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A APPENDIX

A.1 THE DERIVATION ON DIFFERENTIATION OF OPTIMIZATION MAPPINGS

We illustrate our methodology using data-driven linear programming as an example. Notably, our
approach extends to various problem types, provided that a suitable differentiable operator (Mandi
et al., 2023) is substituted for DSLP. For a clearer exposition of DSLP, we first delineate linear
programming with the subsequent equations:

min
π

f(y,π) = [y1π, · · · , yTπ]

s.t. Aπ ≤ b
(1)

By leveraging the KKT conditions, the DSLP constructs a system of linear equations based on the
predicted coefficient and the optimal decision. Applying the implicit function theorem allows us to
derive the expression for the second term.
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where λ denotes the optimal dual variable of studied problems and diag(·) creates a diagonal matrix
from an input vector. Due to the Hessian matrix of linear programming isn’t full-rank, it fails to apply
in the domain of linear programming. Wilder (Wilder et al., 2019) proposed to add one small squared
regularizer term into LP which addressed the ill-conditioned Hessian matrix of LP. The objective
function of Eq.1 in training phase is replaced with f(y,π) = [y1π + γ‖π‖22, · · · , yTπ + γ‖π‖22].
The second term can be calculated by solving the following system of linear equations.
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$
=

!
I
0

"
(3)

In the above equations, π̂,λ correspond to the optimal primal variable and dual variable and can
be calculated by solving the quadratic programming problem derived from the linear programming.
During the inference phase, the regularization factor γ is set as 0 to yield an integral decision.

A.2 THE MATHEMATICAL FORMULATIONS OF BENCHMARK PROBLEMS

A.2.1 WEB ADVERTISEMENT ALLOCATION

We examine one specific case of web advertisement allocation existing in anonymous App. The
system is designed to optimize cumulative click metrics and increment the subsequent day’s user
visitation. As for each query, we recommend at most one advertisement to user. For each user
query, a singular advertisement recommendation is proposed. This framework diverges from tra-
ditional recommendation systems in that each advertisement is associated with a distinct business
category. Over a specified time frame, the display frequency of advertisements from any given busi-
ness category is intended to approximate a pre-determined parameter δ. The decision problem can
be regard as one online-matching optimization problem, commonly addressed using the primal-dual
approach. The formulation of this problem can be formulated as Eq.4. Within this equation, the cost
vector y1, y2 denote the predicted the click-through probabilities and re-login probabilities for users
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on the subsequent day, respectively. Let i represent the query index, j the candidate advertisement
index, and k the business category index, with c(j) indicating the business category of item j. The
target of exposure ratio for advertisements is specified by the vector δ, with an allowable deviation
encapsulated within the threshold thr, thr > 0. Furthermore, ND,NC denote the quantities of
queries and candidate advertisements, respectively.

max
π

f(y,π) = [
%

i,j

y1ijπij ,
%

i,j

y2ijπij ]

s.t.
%

j

πij ≤ 1; i = 1, 2, · · · , ND

&
j,c(j)=k

&
i πij

ND
≤ δk + thr; k = 1, 2, · · · , NC

−
&

j,c(j)=k

&
i πij

ND
≤ −δk + thr; k = 1, 2, · · · , NC

πij ∈ {0, 1}

(4)

It is important to recognize that counter-factual outcomes are unattainable. A model was trained
utilizing a dataset exceeding 20 million queries, employing the predictive output as labels. During
the experimental phase, a random subset of 30,000 queries was selected to create 300 instances, with
each instance consisting of 100 queries and 53 candidate advertisements. In the decision-focused
setting, the prediction problem is one typical multi-task binary classification problem, incorporat-
ing a click-through rate prediction task, a prevalent and extensively researched problem within the
domain of recommendation systems.

A.2.2 BIPARTITE MATCHING AMONG SCIENTIFIC PAPERS

We adapted the benchmark problem proposed in (Wilder et al., 2019) to create multi-objective
benchmark problem. The data were obtained from the cora dataset (Sen et al., 2008). In the dataset,
each node corresponds to a scientific paper, and each edge represents a citation. The feature vector
of nodes indicate the presence or absence of each word from a defined vocabulary. The dataset
includes 2708 nodes. Wilder et al. employed the METIS algorithm (Karypis & Kumar, 1998) to
partition the complete graph into 27 sub-graph, each with 100 nodes. Each graph corresponds to one
instance. Subsequently, nodes within each instance were allocated to two sets of a bipartite graph,
each comprising 50 nodes, to maximize the number of edges between the sets. More detail can refer
to (Wilder et al., 2019).

The core is to generate the labels of an alternative objective value that differ from but are similar to
the original labels. The cited relationship is denoted by y1. We perturb the y1 to generate y2.

y2ij = I(rij ≥ ρ)(1− y1ij) + I(rij < ρ)y1ij (5)

where rij is draw from the uniform distribution from 0 to 1, I(·) is the indicator function, and ρ
is given constant to control the similarity between y1 and y2. In this study, ρ is set as 0.05. The
constrain function aligns with the conventional bipartite matching problem. Considering that the
matching weight are positive and decision variables belong to 0, 1, we can relax the problem to a
linear programming formulation, as presented in Eq. 1. The NU,NV represent the number of nodes
in the left and right subsets of the bipartite graph, respectively.

max
π

f(y,π) = [
%

i,j

y1ijπij ,
%

i,j

y2ijπij ]

s.t.
%

j

πij ≤ 1; i = 1, 2, · · · , NU

%

i

πij ≤ 1; j = 1, 2, · · · , NV

πij ∈ [0, 1]

(6)
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A.3 THE CALCULATION OF EVALUATION METRIC

In the setting of DFL, the output involves a set of solutions. We assess the algorithm’s performance
by measuring its decision quality against a true optimization problem. A straightforward metric is
the objective function value of the true problem. However, owing to the variance in scale among
objectives, we utilize the average percentage regret r as the evaluation metric. The method of calcu-
lation is as follows:

rj =
1

N

%

i

fj(y
j ,πi)− fj(y

j ,π∗,j)

fj(yj ,π∗,j)
(7)

r =
1

T

%

j

rj (8)

where N denotes the size of solution set, and π∗,j represents the optimal solution for the jth objec-
tive. A lower average percentage regret indicates better performance.

Besides, we consider three performance metrics widely used in the field of MOP problem. We
denote the Pareto front of predicted and true problem, desperately P̂S and PS∗. The generational
distance (GD) (Ishibuchi et al., 2015) measures the minimum distance between the Pareto front of
predicted and true problem. The GD is defined as follows:

GD(P̂S, PS∗) =

&
p∈P̂S d(p, PS∗)

|P̂S|
(9)

The d(p, PS∗) denotes the minimum Euclidean distance between p and the points in PS∗. A lower
GD indicates superior algorithm performance.

The maximum Pareto front error (MPFE) quantifies the largest distance between any vector in the
approximation front and its corresponding closest vector in the true Pareto front. It assesses the
dissimilarity between individual solutions in the approximation front π̂i and the true Pareto front
π∗
k. The formula of MPFE is given by:

MPFE = max
k

(min
i

%

j

|fj(π∗
k)− fj(π̂i)|p)

1
p (10)

In this paper, parameter p is set to 2.

The hyper area ratio (HAR) is a metric related to hypervolume (HV), which calculates the sum of
the hypervolume of a hypercube formed by a given frontier and reference points. The, HAR is the
ratio of the HV of the predicted problem’s Pareto front to the HV of the true problem’s Pareto front.
The reference point is determined by the vector of the objective function values of single-objective
optimal solutions. A smaller HAR signifies enhanced algorithm performance.

HAR =
HV (P̂S)

HV (PS∗)
(11)

A.4 THE DETAILS OF EXPERIMENTAL SETUP ON OPTIMIZATION PROBLEM

Considering the optimization problem of all testing benchmarks is multi-objective linear program-
ming, we used the weighted-sum method to transform multi-objective problem into one single-
objective linear programming, and employ the HiGHS solver in Scipy to address optimization prob-
lem. The selection of weighted-sum method to solve the multi-objective problem in this paper is due
to the following reasons: for linear problems, it is provable that solutions derived from the weighted-
sum method fall within the Pareto set. This can be proved by contradiction. We suppose that πw, the
optimal solution of fw(y,π), lies within the Pareto set of f(y,π). Otherwise, there exists one solu-
tion π0 in Pareto set dominates πw, i.e, ft(y,π0) ≤ ft(y,π

w), ∀t and ft0(y,π
0) < ft0(y,π

w), ∃t0.
Under this assumption, there exists one solution π0 such that fw(y,π0) < fw(y,π

w). Such a
result contradicts the definition of optimality for single-objective problems. Thus, in the studied
optimization problems, we have proved that the optimal of fw(y,π) is Pareto optimal. As for
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the implementation, we applied instance normalization to all objectives so as to eliminate the dif-
ferences in scales between different objectives. Weights were assigned as w

5 , where w satisfies
{w|

&T
i wi = 5, wi ∈ N}. The set N denotes the set of non-negative integer.
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