
Appendix
for Reduction Algorithms for Persistence Diagrams of Networks: CoralTDA
and PrunIT
This appendix gives the proofs of our theorems, list the pseudocode of CoralTDA and Prunit and
show further reduction results in networks.

A Datasets

The following table lists characteristics of graphs in our datasets.

Table 2: Characteristics of the datasets in graph and node classification experiments.
Dataset NumGraphs AvgNumNodes AvgNumEdges

DD 1178 284.32 715.66
DHFR 467 42.43 44.54
ENZYMES 600 32.6 62.14
FIRSTMM 41 1377.27 3074.10
NCI1 4110 29.87 32.30
OHSU 79 82.01 199.66
PROTEINS 1113 39.06 72.82
REDDIT-BINARY 2000 429.63 497.75
SYNNEW 300 100.0 196.25

TWITTER 973 83.5 1817
FACEBOOK 10 403.9 8823.4

CORA 1 2708 5429
CITESEER 1 3264 4536

ARXIV 169343 33 111.8
MAG 1939743 31 112.5

B Algorithms

This section gives the CoralTDA reduction (Algorithm 1) and PrunIT algorithm (Algo-
rithm 2). Our pseudocode is optimized for clarity. Our implementation is available at
github.com/cakcora/PersistentHomologyWithCoralPrunit.

Algorithm 1. CoralTDA
Input: k and G
Output: Gk+1

1: flag=true
2: Gk+1 = G
3: while flag is true and Gk+1 is not empty do
4: flag=false
5: for u ∈ V do
6: if |N(u)| < (k + 1) then
7: flag=true
8: Gk+1 = Gk+1 \ u
9: end if

10: end for
11: end while
12: return Gk+1

In Algorithm 1, we repeatedly delete vertices that have less than k+1 edges and return the resulting
graph. In Algorithm 2, we search for dominated neighbors of a vertex (lines 7–14) and delete such a
neighbor (if exists) from the graph. Here N(u) denotes the neighbors of u (excluding u). We continue

15

https://github.com/cakcora/PersistentHomologyWithCoralPrunit

Algorithm 2. PrunIT
Input: G = (V, E)
Output: G′

1: iterate=true
2: G′ = G
3: while iterate is true do
4: iterate=false
5: for u ∈ V do
6: for w ∈ N(u) do
7: domu→w = domw→u = false
8: for n ∈ {N(u) ∪ N(w)} do
9: if eun ∈ E ∧ ewn /∈ E then

10: domu→w = true
11: end if
12: if euw /∈ E ∧ evw ∈ E then
13: domw→u = true
14: end if
15: end for
16: if domu→w = true ∧ domw→u = false then
17: G′ = G′ \ w and iterate = true
18: else if domu→w = false ∧ domw→u = true then
19: G′ = G′ \ u and iterate = true
20: end if
21: end for
22: end for
23: end while
24: return G′

until we cannot find a dominated vertex. Lines 4–24 has a complexity of O(|V |3). The outer loop
(line 3) may run |V |, however we can parallelize the algorithm for each vertex.

C Proofs of the Theorems

C.1 Proof of CoralTDA

First, we give the proof of Theorem 2. We use the same notation introduced in Section 4.

Theorem 2: Let G be an unweighted connected graph. Let f : V → R be a filtering function on
G. Let PDk(G, f) represent the kth persistence diagram for the sublevel filtration of the clique
complexes. Let Ĝk be the k-core of G. Then, for any j ≥ k

PDj(G, f) = PDj(Gk+1, f)

Proof: For simplicity, we prove the theorem for j = k. Then, we give the generalization to j > k

case. Fix k ≥ 1. In order to show the theorem, we need to prove that (b, d) ∈ PDk(Ĝ) if and only if
(b, d) ∈ PDk(Ĝk+1). In other words, if a kth-homology class σ = [S] is born at Ĝb and dies at Ĝd,
then the same homology class [S] is born at Ĝk+1

b and dies at Ĝk+1
d .

We first prove that the inclusion map Ĝk+1
i ↪→ Ĝi in the Diagram 1 induces an isomorphism for the

homology groups Hk(Ĝi) = Hk(Ĝk+1
i) for any 0 ≤ i ≤ m. Then, the proof of the theorem will

follow by the equivalence of the induced persistence modules.

For simplicity, we omit the subscript i. Assume σ ∈ Hk(Ĝ). In particular, σ is a k-homology class of
Ĝ. This means there exists a k-cycle S in the chain complex Ck(Ĝ) with σ = [S]. We claim that any
vertex v in S must have degree at least k + 1, and hence S ∈ Ck(Ĝk+1).

As S is k-cycle ∂kS = 0 ∈ Ck−1(Ĝ). Let S =
∑N

i=1 ci∆i where {∆i} are k-simplices in the
simplicial complex Ĝ. Then, ∂S = ∂

∑
i ci∆i =

∑
i ci∂∆i. Notice that if ∆i ⊂ Ĝ, this implies any

16

vertex of ∆i = [wi
0, w

i
1, . . . , w

i
k] has at least degree k in G as ∆i has k+1 vertices {wi

0, w
i
1, . . . , w

i
k},

and they are all pairwise connected by an edge in G. Now, ∂k∆i =
∑k

r=0(−1)rΩi
r where Ωi

r =

[wi
0, w

i
1, . . . , w

i
r−1, w

i
r+1, . . . , w

i
k] are k − 1 simplices in Ĝ for 0 ≤ r ≤ k, i.e. Ωi

r is a (k − 1)-face
of ∆i.

As S being a k-cycle, and ∂kS = 0, the sum
∑

i ci∂∆i = 0. This implies that in the sum any
(k − 1)-chain Ωi

r must cancel out with another Ωj
s ⊂ ∂∆j where ∆j contains Ωi

r and a vertex wj
s

which is not a vertex in ∆i. Therefore, any vertex in ∆i is connected to both all other vertices {wi
r}

in ∆i and another vertex wj
s ∈ ∆j ⊂ S. Hence, any vertex in ∆i has degree k + 1. This can be

generalized to any vertex in S. Hence, any vertex in S has degree at least k + 1. This proves by
induction that S ⊂ Ĝk+1 as follows. All vertices in S has degree k + 1 in G. Notice that the vertices
of S has degree ≥ k+ 1 because of the other vertices in S, not with the help of outsider vertices. So,
as long as all the vertices in S are still in i-core Gi, then any vertex of S will still have degree ≥ k+1
in Gi. Therefore, By going inductively on the core index i, none of the vertices of S are removed
from Gi for 1 ≤ i ≤ k + 1. Therefore, S is a k-cycle in Ĝk+1, i.e. S ∈ Ck(Ĝk+1).

This proves for ∂k : Ck(Ĝ) → Ck−1(Ĝ) and ∂k+1
k : Ck(Ĝk+1) → Ck−1(Ĝk+1), we have ker∂k =

ker∂k+1
k (Recall Ĝk+1 ⊂ Ĝ). Notice that any vertex in any (k + 1)-simplex in Ĝ has degree at

least k + 1. Then, Ck+1(Ĝ) = Ck+1(Ĝk+1). This implies im∂k+1 = im∂k+1
k+1 where ∂k+1

k+1 :

Ck+1(Ĝk+1) → Ck(Ĝk+1). Then, Hk(Ĝ) = Hk(Ĝk+1). This proves any k-cycle S must be
produced by the k-simplices in Ĝk+1, and lower degree vertices cannot belong to S.

Also, k-core of Gi is equal to ith step of the filtration induced by f : Vk → R, i.e.(Gk)i = (Gi)
k.

Hence, if σ is born in Hk(Ĝb), then it is also born in Hk(Ĝk+1
b). If it dies in Hk(Ĝd), it also dies in

Hk(Ĝk+1
d). This proves PDk(G) = PDk(Gk+1).

For the generalization in j > k case, one only needs to consider the same process for higher order
cycles. For some j > k, let S be a j-cycle in Ĝ, i.e. Cj(Ĝ). Then, by above any vertex in S must
have degree at least j + 1. This implies S must be j-cycle in Ĝk+1, too.

Similarly, any vertex in a (j + 1)-simplex must have degree ≥ k + 1. This means Cj+1(Ĝ) =
Cj+1(Ĝk+1). This implies Hj(Ĝ) = Hj(Ĝk+1) for any j ≥ k. This proves that the inclusion
Ĝk+1
i ↪→ Ĝi induces an isomorphism for the homology groups Hj(Ĝi) = Hj(Ĝk+1

i) for any j ≥ k.
This shows the equivalence of the induced persistence modules. The proof of the theorem follows. □

C.2 Proof of PrunIT

Now, we give the proof of Theorem 7. We use the same notation given in Section 5.

Theorem 7: Let G = (V, E) be an unweighted graph, and f : V → R be a filtering function. Let
u ∈ V be dominated by v ∈ V and f(u) ≥ f(v). Then, removing u from G does not change the
persistence diagrams for sublevel filtration, i.e. for any k ≥ 0

PDk(G, f) = PDk(G − {u}, f).

Proof: Let Ĝ0 ⊂ Ĝ1 ⊂ Ĝ2 ⊂ · · · ⊂ Ĝm be the sequence of clique complexes in the induced
sublevel filtration. Let αi0−1 < f(v) ≤ αi0 . This means for any j ≥ i0, v ∈ Gj , and hence v is a
vertex in Ĝj . Since f(u) ≥ f(v), αi1−1 < f(u) ≤ αi1 for some i1 ≥ i0. Similarly, this implies u
first appears in Gi1 , and u ∈ Ĝj for j ≥ i1. In particular, v belongs to all Gj containing u.

Let G′ = G − {u}. Define the sublevel filtration Ĝ′
0 ⊂ Ĝ′

1 ⊂ Ĝ′
2 ⊂ ... ⊂ Ĝ′

m for the same filtering
function (restricted to V ′) f : V ′ → R with the same threshold set I.

For any j < i1, Ĝj = Ĝ′
j as u ̸∈ Gj . Fix j ≥ i1. Then, v ∈ Ĝj as f(u) ≥ f(v). As v dominates u

in G, v dominates u in Gj , too. Then, Gj folds onto G′
j = Gj − {u}. Then, by Lemma 5, we have

homotopy equivalence Ĝj ∼ Ĝ′
j . Hence, for any j ≥ i1, this gives Ĝj ∼ Ĝ′

j .

17

Recall that for any j < i1, Ĝj = Ĝ′
j . Therefore, for any 0 ≤ j ≤ m, the inclusion Ĝ′

j ↪→ Ĝj induces
an isomorphism between the homology groups Hk(Ĝ′

j) ≃ Hk(Ĝj). This proves the equivalence of
the induced persistence modules, and hence the corresponding persistence diagrams, i.e. PDk(G) =
PDk(G′) for any k ≥ 0. The proof follows. □

Now, we prove Theorem 10. Recall that nth power of graph G = (V, E) is defined as Gn = (V, En)
Where En = {euv | d(u, v) ≤ n}. In other words, En is obtained by adding new edges to E
connecting all the vertices whose graph distance ≤ n. Then, the power filtration of G is defined as
Ĝ0 ⊂ Ĝ1 ⊂ Ĝ2 ⊂ · · · ⊂ ĜN where Ĝn is the clique complex of Gn, nth-power of G and Ĝ0 represent
the vertex set V [3].

Theorem 10: [PrunIt for Power Filtration] Let G = (V, E) be an unweighted connected graph. Let
P̂Dk(G) represent kth persistence diagram of G with power filtration. Let u ∈ V be dominated by
v ∈ V . Then, for any k ≥ 1,

P̂Dk(G) = P̂Dk(G − {u}).

Proof: Notice that power filtration for a connected graph is trivial in dimension 0 as all features
but one dies at threshold 1. So we will assume k ≥ 1. Let H = G − {u}. We will show that Ĝn is
homotopy equivalent to Ĥn for n ≥ 1.

Let {v = w0, w1, w2, . . . , wm} be all adjacent vertices to u in G. As u is dominated by
v, {w1, w2, . . . , wm} will be adjacent to v, too. We claim that for any vertex z ̸= u in G,
d(z, v) ≤ d(z, u) where d(z, z′) is the length of the shortest path from z to z′ and each edge
has length 1. In particular, any shortest path γ from z to u must go through one of the adjacent
vertices {v, w1, w2, . . . , wm}. Let τ ⊂ γ be the segment starting at z and ending with one of
these adjacent vertices, say wi. Then, d(z, u) = ∥γ∥ = ∥τ∥ + 1. Now, consider d(z, v). Since
γ′ = τ ∪ [wi, v] is a path from z to v, this implies d(z, v) ≤ ∥τ∥+ 1 = d(z, u).

Now, we claim that if u is dominated by v in G, then u is dominated by v in Gn for any n. All we
need to show that any adjacent vertex to u in Gn is also adjacent to v. If z is adjacent to u in Gn, then
d(z, u) ≤ n in G by the definition of Gn. By above, we have d(z, v) ≤ d(z, u) ≤ n. This implies z
is adjacent to v, too. Hence, u is dominated by v. Furthermore, as v dominates u in G, no shortest
path goes through u unless the endpoint is u. Therefore, the distances in G and H would be same for
any two vertices z, z′ ∈ V − {u}. Then, by Lemma 5, Ĝn homotopy equivalent to Ĥn for any n ≥ 1.

Then, consider P̂Dk(G) for k ≥ 1. For k ≥ 1, any k-dimensional topological feature will be born in
Ĝn where n ≥ 1. As Ĝn homotopy equivalent to Ĥn for any n ≥ 1, the proof follows. □

Remark 11. [CoralTDA for Power Filtration] Of course, after the previous result, the natural follow-
up question is "Does CoralTDA also extends to power filtrations?". Unfortunately, the answer to
this question is "No". The reason is by the nature of power filtration, one keeps adding edges to
the existing vertices, and the degrees of the vertices increase in each step. This means k-cores
significantly changes during this process. A simple counterexample can be found in [1, Corollary
6.7], where the author completely classifies the topological types of clique complexes of the powers
of cyclic graphs {Cn}, i.e., A graph which forms a circle. e.g., C5 is a connected graph with 5 vertex
and 5 edges. By definition, any 3-core of a cyclic graph is empty. However, Adamazsek’s result show
that for any dimension k, there exists topological features P̂Dk(Cn) is nontrivial for n ≥ 2k + 3. If
coralTDA could be extended to power filtrations, then P̂Dk(Cn) would be trivial for any k ≥ 3.

Remark 12. [Combining Reduction Algorithms with Graph Filtration Learning] In [29], the authors
studied a fundamental question, which is to find the “best filtering function” for the given classification
problem. Indeed, the “right” filtering function is often the key behind the classification performance.
Under the assumption that dominated vertex value is greater than its dominating vertex value, we
can invoke our PrunIt result and run the “Graph Filtration Learning” algorithm of [29] on the pruned
graph which will lead to computational and (possibly) performance gains. For node classification
tasks, it would be also wise to check the relation between the class differences between dominated
and their dominating vertices. With similar reasoning, our CoralTDA method can also be combined
with the “Graph Filtration Learning” algorithm and other methods.

18

Remark 13. [PrunIT vs. Strong Collapse] In [7, 8, 9], the authors introduced Strong Collapse method
to effectively reduce the computational costs for the persistence diagrams. In this context, Strong
Collapse method is defined for any simplicial complex sequence, whereas PrunIT ise specifically
defined for the graph setting. The main difference between Strong Collapse and PrunIt is that PrunIT
captures the dominated vertices in the graph at once, before filtration while Strong Collapse needs to
be applied in each filtration step. In particular, for a given graph G and the filtering function f , PrunIT
detects the dominated vertices in the graph, and by removing them, gives a smaller graph G′ with the
same persistence diagrams PD(G, f) = PD(G′f). Since the detection of dominated vertices is done
in the graph itself, the PrunIt algorithm works very fast. On the other hand, Strong Collapse method
is designed to work with flag complexes. Therefore, if one wants to apply Strong Collapse method to
compute PD(G, f), one needs to go to the filtration sequence (flag complexes) Ĝ1 ⊂ Ĝ2 ⊂ · · · ⊂ ĜN ,
and apply the Strong Collapse method for each flag complex Ĝn for 1 ≤ n ≤ N in the the filtration
sequence. This means one needs to detect dominated vertices for each Ĝn and remove them. Therefore,
especially if the filtration sequence is long (N is large), PrunIT would be a more efficient method in
graph setting.

We run experiments on the on Email-Enron dataset with 36K nodes and 183K edges (see Table 1)
for PrunIt and Strong Collapse methods with degree filtering function. We provide the results in the
supplementary material. In particular, we tried two different threshold step sizes δ1 = 4 and δ2 = 12
which give filtration sequence of lengths N1 = 346 and N2 = 116 respectively. In Table 3, we give
the computation times in seconds for PrunIT and Strong Collapse algorithm to eliminate dominated
vertices before PH computations. For PH computation step, recall that PH computation is cubic in
terms of count of simplices [48]. In Table 3, we also give these simplex counts for each method. The
details can be found in the supplementary material.

Table 3: Comparison results for PrunIt and Strong Collapse Method for Email-Enron dataset.

Computation time (sec) Simplex Count (million)
Step size PrunIt S. Collapse PrunIT S.Collapse

4 1412 7014 270.2 465.2
12 513 2520 90.7 155.8

D Further Reduction Results

D.1 Reduction for Graph and Node Classification Datasets

In the following Figures 7 to 9, we report further reduction percentages for each PDk(G) for the
graph and node classification datasets given in Table 2. Here, the x-axes represent the dimension k for
PDk(G). Edge and simplex reduction figures closely resemble the vertex reduction in Figure 4. In
time reduction of Figure 8, we see three datasets (OHSU, FACEBOOK, TWITTER) with diverging
behavior as follows.

Figure 7: CoralTDA clique count reduction in graph and node classification datasets (higher is better).

OHSU, despite losing many of vertices in core reduction, does not have a time reduction as much
as the other kernel datasets. We explain this behavior with small graph orders but high coreness in
OHSU. Note that unlike any other kernel dataset, vertex reduction does not reach 100% in OHSU
graphs. Calling core decomposition on OHSU graphs adds a time cost that takes away the benefit of
coralTDA to some extent. As a result, time reduction is at most 25%.

A similar dynamic is seen in TWITTER and FACEBOOK, where graphs have high cores. As a
result, most vertices cannot be peeled away in core reduction (Figure 4 shows at most 20% vertex
reduction).

19

Figure 8: CoralTDA time reduction in graph and node classification datasets (higher is better). We
do not observe a reduction in Facebook and Twitter datasets. The added computational cost of the
algorithm results in negative gains.

Figure 9: CoralTDA edge reduction (100×(|E|−
∣∣Ek

∣∣)/ |E|) in graph and node classification datasets
(higher is better). Reduction values are averages from graph instances of the datasets.

D.2 Clustering Coefficient and Higher Persistence Diagrams

While the proposed reduction algorithms provide a computationally efficient framework for higher-
order topological summaries of graphs, in many real-world applications, we still need to address
the important question of whether a given network exhibits a nontrivial higher (k ≥ 2) persistence
diagram PDk(G). When the (k+1)-core Gk+1 is sufficiently small, the answer immediately follows
from our result. However, the problem is substantially more challenging in applications involving
large complex networks such as blockchain transactions and protein interaction graphs. The goal is
to assess whether for k = 2, 3, PDk(G) is trivial or not. Indeed, such higher homological features
might be associated, for example, with money laundering patterns or drug-target interactions.

Figure 10: Clustering coefficients in kernel datasets. Betti 3 and higher do not exist in these graph
datasets. In fact, even Betti 3 exists in a single graph only. Most Betti computations on such graphs
can be avoided by using our conjecture on the clustering coefficient.

Our experiments show that many real-life data sets tend to exhibit nontrivial second and third
persistence diagrams (see Figures 2 and 10). We compare these datasets by considering their
clustering coefficients CC(G). Our observations indicate that when CC(G) is too low or too high,
then the higher-order persistence diagrams associated with these data tend to be trivial. Intuitively,
when CC(G) is too low, the graph G tends to be too sparse to form a k-cycle and, hence, is unlikely
to produce a nontrivial PDk(G). When CC(G) is too high, then the graph G is too dense and every
k-cycle is filled immediately by a (k + 1)-complex in Ĝ. We formulate this phenomenon in the form
of the following conjecture.

Conjecture: For k ≥ 2, there are 0 < αk < βk < 1 such that when CC(G) > βk and CC(G) < αk,
then PDk(G) = ∅ with high probability.

However, clustering coefficient has the computational complexity of O(|E|1.48) [10], hence the using
the coefficient may not seem as an improvement over coral reduction, which has a complexity of

20

O(|E|+ |V|). However, note that the clustering coefficient can be iteratively computed as the average
of vertex clustering coefficients (in a parallel setting). In this approach, a stopping condition can be
applied to terminate early when the coefficient can be approximated. The gain in computational time
may help the coral technique on extremely large graphs or their induced subgraphs.

E Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See abstract for details.
(b) Did you describe the limitations of your work? [Yes] See Section section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix D.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see the
proofs given in Appendix C.

(b) Did you include complete proofs of all theoretical results? [Yes] Please see the proofs
given in Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Please see Section 6.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Our experiments report averages with deviations (See
Figure 6).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The experimental setting is given
in Section 6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We use graph data only. Our datasets do not
contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

F Broader Impact

The proposed methodology makes an important step toward addressing the major existing roadblock
in bringing the powerful machinery of TDA to the analysis of large-scale networks, from online social

21

media to gene-to-gene interactions in bioinformatics. Undoubtedly, the application of TDA in learning
such large-scale networks will have a substantial positive impact in a broad range of applications
such as classification of anomalous subgraphs in blockchain transaction networks, discovering links
between side effects and drugs, and drug re-purposing. However, the critical negative impact of
the proposed methodology is associated with our current inability to accurately quantify the loss of
topological information due to pruning and the influence of such loss on the final learning task. This
is a fundamental question that needs to be addressed in the future.

22

	Introduction
	Related Work
	Persistent Homology
	CoralTDA Reduction and Higher Persistence Diagrams
	Relation between Gi and Gki
	CoralTDA Reduction

	PrunIT Algorithm
	Experiments and Discussion
	Reduction on Graph Classification Datasets
	Reduction on Node Classification Datasets
	Reduction on Large Networks

	Conclusion
	Acknowledgments
	Datasets
	Algorithms
	Proofs of the Theorems
	Proof of CoralTDA
	Proof of PrunIT

	Further Reduction Results
	Reduction for Graph and Node Classification Datasets
	Clustering Coefficient and Higher Persistence Diagrams

	Checklist
	Broader Impact

