92.33±2.83)
C→A 92.07 89.98 92.59 91.54 92.59 (90.73±1.01)
C→D 84.08 78.34 76.43 89.81 93.63 (89.87±1.55)
C→W 76.27 80.34 78.98 88.81 93.90 (88.07±2.27)
D→A 83.19 90.50 90.50 88.10 89.87 (86.96±0.6)
D→C 77.03 85.57 83.35 84.33 79.52 (76.5±0.87)
D→W 96.27 96.61 96.61 96.61 95.93 (94.07±1.07)
W→A 79.44 89.56 90.50 90.71 93.42 (90.16±0.74)
W→C 71.77 84.06 82.99 82.64 83.26 (75.57±1.52)
W→D 96.18 99.36 99.36 98.09 97.45 (95.92±2.24)
p-value <0.05 0.2 0.33 0.62 –

Table 1: Classification results for UDA task. Bold and un-
derlined scores present the best and the second best results.
Baseline results reported from [29].

Setup For this evaluation, we con-282

stitute 12 pairs of adaptation tasks283

for the 4 domains available and use284

the weights of the fully connected285

6th layer of the DECAF convolu-286

tional neural network [60] pre-trained287

on ImageNet as their features. This288

leads to an adaptation problem be-289

tween sparse 4096 dimensional vec-290

tors. Following [29], we use cross-291

validated SVC classifier with linear292

kernel [61] for all methods. We com-293

pare our proposal against famous OT-294

based approaches used in DA, namely:295

entropy-regularized (OT-IT) and class-296

wise regularized OT (OT-MM) (both297

from [62]) that adds a group-lasso298

penalty on the coupling matrix that299

doesn’t allow source points of different classes to be transported to the same target point. Finally,300

we also add Joint Distribution Optimal Transportation (JDOT) [30] method to our comparison that301

uses OT to align joint probability distributions and learns a classifier for pseudo-labelled target data302

simultaneously. All these baselines are evaluated against the source classifier directly applied in the303

target domain (Base). Additionally, and to show that our method compares favourably to deep DA304

methods, we follow the evaluation protocol of [37] and compare the best achieved performance (using305

target labels) of our method against three other deep-based baselines, namely: domain adversarial306

neural networks (DANN) [63], Deep Correlation Alignment (CORAL) [64] and Wasserstein-guided307

Representation learning (WGRL) [37].308

DANN CORAL WGRL LaOT
Mean 87.67±6.78 90.76±4.39 92.74±3.52 93.82±5.55

p-value 0.09 0.2 0.33 –

Table 2: Average best accuracy for UDA against
deep-based DA methods. Complete results are
presented in the Supplementary materials.

Results The obtained results are presented in309

Tables 1-5. From the comparison with both shal-310

low OT-based methods and deep DA methods,311

we can see that LaOT is statistically on par with312

them according to Wilcoxon signed-rank test313

calculated with respect to the best model. This314

performance is achieved despite the simplicity315

of our method, that similarly to CORAL and OT-IT, doesn’t rely on adversarial training [63, 37],316

on structural constraints on the coupling matrix (OT-MM) or pseudo-labeling and joint distribution317

adaptation (JDOT).318

4.2 Heterogeneous semi-supervised DA319

In this experiment, we evaluate LaOT on the same dataset but with source and target feature repre-320

sentations given by activations from GoogleNet [65] and Decaf [60] neural network architectures.321
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Tasks Base SGW COOTLP COOT LaOT
A→A 83.04±3.07 89.75±4.8 92.89±0.32 89.74±0.01 91.86 (91±0.91)
A→C 69.98±2.88 79.80±5.82 86.76±1.28 83.76±2.02 81.12 (80.07±1.77)
A→W 80.49±3.96 93.76±2.06 96.61(±1.34) 94.44±2.23 95.59 (92.92±1.47)
C→A 83.09±2.94 78.37±5.08 67.28±1.02 89.66±1.23 89.35 (88.51±1.4)
C→C 68.46±3.13 81.31±5.09 67.28±1.19 81.95±1.79 82.72 (79.82±1.78)
C→W 81.66±4.62 90.81±3.36 69.39±2.01 90.92±1.85 91.53 (88.34±2.34)
W→A 84.59±3.4 82.63±11.12 72.33±1.19 84.75±1.57 91.34 (88.92±2.44)
W→C 67.60±4.63 75.25±6.13 63.51±0.78 77.3±3.7 81.75 (76.08±3.11)
W→W 82.83±3.42 94.00±1.13 77.49±2.6 95.42±1.39 94.24 (93.28±2.65)
p-value <1e-2 <0.05 0.05 0.73 –

Table 3: Classification results for semi-supervised HDA task. Bold and underlined scores present the
best and the second best results.

In OT context, aligning two such heterogeneous datasets is alleviated by using OT in incomparable322

spaces: first such contribution relies on the Gromov-Wasserstein distance [31] (SGW), while a more323

recent method improving upon this latter used its generalization termed Co-Optimal Transport [32]324

(COOT). We follow the protocol of [32] where only the domains A, C and W were considered. To325

help guiding adaptation in this case, previous works commonly consider the semi-supervised setting326

with a handful of labelled examples in the target domain. In this evaluation, we set the number of327

such examples to 3 per class, ie, nl
t = 30. For all baselines, we use the hyper-parameters suggested328

by authors in the respective papers. As our method aligns datasets using a Monge mapping and not329

the coupling matrix used in [32] to perform label propagation [66], we present the results of SGW330

and our method with 3NN classifier, and use label propagation results for COOT only.331

Results From Table 3, we can see that our method is statistically better than SGW and COOT with332

label propagation and is on par with COOT followed by 3NN classifier. As in the homogeneous333

setting, our method uses a very simple closed-form expression in the embedding space, contrary334

to simultaneous sample and feature alignment of COOT and pair-wise matrices’ alignment with335

conditional distribution matching of SGW. This further supports our claim about the fact that336

representation learning can help to alleviate the intrinsic complexity of aligning high-dimensional337

probability measures by finding embeddings making the OT problem easier to solve.338

5 Discussions and future work339

In this paper, we proposed a novel contribution at the crossroads of computational OT and transfer340

learning. On one hand, we proposed a learning framework that embeds the data from two distributions341

to a new representation space where we can explicitly calculate the Monge mapping between their342

induced distributions. On the other hand, we showed how this learning framework, termed learning343

linearly alignable representations, can be used in both homogeneous and heterogeneous domain344

adaptation with strong theoretical guarantees and high competitive performance. Our work is a first345

contribution that aims at exploiting one of the simplest solutions to the Monge mapping estimation346

problem in general k-dimensional spaces. In this work we concentrated on only one application347

of our general approach, mainly to showcase how its simplicity can bring both theoretical and348

empirical advantages in transfer learning. Our proposal, however, can be used in many other ML349

problems where Monge mapping is already used such as in, for instance, GANs, were the use of350

sliced Wasserstein distance is known to reduce significantly the computational burden related to their351

training.352

Limitations Our work exploits previously overlooked linear Monge mapping to perform both UDA353

and HDA. Just as with the invariant feature transformation setting, our method is also subject to354

impossibility theorems [25] stating that DA can fail even when the source and target distributions355

are perfectly aligned and the source error is minimized. In addition to this, our method does not356

benefit from “subspace detours" guarantees that can justify their optimality in the original space as357

mentioned in Section 3.358
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A Appendix566

A.1 Proofs of theorems567

Full proof of Theorem 3.1568

Proof. From the definition of linearly alignable feature transformation functions, we deduce that ∃T569

such that T#Sgs
X = T gt

X . Given the assumption about the existence of mapping m, we have that for570

any h ∈ H, RSgs (h) = RT gt

(
h ◦ T−1

)
. We then use [22, Proposition 1] to obtain the desired result571

by replacing the original source and target distributions with their embedded counterparts.572

Full proof of Theorem 3.2573

Proof. Let h∗ ∈ argmin
h

RT gt
X
(h, ft) + RT [Sgs

X ](h, fs). Then, we have that:574

RT gt
X
(h, ft) ≤ RT gt

X
(h, h∗) + RT gt

X
(h∗, ft)

≤ RT gt
X
(h, h∗) + RT gt

X
(h∗, ft) + RT [Sgs

X ](h, h
∗)− RT [Sgs

X ](h, h
∗)

≤ RT gt
X
(h∗, ft) + RT [Sgs

X ](h, h
∗) + 2MhW1(T [Sgs

X ], T gt
X )

≤ RT gt
X
(h∗, ft) + RT [Sgs

X ](h, fs) + RT [Sgs
X ](h

∗, fs) + 2MhW1(T [Sgs
X ], T gt

X )

= RT gt
X
(h∗, ft) + 2MhW1(T [Sgs

X ], T gt
X ) + min

h∈H
RT gt

X
(h, ft) + RT [Sgs

X ](h, fs)

≤ RT gt
X
(h∗, ft) + 2MhW2(T [Sgs

X ], T gt
X ) + min

h∈H
RT gt

X
(h, ft) + RT [Sgs

X ](h, fs)

≤ RT [Sgs
X ](h, fs) + 2

√
2Mhtr(ΣT gt

X
)

1
2 +min

h∈H
RT gt

X
(h, ft) + RT [Sgs

X ](h, fs).

The proof follows the common reasoning used to obtain DA learning bounds with the Wasserstein575

distance [44, 37]. Line 3 is obtained using Lemma 1 from [37], Line 5 is due to the Jensen inequality576

implying for all 0 < p < q, that Wp ≤ Wq. It is then completed by an upper-bound on the577

Wasserstein distance between T [Sgs
X ] and T gt

X that was bounded in [23] by tr(ΣT gt
X
)

1
2 .578
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A.2 Comparison of LaoT with linear Monge mapping on raw data579

In Table 4, we present an abalation study showing how promoting linear alignability affects the580

performance on DA task compared to applying linear Monge mapping on raw data directly (OT-581

Gauss). We can see that apart from two DA tasks, OT-Gauss method is always far below LaOT and582

even of the base classifier.583

Tasks Base OT-Gauss LaOT
A→C 84.77 83.35 86.02 (84.93±0.77)
A→D 86.62 83.44 92.36 (88.85±2.55)
A→W 79.32 81.36 96.95 (92.33±2.83)
C→A 92.07 89.56 92.59 (90.73±1.01)
C→D 84.08 82.17 93.63 (89.87±1.55)
C→W 76.27 81.69 93.90 (88.07±2.27)
D→A 83.19 82.67 89.87 (86.96±0.6)
D→C 77.03 78.45 79.52 (76.5±0.87)
D→W 96.27 97.63 95.93 (94.07±1.07)
W→A 79.44 84.13 93.42 (90.16±0.74)
W→C 71.77 76.22 83.26 (75.57±1.52)
W→D 96.18 1 97.45 (95.92±2.24)

Table 4: Classification results for UDA task comparing LaOT and linear Monge mapping on the raw
data (OT-Gauss). Bold and underlined scores present the best and the second best results. Baseline
results reported from [29].

A.3 Full comparison with deep UDA methods584

Below, we provide full results for all pairs of Office/Caltech dataset corresponding to the average585

results in Table . We can see that our method remains efficient even when compared to stronger586

baselines given by adversarial DA methods.587

Tasks DANN DeepCORAL WGRL LaOT
A→C 87.80 86.18 86.99 87.62
A→D 82.46 91.23 93.68 98.09
A→W 77.81 90.53 89.47 99.32
C→A 93.27 93.01 93.54 93.53
C→D 91.23 89.47 94.74 96.18
C→W 89.47 92.63 91.58 97.97
D→A 84.70 85.75 91.69 92.07
D→C 82.11 85.37 90.24 83.17
D→W 98.95 97.89 97.89 98.64
W→A 82.98 88.39 93.67 94.47
W→C 81.30 88.62 89.43 84.77
W→D 100 100 100 100

Table 5: Best accuracy results for UDA against deep-based DA methods. Baseline results are reported
from [37].
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A.4 Illustration of the trade-off between data fidelity and linear alignability588

In Figure 3, we present the results obtained by best performing LaOT models when varying the λ589

parameter in [0, 0.01, 0.05, 0.1, 0.5, 1]. The value of λ = 0 correspond to the case when only data590

fidelity loss is minimized and no alignment is forced between the two embeddings. As can be seen591

from this result, this leads to a drastic loss in terms of accuracy, while other values of λ lead to592

approximately the same results.
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Figure 3: Trade-off between linear alignability loss and data fidelity loss for optimal LaOT models
achieving highest UDA performance.593
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A.5 Illustration of learned embeddings594

In Figure 4, we provide plots of embeddings obtained using tSNE [67] learned for UDA task with595

LaOT. We can see that LaOT does not explicitly align two domains but has an extra degree of596

flexibility allowing it to learn potentially richer representations.
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Figure 4: Visualizations of embeddings for different UDA tasks.597
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A.6 Illustration of learning dynamics598

In Figure 5 we provide illustration for learning dynamics of our method on UDA tasks. From this, we599

can see that the accuracy of the linear classifier increases when the distance after the projection with600

the linear Monge map in the embedding space decreases. This is in line with what we expect from601

the minimization of our objective function.
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Figure 5: Learning dynamics of our method on UDA tasks.602
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A.7 Comparison with invariant feature transformation learning603

Finally, we compare our approach against invariant feature transformation learning where the source604

and target data are explicitly forced to be close in the embedding space. For this, we simply set605

Taff(x) = Ax+ b in (7) and optimize it as before. For the sake of clarity, we take the task D→W to606

illustrate both the learned embeddings and the learning dynamics of LaOT and the invariant feature607

transformation approach.608
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we distinctly see that LaOT allows for the embeddings to610

maintain their own topology for each individual domain611

as seen on the left, yet they are well aligned after the612

projection with the linear Monge mapping as seen on the613

right. Invariant feature transformation learning forces the614

embeddings to be close to each other in the embedding615

space but achieves a less precise alignment of the data in616

the embedding space. In this particular case, both achieve617

good performance, yet LaOT manages to do it in fewer618

epochs due to the additional flexibility that it has that does619

not require it to perfectly align the two domains.
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Figure 6: Comparison with invariant feature transformation learning. (left) embeddings learned with
LaOT; (middle) embeddings learned with invariant feature transformation; (right) source and target
data after the projection with linear Monge mapping in the embedding space. Upper right: learning
dynamics comparing the two models.620
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