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1 HYPER-PARAMETER CHOICE
For both datasets, we set 𝑐0 to 10000. For FashionIQ, we set 𝑐1 to
20000. For CIRR, we set 𝑐1 to 15000. For the CIR task we manually
tuned 𝜏 ∈ {0.01, 0.02, 0.03, 0.05} and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∈ {5𝑒−6, 6𝑒−6},
the best parameters are reported in Table 1. For each model, we use
the largest batch size that V100 can run, that is, 256 for TG-CIR,
256 for CLIP4CIR, 128 for BLIP4CIR, and 32 for SPRC. For the first
stage of ZS-CIR, we set 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 to 48, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 to 2e-6, and
𝜏 to 0.01 in the first stage. For the second stage of ZS-CIR, we set
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 to 128, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 to 2e-6, and 𝜏 to 0.02.

Model Dataset 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 𝜏

TG-CIR FashionIQ {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
TG-CIR CIRR {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
CLIP4CIR FashionIQ {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
CLIP4CIR CIRR {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
BLIP4CIR FashionIQ {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
BLIP4CIR CIRR {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
SPRC FashionIQ {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}
SPRC CIRR {2e-6, 5e-6, 6e-6, 1e-5, 2e-5} {0.01, 0.02, 0.03, 0.05}

Table 1: Hyper-parameters used for the second stage of all
datasets and models in main results.

2 BASELINE DETAILS
TIRG [7] is the first CIR model proposed that uses gating and
residual connection to retain important semantics of reference
images.
CIRPLANT [6] learns modified representations of the reference
image conditioned on the modified text and aligns the modified
representation with the target image.
DCNET [4] proposes a correction network where the difference
representation between the reference image and the target image
is aligned with the sentence representation.
CoSMo [5] introduces the content-style modulation that indepen-
dently modulates the content and style of a reference image accord-
ing to the modified text.
MAAF [3] employs the dot-product attention to fuse the reference
image representation and the modified text representation.
ARTEMIS [2] uses an explicit matching module to assess the fit-
ness between the sentence and the target image and an implicit
similarity module to match the queries with possible target images.
ComqueryFormer [8] establishes a unified Transformer structure
to encode the cross-modal inputs and a global-local alignment
module to reduce the distance between the query and the target
image.
AMC [10] develops an adaptive multi-expert network that activates
multiple experts with different levels of image-text interaction.
PL4CIR [9] leverages an extra fashion image-text dataset to en-
hance the encoding ability of fashion-style examples.
CLIP4CIR2 [1] fine-tune both the image encoder and the text
encoder in the first stage. And fine-tune the combiner in the second

Table 2: Comparison with More Baselines.

Model FashionIQ CIRR

R@10 R@50 R@1 R@5 Rsubset@1

Combiner [1] 43.82 66.98 45.35 78.43 72.95
+SPN [1] 44.10 67.10 45.64 78.45 74.10

stage. As shown in Table 2, SPN also improves the performance
of Combiner in both FashionIQ and CIRR datasets. Due to space
constraints, we do not put this result in the paper.

3 DISCUSSION ON DIFFERENT
COMBINATIONS OF NEGATIVE EXAMPLE
TYPES

We explore all possible combinations of four types of negative exam-
ples and find that using negative examples obtained by replacing the
target image produces good results and is straightforward. There is
no improvement in performance; in fact, it even leads to a decrease
in performance and incurs additional computational overhead.
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Figure 1: Performance of Utilizing Different Types of Neg-
ative Examples in Contrastive Learning. Negative example
type numbers range from 1 to 15, with each number having
four binary digits. The four binary digits from 1 to 4 respec-
tively represent replacing the reference image, the modified
text, the target image, and the query pair, representing four
types of negative examples. For example, 10 (binary 1010)
represents using negative examples by replacing query pairs
and replacing modified text. We find that example type 4,
the negative examples obtained by replacing target images,
works best.

4 DISCUSSION ON MODIFIED TEXT
GENERATION

As discussed in the main text, we have three ways of generating
modified text from captions of image pairs. We find that using LLM
to rewrite modified text simply is better than in-context learning.
However, as shown in Fig.2, both methods of using LLM are worse
than using the prompt template directly.
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Figure 2: Performance on Different Ways of Modified Text
Generation.

4.1 Rewrite Prompt

Rewrite the sentence to maintain the original
meaning while reducing grammatical errors and
increasing the variety of expressions.
Remember to only output the new sentence without
other additional words.

sentence: {simple modified text}
new sentence:

4.2 ICL Prompt for FashionIQ

You are a researcher tasked with rewriting the
source sentence to mimic the target sentence
while trying to keep the original meaning.
Please ensure that your responses are close
to the style of the target sentences in the
examples.
Remember to only output the new sentence without
other additional words.
Output the answer in one string

source: The dress is a sleeveless, black,
fitted, and stylish dress
target: is solid black with no sleeves

source: Red, flowy, short, sequined, and
elegant.
target: is red and flowy

source: Obama Mama shirt, black color.
target: has the words Obama Mama on front

source: Striped, black and white, sleeveless,
fitted, and stylish.
target: has sleeveless black and white stripes

source: Colorful striped top with a v-neck.
target: Has stripes.

source: {simple modified text}
target:



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

4.3 ICL Prompt for CIRR

You are a researcher tasked with rewriting the
source sentence to mimic the target sentence
while trying to keep the original meaning.
Please ensure that your responses are close
to the style of the target sentences in the
examples.
Remember to only output the new sentence without
other additional words.
Output the answer in one string

source: A large, brown dog with a black nose is
sitting on the grass, looking up instead of A
cute baby panda is being held by a person in a
zoo
target: Dog in grass instead of a panda.

source: A street with several blue buildings,
including churches, and a park with trees and
bushes instead of A large, old stone church
with a tower and a wall, surrounded by a grassy
field and a dirt road
target: instead of an old fortress with a
rampart, an Orthodox church with a courtyard.

source: A colorful parrot is standing on a perch
in a cage instead of Two parrots are sitting on
a branch, sharing a piece of fruit
target: Remove one of the parrots.

source: Two colorful parrots are kissing on a
branch instead of A colorful parrot is perched
on a tree branch, looking at the camera.
target: two birds, facing each other.

source: A monkey is standing on a grassy field,
looking at the camera instead of A group of
monkeys is sitting on the ground, with some of
them touching each other.
target: I want the pic to show just one monkey.

source: {simple modified text}
target:
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Figure 3: Comparison of retrieval results between the CLIP4CIR model w/o and w SPN.
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