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1 HYPER-PARAMETER CHOICE

For both datasets, we set ¢ to 10000. For FashionIQ, we set ¢; to
20000. For CIRR, we set ¢y to 15000. For the CIR task we manually
tuned 7 € {0.01,0.02,0.03,0.05} and learning_rate € {5e—6,6e—6},
the best parameters are reported in Table 1. For each model, we use
the largest batch size that V100 can run, that is, 256 for TG-CIR,
256 for CLIP4CIR, 128 for BLIP4CIR, and 32 for SPRC. For the first
stage of ZS-CIR, we set batch_size to 48, learning_rate to 2e-6, and
7 to 0.01 in the first stage. For the second stage of ZS-CIR, we set
batch_size to 128, learning_rate to 2e-6, and 7 to 0.02.

Model ‘ Dataset ‘

TG-CIR FashionIQ
TG-CIR CIRR
CLIP4CIR | FashionIQ
CLIP4CIR CIRR
BLIP4CIR | FashionIQ
BLIP4CIR CIRR
SPRC FashionIQ
SPRC CIRR

learning_rate | T

{0.01, 0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}
{0.01,0.02, 0.03, 0.05}
{0.01, 0.02, 0.03, 0.05}

{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, le-5, 2e-5}
{2e-6, 5e-6, 6e-6, 1e-5, 2e-5}
{2e-6, 5e-6, 6e-6, 1e-5, 2e-5}

Table 1: Hyper-parameters used for the second stage of all
datasets and models in main results.

2 BASELINE DETAILS

TIRG [7] is the first CIR model proposed that uses gating and
residual connection to retain important semantics of reference
images.

CIRPLANT [6] learns modified representations of the reference
image conditioned on the modified text and aligns the modified
representation with the target image.

DCNET [4] proposes a correction network where the difference
representation between the reference image and the target image
is aligned with the sentence representation.

CoSMo [5] introduces the content-style modulation that indepen-
dently modulates the content and style of a reference image accord-
ing to the modified text.

MAAF [3] employs the dot-product attention to fuse the reference
image representation and the modified text representation.
ARTEMIS [2] uses an explicit matching module to assess the fit-
ness between the sentence and the target image and an implicit
similarity module to match the queries with possible target images.
ComgqueryFormer [8] establishes a unified Transformer structure

to encode the cross-modal inputs and a global-local alignment
module to reduce the distance between the query and the target
image.

AMC [10] develops an adaptive multi-expert network that activates
multiple experts with different levels of image-text interaction.
PLACIR [9] leverages an extra fashion image-text dataset to en-
hance the encoding ability of fashion-style examples.
CLIP4CIR2 [1] fine-tune both the image encoder and the text
encoder in the first stage. And fine-tune the combiner in the second

Table 2: Comparison with More Baselines.

FashionIQ CIRR

R@10 R@50 R@1 R@5 Ryypset@1

Combiner [1] 43.82 66.98 4535 78.43 72.95
+SPN [1] 44.10 67.10 45.64 78.45 74.10

Model

stage. As shown in Table 2, SPN also improves the performance
of Combiner in both FashionIQ and CIRR datasets. Due to space
constraints, we do not put this result in the paper.

3 DISCUSSION ON DIFFERENT
COMBINATIONS OF NEGATIVE EXAMPLE
TYPES

We explore all possible combinations of four types of negative exam-

ples and find that using negative examples obtained by replacing the

target image produces good results and is straightforward. There is
no improvement in performance; in fact, it even leads to a decrease
in performance and incurs additional computational overhead.

FashionlQ CIRR

60 80
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50
c
3
E40
o
30
0
20 30 12345678 9101112131415

12345678 9101112131415
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=]

Rmean
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Figure 1: Performance of Utilizing Different Types of Neg-
ative Examples in Contrastive Learning. Negative example
type numbers range from 1 to 15, with each number having
four binary digits. The four binary digits from 1 to 4 respec-
tively represent replacing the reference image, the modified
text, the target image, and the query pair, representing four
types of negative examples. For example, 10 (binary 1010)
represents using negative examples by replacing query pairs
and replacing modified text. We find that example type 4,
the negative examples obtained by replacing target images,
works best.

4 DISCUSSION ON MODIFIED TEXT
GENERATION

As discussed in the main text, we have three ways of generating
modified text from captions of image pairs. We find that using LLM
to rewrite modified text simply is better than in-context learning.
However, as shown in Fig.2, both methods of using LLM are worse
than using the prompt template directly.
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u7 FashionlQ CIRR 4.2 ICL Prompt for FashionIQ 175
118 55.8 77.3 176
119 You are a researcher tasked with rewriting the 177
120 :557 :712 source sentence to mimic the target sentence 178
121 §556 2711 while trying to keep the original meaning. 179
122 Please ensure that your responses are close 180
123 55.5 77.0 to the style of the target sentences in the 181
124 (4441 (4441 (“‘W examples. 182
125 554 1 op LLMRe LMicL 789 ' pp LLMRe LLMICL Remember to only output the new sentence without 183
126 other additional words. 184
7" Figure 2: Performance on Different Ways of Modified Text Output the answer in one string 185
128 Generation. 186
129 source: The dress is a sleeveless, black, 187
130 fitted, and stylish dress 188
131 target: is solid black with no sleeves 189
132 190
133 source: Red, flowy, short, sequined, and 191
134 elegant. 192
135 target: is red and flowy 193
136 194
137 source: Obama Mama shirt, black color. 195
138 target: has the words Obama Mama on front 196
139 197
140 source: Striped, black and white, sleeveless, 198
141 fitted, and stylish. 199
142 target: has sleeveless black and white stripes 200
143 201
144 source: Colorful striped top with a v-neck. 202
145 target: Has stripes. 203
146 204
147 source: {simple modified text} 205
148 target: 206
149 207
150 208
151 209
152 210
153 211
154 212
155 213
156 214
157 215
158 216
159 217
160 218
161 219
162 220

163 221

4.1 Rewrite Prompt

164 222

165 223

Rewrite the sentence to maintain the original
meaning while reducing grammatical errors and
increasing the variety of expressions.

Remember to only output the new sentence without

other additional words.
170 228

166 224

167 225

168 226

169 227

171 g b @0 229
sentence: {simple modified text}
172 230
new sentence:
173 231

174 232
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4.3 ICL Prompt for CIRR

You are a researcher tasked with rewriting the
source sentence to mimic the target sentence
while trying to keep the original meaning.
Please ensure that your responses are close
to the style of the target sentences in the
examples.

Remember to only output the new sentence without
other additional words.

Output the answer in one string

source: A large, brown dog with a black nose is
sitting on the grass, looking up instead of A
cute baby panda is being held by a person in a
Z00

target: Dog in grass instead of a panda.

source: A street with several blue buildings,
including churches, and a park with trees and
bushes instead of A large, old stone church
with a tower and a wall, surrounded by a grassy
field and a dirt road

target: instead of an old fortress with a
rampart, an Orthodox church with a courtyard.

source: A colorful parrot is standing on a perch
in a cage instead of Two parrots are sitting on
a branch, sharing a piece of fruit
target: Remove one of the parrots.

source: Two colorful parrots are kissing on a
branch instead of A colorful parrot is perched
on a tree branch, looking at the camera.
target: two birds, facing each other.

source: A monkey is standing on a grassy field,
looking at the camera instead of A group of
monkeys is sitting on the ground, with some of
them touching each other.

target: I want the pic to show just one monkey.

source: {simple modified text}
target:

5 CASE STUDY
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which is similarly black and
white.

Shows three llamas of
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is bright blue with cartoon
tiger on it
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is bright blue with cartoon
tiger on it
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blue wresting logo tee shirt
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1

blue wresting logo fee shirt
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Figure 3: Comparison of retrieval results between the CLIP4CIR model w/o and w SPN.
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