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Abstract1

Graph serves as a powerful tool for modeling data that has an underlying structure in2

non-Euclidean space, by encoding relations as edges and entities as nodes. Despite3

developments in learning from graph-structured data over the years, one obstacle4

persists: graph imbalance. Although several attempts have been made to target5

this problem, they are limited to considering only class-level imbalance. We argue6

that for graphs, the imbalance is likely to exist at the sub-class level in the form of7

infrequent topological motifs. Due to the flexibility of topology structures, graphs8

could be highly diverse, and learning a generalizable classification boundary would9

be difficult. Therefore, several majority topology groups may dominate the learning10

process, rendering others under-represented. To address this problem, we propose a11

new framework TopoImb and design (1) a topology extractor, which automatically12

identifies the topology group for each instance with explicit memory cells, (2)13

a training modulator, which modulates the learning process of the target GNN14

model to prevent the case of topology-group-wise under-representation. TopoImb15

can be used as a key component in GNN models to improve their performances16

under the data imbalance setting. Analyses on both topology-level imbalance and17

the proposed TopoImb are provided theoretically, and we empirically verify its18

effectiveness with both node-level and graph-level classification as the target tasks.19

1 Introduction20

Graphs are ubiquitous in the real world [1, 2], such as social networks, finance networks and brain21

networks. Hence, graph-based learning is receiving increasing attention due to its advantage in22

modeling relations/interactions (as edges) of entities (as nodes). Recently, graph neural networks23

(GNNs) have shown great ability in representation learning on graphs, facilitating various domains [3,24

4]. However, similar to other domains like computer vision and natural language processing, learning25

on graphs could also suffer from the problem of data imbalance [5, 6]. Imbalanced sizes of labeled26

data would harm the classifier, and render the classification boundary dominated by majority groups.27

Numerous efforts have been made addressing this problem [7–9]. Typically in these works, data28

imbalance is discussed at the class level: instances of some classes, i.e., majority classes, are much29

larger in quantity than other classes, i.e., minority classes. For example in imbalanced graph learning30

strategies, GraphSMOTE [10] addresses node imbalance by inserting new nodes of the minority31

classes into the given graph. ReNode [11] considers coverage of propagated influence with labeled32

nodes utilizing re-weighting.33

Although these methods help improve the performance of graph learning algorithms on imbalanced34

training samples, the deficiencies of constraining data imbalance to mere class level are evident.35

Due to the diversity of inputs, data imbalance in graphs could impair the classifier at the sub-class36

level. Not only minority classes, but some minority topology groups inside each class can also be37

under-represented. As a result, graph learning models may get stuck in a local optimum by over-fitting38

to those majority groups and fail to learn effectively on those minority groups. We call this sub-class39

level imbalance in graphs as Topology-level Imbalance problem. An example is provided in Fig. 1.40

in a molecular dataset, a property (label) could be caused by multiple atom motifs, and rationales41

relating to infrequent motifs would be difficult to capture due to this imbalance problem.42
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Figure 1: Example of sub-class topology level graph imbalance on dataset Mutag [12]. Molecular
graphs of the Mutagenic class have two topology groups, one with motif NO2 and another one with
motif NH2 [13]. The NO2 group is much larger in quantity compared to the NH2 group.

In contrast to the class-level imbalance problem, where the label distribution is (partially) explicitly43

given training nodes/graphs, this sub-class Topology Imbalance is more general, but at the same time44

much more challenging. First, the distribution of topology groups is implicit. Existing techniques,45

including cost-sensitive learning [8, 11] and re-sampling [10, 14], manually set a weighting function46

based on certain assumptions on training data. They inevitably involve hyper-parameters to be47

manually preset or tuned by cross-validation, which prevents them from directly handling the48

Topology Imbalance problem. Second, features of topology groups are rooted in both node attributes49

and edge existences. Difficulties in measuring the similarity of topology complicate the discovery of50

sub-class-level groups and the modulation process. Third, the number of topology structures grows51

exponentially with the graph size, hence the discovery of poorly-learned topology groups should be52

learned efficiently from model performance, and need to adapt to evolving model behaviors.53

To tackle the aforementioned issues, in this work, we make the first attempt to address graph54

imbalance at a more fine-grained level, i.e., sub-class level, by considering underrepresented topology55

groups. Concretely, we develop a novel framework TopoImb, to augment the training process with56

an imbalance-sensitive modulation mechanism. TopoImb adopts a topology extractor to explicitly57

model and dynamically update the discovery of topology groups. Based on that, a training modulator58

automatically and adaptively modulates the training process by assigning importance weights to59

training instances that are under-represented.60

Altogether, this work makes the following three-fold contributions: (1) To our best knowledge, we61

are the first to analyze the sub-class level imbalance problem in graph learning. (2) We propose a62

plug-and-play framework as a general solution to the limitations in existing graph learning methods63

under topology imbalanced settings, and provide a theoretical analysis on it. (3) We adopt both64

synthetic and real-world datasets to reveal the failure modes of existing deep graph learning methods65

and verify the effectiveness of TopoImb in improving the generalization of various graph neural66

networks.67

2 Preliminary68

2.1 Problem of Sub-class Level Imbalance69

One critical obstacle in addressing sub-class level imbalance lies in identifying sub-class groups. In70

many real-world scenarios, there could be multiple different prototypes for each class, as shown in71

Fig. 1. This phenomenon can be described in the following Gaussian Mixture distribution:72

p(x | c) =
K∑

k=1

πc
kN (x | µc

k,ρ
c
k), (1)

where x is the node (graph) embedding, and p(x | c) shows that there are K sub-class distribution73

centers (prototypes/templates) for instances belonging to class c. Each topology group in class c is74

modeled using a multivariate Gaussian distribution with a mean vector µc
k and a covariance matrix75

ρc
k. πk denotes the mixing coefficients which meets the condition:

∑K
k=1 π

c
k = 1. In the ideal76

balanced setting, each topology group should be the same in quantity: ∀k, πc
k = 1/K. However,77

in most real-world cases those topology groups would follow a long-tail distribution, and those78
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Figure 2: Overview of TopoImb framework. Its main components include (a) a topology extractor
fext, and (b) the target GNN fgnn. A weight assigner is implemented on top of the topology extractor
to modulate learning of fgnn, and an auxiliary task head is adopted to guide topology extraction.

minority groups would have much smaller mixing coefficients compared to majority topology groups.79

This imbalance problem adds difficulty to the learning process. With training signals dominated by80

majority instances, the trained model could underfit and perform poorly on those minority groups in81

class c. However, unlike class-level imbalance, there is no explicit supervision of sub-class groups82

and it is difficult to obtain prior knowledge on imbalance ratios, making this problem challenging.83

2.2 Notations84

In this work, we conduct analysis on both the node-level task, semi-supervised node classification,85

and graph-level task, graph classification. We use G = {V, E ;F ,A} to denote a graph, where86

V = {v1, . . . , vn} is a set of n nodes and E ∈ V× V is the set of edges. Nodes are represented by87

the attribute matrix F ∈ Rn×d (d is the node attribute dimension). E is described by the adjacency88

matrix A ∈ Rn×n. If node vi and vj are connected then Ai,j = 1; otherwise Ai,j = 0.89

For node classification, each node vi is accompanied by a label Yi ∈ C, where C is a set of labels.90

VL ⊂ V is the labeled node set and usually we have |VL| ≪ |V|. The objective is to train a GNN91

f that maps each node to its class. For graph classification, a set of graphs G = {G1, . . . ,Gm} is92

available and each graph Gi has a label Yi ∈ C. Similarly, a labeled set GL ⊂ G is used to train a93

GNN model f , which maps a graph to one of the C classes, i.e., f : {F ,A} 7→ {1, 2, . . . , C}.94

3 Methodology95

In this section, we introduce TopoImb, a plug-and-play framework to address the sub-class level96

imbalance problem during the training of GNNs. Inspired by analysis in Section 2.1, we first design97

a topology extractor to identify under-represented topology groups and then modulate training of the98

target GNN in an imbalance-aware manner. The framework is summarized in Fig. 2.99

3.1 Topology Group Discovery100

In graphs, due to the difficulties in modeling node attributes and edge distributions, it is challenging101

to identify latent sub-class topology groups. To successfully obtain meaningful topology groups, the102

topology extractor needs to satisfy the following requirements:103

• Simultaneous modeling of both node attributes and edges, which is the basic requirement for104

modeling topology distributions as they are intertwined in latent graph generation process [1, 2].105

• Able to learn with high data efficiency. The size of some topology groups is small, therefore the106

grouping of similar structures should be encouraged intrinsically in design.107

• Representation power should be on par with 1-Weisfeiler-Lehman (WL) test, which is the upper108

bound of representation power for most GNNs [15]. It needs to be guaranteed that topology109

structures distinguishable by GNNs can also be distinguished by the extractor.110

As shown in [16], most GNNs can be summarized in the message-passing framework. Let111

hl
vi be the embedding of node vi in l-th layer of GNN. Then the embedding of vi in the112

3
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(l + 1)-th layer is updated with aggregated messages from its neighbors N (vi) as: hl+1
vi =113

Ul(h
l
vi ,AGG({Ml(h

l
vi ,h

l
vj , Ai,j); vj ∈ N (vi)})), where Ml,AGG,Ul are the message creation,114

aggregation, and node update functions, respectively. Based on previously discussed requirements,115

we design our extraction module fext parameterized by ϕ as follows: (1) AGG() is implemented116

as a summation of messages. The aggregation of neighborhood information should guarantee that117

embeddings of nodes with different neighborhood structures remain distinct and distinguishable.118

As shown in [15], summation of a set can guarantee the injection property and preserves the rep-119

resentation power to be the same as 1-WL algorithm. (2) Inspired by [17], we design a topology120

extraction module with external memory cells to store templates of node embeddings at each layer.121

Each memory cell represents a template and encourages intrinsic topology-wise grouping by mapping122

similar nodes to close embeddings. The templates will encode distinct structural semantics and123

increase the data efficiency. As shown in [18], explicit memory can greatly improve learning in a124

weakly-supervised scenario. An overview of the model is provided in Fig. 2(a).125

Specifically, let T l+1 = [tl+1
1 , . . . , tl+1

K+1] be a matrix consisting of K+1 templates for the (l+1)-th126

layer, where tl+1
k is the k-th topology template. We use the first K templates to capture informative127

structures and the last one as the default to encode outliers and uninformative structures that might128

exist in the graph. To help learn informative representations of each node, we will first match node129

with template at l-th layer as:130

zl+1
vi = MLP(hl

vi ,
∑

vj∈N (vi)

hl
vj ), Sl+1

vi,k
=

{
Attention(zl+1

vi , tl+1
k ), k ∈ {1, 2, ...,K}

δ, k = K + 1
(2)

where Sl+1
vi,k

measures similarity between the (l + 1)-hop ego-graph centered at vi and template tl+1
k .131

In practice, attention is implemented as an inner product. Other forms of attention networks, such as132

a single-layer feedforward neural network [19] can also be adopted. Then, the representation of each133

node would be updated by mapping to these templates as:134

hl+1
vi =

K∑
k=1

softmax(Sl+1
vi,k

) · tl+1
k (3)

This design encourages a structured embedding distribution. After training, this module will be able135

to automatically discover topology groups utilizing template selection. Nodes with similar local136

topologies will be mapped to similar regions in the high-dimensional embedding space.137

3.2 GNN Training Modulation138

The original cross-entropy learning objective for GNN fgnn is as follows:139

min
θ

LCE = −
∑
u∈L

∑
c

1(Yu == c) · log(Pu[c]), (4)

where θ is the set of module parameters and Pu[c] is the probability of instance u belonging to class140

c predicted by fgnn. For node classification task, Pu = fgnn(F ,A; vu) and L ≜ VL. For graph141

classification task, Pu = fgnn(Gu) and L ≜ GL. However, cross-entropy can be easily dominated142

by simple majority instances [20]. As a result, the trained model may perform poorly on examples143

with minority topology structures, which would be easily misclassified.144

With the obtained topology extractor, we propose to modulate the training of GNNs to emphasize145

those minority groups and update it on the graph distribution regions which are not learned well.146

Different modulation mechanisms can be designed, and we adhere to instance re-weighting in this147

work to keep the simplicity, leaving the exploring of other modulation mechanisms as future work.148

Concretely, we concatenate node hidden representations {H l, l = 1, 2, ...} obtained from topology149

extractor as H ∈ R|V|×D, and use a 2-layer MLP gwt parameterized by φ to predict weights. D150

is the dimension of concatenated node embeddings. For graph classification task, we further adopt151

global pooling to get graph-level embedding HG ∈ R1×D. In this work, we use attention-based152

pooling to get graph-level embeddings. Then, we predict the modulation weight for vi as:153

w′
i = gwt(Hi), wi =

w′
i∑b

i=1 w
′
i

· b (5)
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where Hi is the embedding of node vi for node classification and embedding of graph Gi for154

graph classification. b denotes the batch size and is also used to normalize predicted weights. This155

normalization guarantees that the summation of w would remain as 1, and enables competition in the156

assignment of weights. With the obtained w, TopoImb modulates training of the target GNN as:157

min
θ

LRE = −
∑
u∈L

∑
c

wi · 1(Yu == c) · log(Pu[c]). (6)

The modulation performance would also be utilized to guide the discovery of topology groups.158

Inspired by [21], we develop a min-max reward signal for learning this modulation from an adversarial159

training perspective:160

min
θ

max
ϕ,φ,T

LRE = −
∑
u∈L

∑
c

wi · 1(Yu == c) · log(Pu[c]). (7)

T = {T 1,T 2, ...} is the set of all templates. This adversarial objective would encourage fext to161

identify topology groups where fgnn is poorly learned and assign them with a large weight, guiding162

the model to attend more to those examples. In Proposition 2, We theoretically show that fgnn would163

converge to learn as well on all discovered topology groups under mild assumptions.164

3.3 WL-based Auxiliary Task and Final Objective165

The proposed TopoImb is model-agnostic and can work with different GNNs. To guide the training166

of the topology extractor, we further use some auxiliary tasks. For node classification, we assign a167

pseudo topology label to each node based on its ego-graph (local topology) structures. Concretely,168

we give each node an initial label based on attributes clustering, and then run WL algorithm on169

the graph for two rounds to obtain pseudo topology labels as C′. Obtained pseudo labels would170

carry isomorphism-related features, and this auxiliary task can encourage the extractor to encode171

topology-discriminative properties. Setting initial labels based on node attributes can enrich the172

information carried by pseudo topology labels without requiring class labels. For graph classification,173

as topology is usually distinct across graphs (otherwise two graphs will be the same), we directly use174

graph class label as the pseudo topology label of each graph, which can guide the topology extractor175

to capture discriminative topology structures for each class. Concretely, a topology label classifier176

gaux parameterized by ρ is applied on top of fext, with the training loss:177

min
ϕ,T,ρ

Laux =

{
−
∑

v∈V
∑

c∈C′ 1(Y ′
u == c) · log(gaux(v)[c]), node classification

−
∑

G∈GL

∑
c(1(YG == c) · log(gaux(G)[c]), graph classification.

(8)

Final Objective Function. Putting everything together, the overall optimization objective is:178

min
θ

[(1− α) · LCE + α · max
ϕ,φ,T

LRE ] + min
ϕ,T,ρ

Laux (9)

Training. An alternative optimization strategy is adopted to solve the objective in Eq. 9. Concretely179

in each step, we first update parameter θ of target GNN fgnn with other modules fixed:180

min
θ

LGNN = (1− α) · LCE + α · LRE . (10)

Then, we fix templates T and θ and perform: maxϕ,φ LRE +minϕ,ρ Laux. Finally, we update tem-181

plates T following maxT LRE +minT Laux.These steps are conducted iteratively until convergence.182

3.4 Theoretical Analysis183

For better understanding of topology imbalance problem, we conduct some analysis on the impact184

of subclass-level imbalance and the proposed TopoImb. With mild assumptions, a lower bound of185

performance on a balanced testing set can be derived:186

Proposition 1. For the imbalanced training data D with imbalance ratio R ≜ τminor

τmajor
≥ r, minimiza-187

tion of empirical loss could result in a hypothesis θ̂ ∈ H that is biased towards the majority region188

rmajor, with its loss bounded as ϵtest ≤ ϵtrain + 2( 1r − 1) + λ∗ on the ideally balanced test set. λ∗189

is a constant for hypothesis space H.190

5
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Table 1: Imbalanced node classification on three datasets, with the best performance emboldened.

Method ImbNode Photo DBLP

MacroF AUROC TopoAC MacroF AUROC MacroF AUROC

Vanilla 78.1±0.16 88.9±0.15 73.4±0.13 52.4±0.19 90.5±0.13 60.9±0.18 86.2±0.12

OverSample 78.8±0.13 89.3±0.14 73.7±0.15 56.1±0.20 91.1±0.15 61.5±0.17 84.5±0.11

ReWeight 78.9±0.16 89.6±0.16 73.8±0.17 55.8±0.20 88.6±0.14 61.6±0.19 86.6±0.12

EmSMOTE 79.6±0.13 90.3±0.11 74.1±0.10 56.5±0.17 92.1±0.11 60.7±0.16 88.6±0.10

Focal 77.9±0.15 87.8±0.12 72.5±0.12 53.5±0.19 90.4±0.12 61.4±0.18 83.2±0.11

GSMOTE 76.6±0.17 88.2±0.16 73.2±0.14 58.4±0.21 92.3±0.14 63.4±0.19 87.9±0.13

ReNode 74.7±0.15 87.9±0.13 72.9±0.14 56.3±0.19 90.7±0.13 61.3±0.18 87.7±0.12

RECT 77.2±0.14 89.2±0.12 73.6±0.13 51.2±0.18 91.2±0.12 59.8±0.17 84.1±0.10

DR-GCN 78.4±0.15 89.7±0.13 73.7±0.15 57.6±0.21 91.5±0.15 61.9±0.16 87.3±0.13

TopoImb 82.1±0.14 92.3±0.11 75.2±0.09 58.9±0.18 92.7±0.11 63.9±0.15 88.7±0.09

It is shown in Proposition 1 that ϵtest is bounded by imbalance ratio of sub-class regions, corresponds191

to topology groups in graphs. Next, we further analyze the convergence property of TopoImb:192

Proposition 2. If fext and fgnn has enough capacity, and at each step fgnn is updated w.r.t re-193

weighted loss LGNN , then fgnn converges to have the same error across data regions rk.194

Proposition 2 justifies the effectiveness of TopoImb against topology-level imbalance problem from195

the theoretical view. Proofs of both two propositions are provided in Appendix B.196

4 Experiment197

We now demonstrate the effectiveness of our proposed TopoImb in handling imbalanced graph198

learning through experiments on three node classification and three graph classification datasets.199

4.1 Experimental Settings200

Datasets. For node classification, we adopt a synthetic dataset, ImbNode, and two real-world datasets:201

Photo [22] and DBLP [23]. ImbNode is created by attaching two types of motifs, Houses and Cycles,202

into a base BA graph [24]. Nodes in the built graph are labeled based on their positions. This design203

enables explicit control over sub-class imbalance ratios. More details can be found in Appendix A.1.204

Photo is the Amazon Photo network, with nodes representing goods and edges denoting that two205

goods are frequently bought together. Labels are set based on the respective product category of206

each good. DBLP is a citation network with papers as nodes and citations as edges. Nodes are207

labeled by their research domains. For Photo and DBLP, different topology groups encode different208

product/paper features, hence they are also selected for the experiments.209

For graph classification, we conduct experiments on ImbGraph, and molecular graphs [25] including210

Mutag and Enzymes. The synthetic dataset ImbGraph is generated as classifying three groups of211

motifs: Grid-like structures (includes Grids and Ladder), Cycle-like structures (includes Cycles and212

Wheels), Default structures (includes Trees and Houses). In constructing ImbGraph, we set the size213

of each motif group as {500, 300, 130} respectively, and the ratio of motifs within the same group is214

0.2. More details in creating ImbGraph are provided in Appendix A.2.215

Statistics of these datasets can be found in Appendix A.216

Configurations. In experiments, the Adam optimizer is adopted for all methods, with learning rate217

initialized to 0.01 and weight decay as 5e-4. All methods except for GSMOTE are trained until218

convergence with the maximum epoch 1, 000. For GSMOTE, it is additionally pre-trained for 1, 000219

epochs on graph auto-encoding task.220

Evaluation Metrics. Following existing works [10, 11], results are reported in terms of macro F221

measure (MacroF) and AUROC score [26] as they are robust to class imbalance. MacroF computes222

the harmonic mean of class-wise precision and recall, and AUROC trades off the true-positive rate223

for the false-positive rate. We calculate them separately for each class and report the non-weighted224

average. For datasets ImbNode and ImbGraph, topology labels are readily available, hence we further225

report the macro topology-group accuracy (TopoAC) by calculating the mean accuracy of different226

topology groups, providing a direct evaluation of sub-class level imbalance. Discussion of extra227

computational cost is provided in Appendix E.228
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Table 2: Performance of imbalanced graph classification task, with the best performance emboldened.

Method ImbGraph Mutag Enzymes

MacroF AUROC TopoAC MacroF AUROC MacroF AUROC

Vanilla 68.5±0.09 88.7±0.05 55.1±0.07 54.2±0.12 83.3±0.07 18.5±0.10 53.8±0.08

OverSample 48.0±0.08 90.3±0.06 47.9±0.06 56.3±0.10 71.3±0.09 20.3±0.11 59.7±0.09

ReWeight 47.5±0.08 89.4±0.06 48.2±0.05 54.7±0.11 81.7±0.08 20.0±0.10 58.8±0.09

EmSMOTE 55.9±0.09 74.8±0.07 48.3±0.08 59.7±0.11 84.1±0.10 12.6±0.11 54.7±0.08

Focal 63.7±0.06 88.5±0.05 58.7±0.06 53.7±0.10 80.9±0.08 16.7±0.09 55.9±0.07

TopoImb 73.9±0.07 92.2±0.04 61.6±0.05 62.1±0.11 84.7±0.08 20.7±0.09 60.4±0.06

4.2 TopoImb for Node Classification229

In node classification, ImbNode is constructed to be imbalanced at topology level. For datasets Photo230

and DBLP, as topology groups are not readily available, we take the step imbalance setting [11].231

Concretely, half of the classes are selected as the majority, and the remaining classes are treated as232

the minority. Sizes of Train/val/test sets are split as ntrain : nval : ntest = 1 : 3 : 6. The labeling233

size of each majority class is set to ntrain

|C| , and the labeling size for each minority class is set to234

R · ntrain

|C| , where R is the preset imbalance ratio. We set R to 0.2 unless noted otherwise. Further235

discussion of this split is provided in Appendix A. Two groups of baselines are implemented for236

comparison: (1) Classical imbalanced learning approaches, including OverSample [7], ReWeight [7],237

Focal loss [20], and EmSMOTE [27]; (2) Imbalanced node classification strategies, including238

GraphSMOTE (GSMOTE) [10], ReNode [11], RECT [28] and DR-GCN [29]. GCN [30] is used as239

the backbone model. Each experiment is randomly conducted for 5 times, and the mean performance240

is summarized in Table 1.241

From Table 1, it can be observed that TopoImb outperforms all baselines with a clear margin on242

ImbNode and Photo, which proves the effectiveness of the proposed method. ImbNode is imbalanced243

at the sub-class level by design, and it is shown that most classical imbalanced learning methods, like244

Focal and Reweight, are ineffective in this setting. Methods for graphs like GSMOTE and ReNode245

rely on the mechanism of label propagation while neglecting to encode local topology structures, and246

are also shown to be ineffective. We notice that the improvement in DBLP is smaller compared to247

the other datasets. The reason could be that topology structures are less-discriminative towards node248

labels in citation networks, rendering topology-group-wise modulation less helpful.249

4.3 TopoImb for Graph Classification250

In graph classification, we again take the step imbalance setting and select half classes as the minority251

while others as the majority on dataset Mutag and Enzymes, with imbalance ratio R being set to252

0.1. Dataset ImbGraph is constructed to be imbalanced. As graphs can be taken as i.i.d instances in253

this task, we implement a set of popular imbalanced learning methods: Over-sampling, Re-weight,254

Embed-SMOTE, and Focal loss. 5% of graphs are used in training, 30% in validation, and 60% in255

testing. Each experiment is randomly conducted for 5 times with performance reported in Table 2.256

As shown in Table 2, TopoImb achieves the best performance across all three datasets, which further257

validates its effectiveness and generalizability. Topology groups are more difficult to capture in258

graph-level tasks due to graph isomorphism, but TopoImb is able to discover similar graph groups259

and modulates training of target GNNs.260

4.4 Can TopoImb Effectively Modulate the Training Process?261

In order to successfully guide the learning process, TopoImb should assign a larger weight to minority262

or more difficult topology groups, and its behaviors should evolve along with the update of the target263

GNN model. To evaluate it, we examine the distribution of predicted weights w at different training264

stages in this section. Experiments are conducted on ImbNode which contains explicit topology265

labels, and other settings are the same as Sec. 4.2. We train a TopoImb model and visualize the mean266

weights assigned to topology groups as well as their mean accuracy at {50, 250, 1150} epochs along267

the learning trajectory. Results are presented in Fig. 3, and group {5, 6, 7, 8} are minority groups.268

It can be observed that: (1) Minority groups or groups with a low accuracy tend to receive a large269

weight; (2) In the early stage, the gap of assigned weight scales across topology groups is large; (3)270
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Figure 3: Distribution of assigned weights and mean accuracy of each topology group on ImbNode,
at different learning stages.

Table 3: Test on other GNN architectures: GraphSage and GIN.

Method ImbNode Mutag ImbGraph

MacroF AUROC TopoAC MacroF AUROC MacroF AUROC TopoAC

GraphSage 59.7 82.4 57.9 51.4 81.3 67.3 88.5 57.1
+TopoImb 63.5 86.2 59.8 55.6 82.7 72.1 91.6 59.8

GIN 65.8 87.8 60.1 68.3 91.1 97.4 99.2 97.3
+TopoImb 74.2 92.6 64.6 79.7 91.4 99.2 99.6 99.8

In the late stage, both assigned weights and group-wise performances show a smaller gap. These271

results further validate the effectiveness of TopoImb.272

4.5 Do Different Topology Groups Select Different Templates?273

TopoImb will automatically learn a template set T to encode rich topology information. To analyze274

its effectiveness, we further check the activation distribution of template selection in this part.275
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Figure 4: Distribution of template selec-
tion behaviors.

If successfully learned, nodes with different ego-graph276

structures would attend to different templates, while nodes277

of the same group would exhibit similar template selection278

behaviors. Again, we experiment on ImbNode as it has279

available topology labels, and visualize the distribution of280

template selections for each topology group in Fig. 4. In281

Fig. 4, the Y axis is the topology group and the X axis is282

the template set. It can be observed that generally, different283

topology groups tend to select different templates.284

4.6 Is TopoImb Generalizable?285

Our proposed TopoImb should be model-agnostic and effective across different architectures of286

target GNNs. To evaluate its generalizability, we further test it on two other popular GNN models:287

GraphSage [31] and GIN [15]. We conduct experiments on ImbNode, Mutag, and ImbGraph, with288

results summarized in Table 3. It can be observed that TopoImb remains effective for both models289

across these datasets, which verifies the generalizability of TopoImb.290

4.6.1 Ablation Study and Hyperparameter Sensitivity Analysis291

Reweighter Structure. An ablation study is conducted on the structure of reweighter module. We292

compare with two baselines, one class-wise reweighter which assigns uniform weights to all examples293

of the same class, and one GCN-based reweighter which does not have explicit memory cells or an294

expressive power equivalent to WL-test [15]. Details and results are provided in Appendix C.295

Hyperparameter Sensitivity Analysis. We also conduct a series of sensitivity analyses on the296

number of memory cells and hyper-parameter α. Due to the space limit, we put it in Appendix D.297
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5 Related Work298

Graph Neural Networks. In recent years, various graph neural network models have been pro-299

posed for learning on relational data structures, including methods based on convolutional neural300

networks [30, 32, 33], recurrent neural networks [34, 35], and transformers [36, 37]. Despite their301

differences, most GNN models fit within the message passing framework [16]. In this framework,302

node representations are iteratively updated with a differentiable aggregation function that considers303

features of their neighboring nodes. For instance, GCN [30] adopts the fixed weights for neighboring304

nodes in its message-passing operation. GAT [19] further introduces the self-attention mechanism305

to learn different attention scores of neighborhoods. Ref [38–40] propose to augment GNNs with306

explicit prototypical representations which can increase the data efficiency and model the hierarchical307

motif distribution. Ref [41, 42] propose to disentangle the given graph to uncover latent groups of308

nodes or edges. More variants of GNN architectures can be found in a recent survey [43]. GNN309

models have achieved remarkable success in a wide range of graph mining tasks, including node310

classification [19, 30, 31, 42, 44], graph classification [15, 45], and link prediction [46]. However,311

despite the popularity, most existing GNNs are built under balanced data-splitting settings. The312

data imbalance problem appears frequently in real-world applications and could heavily impair the313

performance of GNN models [47].314

Imbalanced Learning. Previous efforts to handle the data imbalance problem can be mainly315

categorized into two groups: data re-sampling [7, 14, 48, 49] and cost-sensitive learning [8, 9, 20, 50–316

52]. A comprehensive literature survey can be found in [53, 54]. Re-sampling methods adopt either317

random under-sampling or oversampling techniques to obtain a balanced distribution. The vanilla318

over-sampling method simply duplicates underrepresented samples. However, this method may cause319

the overfitting problem due to repeating training on duplicated samples without extra variances. To320

alleviate this problem, SMOTE [48] generates new training samples by interpolating neighboring321

minority instances. Various extensions are then proposed with more sophisticated interpolation322

processes [10, 49, 55, 56]. Instead of manipulating the input data, cost-sensitive learning methods323

operate at the algorithmic level by imposing varying error penalties for different samples. A manner324

to design the weighting function is to assign larger weights to samples with larger losses, including325

boosting-based algorithm [57, 58], hard example mining [59], and focal loss [20]. Considering that326

the prior knowledge may be unavailable in real problems, Meta-Weight-Net [60] parameterizes the327

weighting function with an MLP (multilayer perceptron) network to adaptively learn a weighting328

function from data.329

More recently, some efforts have been made to improve imbalanced node classification [10, 11, 61–330

64] and graph classification [65, 66]. For instance, GraphSMOTE extends SMOTE to deal with331

graph data [10]. Mixup is introduced to improve imbalanced node classification in [61, 67]. DPGNN332

proposes a class prototype-driven training loss to maintain the balance of different classes [64]. To333

alleviate the overfitting and underfitting problems caused by lacking sufficient prior knowledge, GNN-334

CL proposes a curriculum learning framework with an oversampling strategy based on smoothness335

and homophily [68]. Ref [11, 69] propose to consider a special type of node imbalance in terms336

of their positions in the graph. However, the fine-grained sub-class data imbalance problem337

inherent in real-life graphs has been less explored in the literature. Instead, our method emphasizes338

underrepresented sub-class groups and makes the first attempt to tackle the imbalanced graph learning339

problem in a more general setting.340

6 Conclusion341

In this work, we consider a critical challenge: imbalance may exist in sub-class topology groups342

instead of pure class-level. Most existing methods rely on knowledge of imbalance ratios or require343

explicit class splits, hence are ineffective for this problem. A novel framework TopoImb is proposed,344

which can automatically discover under-represented groups and modulate the training process ac-345

cordingly. Theoretical analysis is provided on its effectiveness, and experimental results on node346

classification and graph classification tasks further validate its advantages.347

As a future direction, more effective modulation mechanisms can be explored. Currently, we limit348

it to assigning different weights towards training instances to keep simplicity. In the future, novel349

modulation techniques that can augment the dataset, provide extra knowledge, or directly manipulate350

target models can be designed, which may further boost the performance.351
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A Datasets Description535

In this work, we test TopoImb on six datasets, three for node classification and three for graph536

classification. Statistics of these datasets are summarized in Table 4. Next, we will go into details537

about the generation of two synthetic datasets, ImbNode and ImbGraph.538

Table 4: Statistics of graph datasets used in this work.

Name #Graphs #Nodes #Edges #Features #Classes

ImbNode 1 1, 592 6, 192 10 4
Photo 1 7,650 238,162 745 8
DBLP 1 17,716 105,734 1,639 4

ImbGraph 2997 ∼27.6 ∼117.8 10 3
Mutag 188 ∼17.9 ∼39.6 7 2

Enzymes 600 ∼32.6 ∼124.3 3 6

A.1 ImbNode539

ImbNode is a dataset for node classification with intrinsic sub-class-level imbalance, in which540

topology information of each node is explicitly provided. In constructing ImbNode, we use two541

groups of motifs, Houses and Cycles, and a base BA graph. Each node is labeled based on their542

positions, and a topology label is also provided to differentiate each topology group. Nodes in the BA543

graph is labeled as 0 for both class and topology groups. Labels of nodes in motifs are set as shown544

in Fig. 5. Each motif has 5 nodes, and nodes with the same topology label have the same 2-hop ego545

graph structure. Concretely, we built 166 Houses and 33 Cycles, and randomly attach them to the546

base BA graph of 597 nodes.547

Base Motif 1 Motif 2

Im
bN

od
e

Im
bG

ra
ph

Class 1 Class 2 Class 3

Class: 0
Class: 1

Class: 2

Class: 3 Class: 2 Class: 3

Class: 1

Figure 5: Examples of synthetic datasets, ImbNode and ImbGraph. In ImbNode, color denotes
the class label. With WL-algorithm, nodes in motifs can be clustered into 8 topology groups. In
ImbGraph, we show one representative example for each topology group inside three classes. Nodes
in doted line are the random BA graph.

A.2 ImbGraph548

ImbGraph is created for graph classification, with each class containing several distinct topological549

structures. Concretely, we have three classes: Grid-like motifs (includes Grids and Ladder), Cycle-like550

motifs (includes Cycles and Wheels), and Default motifs (includes Trees and Houses). For each class,551

examples are created by attaching the corresponding motif to a random BA graph. The size of each552

class is set to {500, 300, 130} respectively, and topology groups of each class is also imbalanced with553

imbalance ratio 0.2. Examples are provided in Fig. 5. Graphs have topology labels readily available,554

enabling us to directly evaluate model performance w.r.t sub-class-level imbalance.555

A.3 Real-world Node Classification Datasets556

For real-world node classification datasets, Photo and DBLP, we split the training data by varying ratio557

of each class as in Sec. 4.2. Note that this data split does not directly manipulate the data distribution558

in the topology level. The reason of adopting this setting is two-folded: (1) topology labels of nodes559

are unavailable in these real-world graphs, making it difficult to directly create topology imbalance560
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scenarios. (2) Although not explicitly split to be topology imbalanced, we expect that such imbalance561

property exists in obtained dataset, and use experiments to show that our TopoImb does perform562

better in this configuration. This proxy data-split strategy is also adopted by [1], which works on a563

special type of imbalance by considering the position of nodes in the graph.564

To further validate our data split and justify the existence of topology imbalance, we conduct an565

analysis by clustering the embeddings obtained with our topology extractor (which has guaran-566

teed topology expressiveness as WL-test). Concretely, we first obtain the embeddings of all nodes567

in dataset Photo which encode their topology information. Then, for each class we cluster them568

with MeanShift to get sub-class groups. Finally, we calculate the probability of training examples569

from current class to fall into these groups . This analysis verify the existence of sub-class topol-570

ogy imbalance in our scenario. Taking the first three classes of dataset Photo as an example, we571

can obtain 6 groups for each of them with MeanShift and the distribution of these classes w.r.t572

those topology groups are [0.54, 0.14, 0.11, 0.09, 0.08, 0.04], [0.63, 0.19, 0.08, 0.04, 0.03, 0.03] and573

[0.55, 0.17, 0.09, 0.09, 0.05, 0.05] respectively. It is shown that sub-class level imbalance exists in574

these groups.575

B Theoretical Analysis576

In this section, we provide some analysis of our proposed TopoImb in learning from sub-class-level577

imbalanced graphs. Following the discussion in 2.1, we conduct the analysis on a simplified setting, in578

which the distribution of training data D can be split into K regions: pD(x) =
∑K

k=1 prk(x) · τ(rk).579

x represents the training example, each region rk is a topology group, and τ(rk) ≥ 0 denotes580

its distribution density with
∑K

k=1 τ(rk) = 1. As D is imbalanced, variance of τ(rk) is large,581

e.g., τ(rmajor) ≫ τ(rminor). Without loss of generality, x can also represent data embeddings,582

increasing generalizability of our analysis.583

B.1 Proof of Proposition 1584

Proof. First, the expected empirical loss can be calculated as:585

ϵtrain =

K∑
k=1

τ(rk) · Ex∼prk

∑
c

1(Yx == c) · log(Px[c]) (11)

For the ideally balanced case, we have τ(rk)
∗ = 1

K and:586

ϵtest =

K∑
k=1

τ(rk)
∗ · Ex∼prk

∑
c

1(Yx == c) · log(Px[c]) (12)

Note that τ(rk) usually deviates significantly from τ(rk)
∗ due to the existence of graph imbalance.587

Clearly, comparing Eq. 11 and Eq. 12, empirical error would emphasize regions with a high distribu-588

tion density, and neglect those whose τ is small, resulting in hypothesis θ̂ biased towards majority589

regions.590

With the given data distribution pD(x) =
∑K

k=1 prk(x) · τ(rk) and ideally balanced data distribution591

pD∗(x) =
∑K

k=1 prk(x) ·
1
K , we can further derive the testing error bound. From [70], we know592

that:593

ϵtest ≤ ϵtrain + dH(pD, pD∗) + λ∗, (13)

where λ∗ is the optimal joint error on both distributions, and is a constant. dH(pD, pD∗) measures594

H-divergence across two distributions. Assuming data distribution at each region rk are i.i.d, we can595
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get:596

dH(pD, pD∗) ≜ 2 sup
h∈H

|Prx∼D[h(x) = 1]− Prx∼D∗ [h(x) = 1]|

= 2 sup
h∈H

|
K∑

k=1

Prx∼rk [h(x) = 1] · τ(rk)−
K∑

k=1

Prx∼rk [h(x) = 1] · τ(rk)∗|

= 2 sup
h∈H

|
K∑

k=1

Prx∼rk [h(x) = 1] · (τ(rk)− τ(rk)
∗)|

≤ 2

K∑
k=1

|τ(rk)−
1

K
|

≤ 2

K∑
k=1

(
1

K · r
− 1

K
)

= 2(
1

r
− 1),

(14)

which concludes the proof.597

From this result, we can observe that with increased imbalance (lower r), range of ϵtest will also598

increase, and performance of trained fgnn will become less-guaranteed on the balanced test set.599

Then, we can construct the connection between our proposed TopoImb and achieving a lower testing600

loss in Eq. 12. Intuitively, TopoImb is able to re-weight instances from each region, change Eq. 11601

by assigning larger importance to under-learned groups. Typically, minority regions would be up-602

weighted and majority regions would be down-weighted, which would decrease the imbalance in603

effect, and provide a better guarantee on testing performance, as shown in Proposition 1.604

B.2 Proof of Proposition 2605

Proof. Let Lrk = Ex∼prk

∑
c(1(Yx == c) · log(Px[c]), which represents error of fgnn in region606

rk. As shown in Eq. 9, the learning function of TopoImb can be summarized as:607

min
Px

max
w

K∑
k=1

(1 +w[k]) · τ(rk) · Lrk (15)

where Px ∼ fgnn(x), w ∈ RK with each element in [0, 1]. At each step with Px fixed, w is updated608

to maximize
∑K

k=1(1 +w[k]) · τ(rk)Lrk . It is a convex linear combination problem, and a larger609

weight would be given to regions with higher errors after update.610

Note that for any given w, minPx

∑K
k=1(1 +w[k]) · τ(rk) · Lrk is convex in Px. It is known that611

subderivatives of a supremum of convex functions include the derivative of the function at the point612

where the maximum is attained [21]. That is, given w′ = argmaxw fobj , ∂fobj,w=w′ ∈ ∂fobj ,613

Px would converge to its optima. Furthermore, w would not converge until each region has the614

same error. Therefore, with sufficiently small updates of Px, Px would converge, at each point615

Lri = Lrj ,∀i, j ∈ [0, . . . ,K].616

This result shows the convergence property of TopoImb, and verifies that it will guide the learning of617

fgnn, preventing the problem of under-representation of minority regions.618

C Ablation Study of Reweighter619

In this section, we conduct ablation study to evaluate importance of designed topology extractor.620

Concretely, we compare it with two baselines: (1) Class-wise reweighter, (2) GCN-based reweighter.621

The first baseline assigns a uniform weight to all examples inside the same class, while the second622

one directly use a GCN model as the weight assigner, assigning example weight at instance-level.623

Both baselines are updated following Eq. 7, by maximizing training loss in the adversarial manner.624
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Table 5: Performances of different re-weighter structures.

Method ImbNode Photo DBLP

MacroF AUROC TopoAC MacroF AUROC MacroF AUROC

Class-wise 78.1 90.4 72.4 54.2 90.5 61.5 85.4
GCN-based 79.6 92.2 73.3 57.4 91.8 61.8 85.4

Topo-based 82.1 92.3 74.9 58.9 92.7 63.9 88.7

Experiments are conducted on ImbNode, Photo and DBLP, and keep the same configuration as625

Sec. 4.2. Results reported in Table. 5.626

Results from comparing to class-wise reweighter can show the improvements in considering sub-class-627

level imbalance. As shown in the table, both GCN-based reweighter and our proposed Topo-based628

reweighter outperform this baseline consistently. On the other hand, comparison with GCN-based629

reweighter validates the benefits of explicitly considering latent topology groups during training630

modulation. As shown in Table. 5, the proposed Topo-based reweighter outperforms GCN-based631

reweighter with a clear margin, across all three datasets. With the proposed topology extraction632

module, TopoImb latently regularizes importance assignment at topology group level and can adapt633

to the evolvement of target GNN with high data-efficiency. While GCN-based reweighter works at634

instance-level, which could be difficult to give informative weights due to complexity of inputs and635

unstable prediction of target GNN model for each instance.636

D Sensitivity Analysis637

We also conduct a series of sensitivity analyses on the number of memory cells and hyper-parameter638

α, which controls the weight of LRE . Experiments are conducted on a node classification dataset,639

Photo, and a graph classification dataset, Enzymes. For the analysis on memory cells, we vary its size640

in [2, 4, 6, 8, 10, 12, 14], and all other settings remain unchanged. We run each experiment randomly641

for three times and report the average results in terms of AUROC score in Fig. 6[a-b]. It can be642

observed that (1) the performance would increase with the number of memory cells generally, (2)643

when the number is larger than 8, further increasing it may only slightly improve the performance.
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Figure 6: Sensitivity analysis. [a-b] show the influence of memory cells number, and [c-d] show the
influence of hyper-parameter α. Results are reported in terms of AUROC score.

644

Similarly, for the analysis on α, we vary it within [0.2, 0.4, 0.5, 0.6, 0.8, 1] without changing other645

settings. Average results of three random running are reported in Fig. 6[c-d]. It can be observed646

that both dataset would benefit from a large α within the scale [0, 0.5]. When α is larger than 0.8,647

increasing it further may result in a performance drop. As a large α would under-weight the original648

classification loss in Eq. 10, it may result in more noises in the training process, which could be the649

possible reason behind this phenomenon.650

E Computational Cost651

In this part, we discuss the extra computational cost introduced by TopoImb.652

• First, we compare the inference time between our model and the vanilla model which has the653

topology extractor removed. To reduce the variance, we randomly run for 100 times and report654
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the total time cost. Comparisons between the vanilla model and our TopoImb are as follows:655

ImbNode (1.38s vs 1.43s); Photo (1.36s vs. 1.45s); DBLP (1.50s vs 1.57s); ImbGraph (0.29s656

vs 0.53s); and Enzymes (0.54s vs 1.15s). It can be seen that the proposed TopoImb would not657

introduce a significant increase in term of computation time. Besides, the extra computation658

time is a little higher on the graph classification task. This phenomenon could arise due to the659

difference in graph sizes and the attentive pooling layer for graph representations.660

• Second, we analyze the model sizes by comparing parameters of different networks. Concretely,661

on dataset Photo, we calculate the parameter sizes of different backbone GNNs and our designed662

topology extractor, which are 15, 668 (2-layer GCN), 16, 508 (2-layer GIN), 30, 968 (2-layer663

Sage) and 18, 289 (topology extractor) respectively. Note that when a more complex GNN is664

adopted, the influence of the additional reweighter module would become smaller.665

• Last, for the optimization time, due to the alternative optimization algorithm used in TopoImb, it666

is slower than adopting the backbone network alone. For example on node classification dataset667

DBLP, the training time (of 1, 000 epochs) increases from 16.7 seconds to 44.7 seconds when a668

2-layer GCN is used as the backbone. Despite the increase, it can be seen that optimalization669

time would still not be a major problem for our proposed framework. Furthermore, note that670

there is no extra computation cost in testing after the model is trained.671
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