
Under review as a conference paper at ICLR 2024

A REPRESENTATION LEARNING TASKS ON GENE NETWORKS AND OTHER
GRAPH BENCHMARKS

In the natural world, genes don’t operate independently and always function as part of a set of
genes. Hence, they can be regulated as the graph modality based on reported genetic interactions that
underlie phenotypes in a variety of bioinformatical systems. Then, various computational tasks on
gene networks (graphs) are proposed in recent bioinformatics to numerically analyze contribution of
genes to complex disease in humans. In this work, we take two long-standing challenging tasks in
bioinformatics, Alzheimer’s disease (AD) classification and cancer subtype classification, as example,
and introduces corresponding gene-network datasets. Here we compare the these gene network
datasets against popular graph benchmark datasets to illustrate challenges of graph representation
learning over gene networks.

Dataset Ave. # nodes Ave. # edges # Tasks Task Type Metric

Mayo 3000 60000 2 Classification Accuracy & F1
RosMap 3000 60000 2 Classification Accuracy & F1
Cancer Subtype 3800 48000 7 Classification Accuracy & F1

NA 8 12 1 Regression RMSE & Pearson’r
BN 10 15 1 Regression RMSE & Pearson’r
ogbg-molhiv 26 55 2 Classification ROC-AUC
ZINC 23 50 1 Regression MAE
D&D 284 1431 2 Classification Accuracy
MUTAG 18 39 2 Classification Accuracy
PROTEINS 39 146 2 Classification Accuracy
PTC-MR 14 29 2 Classification Accuracy
ENZYMES 33 124 6 Classification Accuracy

Table 6: Comparison of gene networks and graphs in popular benchmark datasets

Table 6 presents preliminary results. Compared to graphs in popular benchmarks, gene networks
always contain significantly large number of nodes (denoted as n) as well as the number of edges
(denoted as m), which limits the applicability of popular expressive GNNs due to the complexity
consideration. For subgraph-based GNNs like NGNN (Zhang & Li, 2021), the space complexity
grows exponentially as the average node degree m

n increases. For high-order GNNs, such as k-WL
(Morris et al., 2019) and k-FWL (Grohe, 2021), that mimic the high-order WL algorithms, the stable
colourings/representations can be computed in O(k2nk+1 log n) with a space complexity of O(nk).
Consequently, it is hard to apply these methods to gene network representation learning.

B MORE DISCUSSION OF GC-GNN AND UGC-GNN

In this section, we provide more discussion of GC-GNN.

• Part 1: Limitations of GC-GNN and UGC-GNN.
• Part 2: The complexity of GC-GNN and UGC-GNN.

Part 1 (Table 7) One significant limitation of GC-GNN and UGC-GNN is that the (universal)
graph canonization fail to consider the heterogeneity among edges. In addition, GC-GNN is also
not guaranteed to be suitable for all graph learning tasks. Here we empirically test GC-GNN on
moleculr datasets, ogbg-molhiv and ogbg-molpcba, in Open Graph Benchmark (Hu et al., 2020).
Table 7 provides empirical results. As we can see, though in most cases GC-GNN still improve
the performance over backbone GNNs, the improvement is not significant as TU datasets and GC-
GNN can not achieve the SOTA performance. In some cases, the graph canonization even causes a
performance decrement over the GNN backbone. The performance decrease might be explained by
the utilization of atom encoders in ogbg-molhiv, which generate learnt embedding for more efficient
representation learning, while these learnt nde embeddings are not suitable for graph canonization
algorithms. Then the performance improvement from distinguishing more graph structures can not
overwhelm the decrease from deteriorated mode stability.

Part 2 The main concern of complexity comes from the graph canonization algorithms. As we
discussed in the main paper (section 1.1, other related works), although graph canonization is a well-

14

Under review as a conference paper at ICLR 2024

ogbg-molhiv (AUC ") ogbg-molpcba (AP ")

GCN (backbone) 0.7501 ± 0.0140 0.2422 ± 0.0034
GN-GCN 0.7609 ± 0.0158 0.2510 ± 0.0047

GIN (backbone) 0.7744 ± 0.0098 0.2703 ± 0.0023
GN-GIN 0.7307 ± 0.0198 0.2761 ± 0.0043

Table 7: Empirical results on molecular datasets. Performance increment and decrement are visualized
as colors.

know NP-complete problem, practical canonization tools such as Nauty (McKay & Piperno, 2014)
and Bliss (Junttila & Kaski, 2012), can effectively solve the problem in practice with an average time
complexity of O(n). The process of computing the canonical forms of graphs can be implemented in
the graph pre-process phase and we only need to perform practical graph canonization tools once for
each graph. Furthermore, as the output discrete colouring {⇢(v1|G), ⇢(v2|G)...⇢(vn|G)} of graph
canonization are used as positional encodings of nodes, the additional space complexity is also O(n).
Hence, compared to dominant expressive GNNs like subgraph-based GNNs and high-order GNNs,
GC-GNN (UGC-GNN) is much more efficient with a significant low space and computation cost.
For instance, on ogbg-molhiv, GC-GNN (GIN) takes 39 seconds per epoch, while Nested GIN takes
168 seconds.

C PROOF OF LEMMA 2.3 AND LEMMA 2.4

We first prove Lemma 2.3. Since discrete colouring {⇢(v1|G), ⇢(v2|G), ..., ⇢(vn|G)} generated by
graph canonization provides a unique way to label nodes for graphs in the same isomorphic group
ISO(G), then the isomorphism of two graphs can be determined by checking whether the node
pairs of the same labels share the same edge relation. When the graph convolution layers on GNN
g are injective, it can injectively map the pair of a node and the set of its’ neighboring nodes. then
if two graphs get different sets of learnt node embeddings by the GNN g, there must exists at least
one pair of node label and the set of its’ neighboring nodes’ labels are different. Then, these two
graphs are not isomorphic. On the other hand, when two graphs are not isomorphic, there must be at
least one pair of nodes with the same labels, while the pair of nodes are connected in one graph yet
disconnected in another graph. Then the graph convolution layer will output different embeddings for
each node in the node pair.

Next, we prove Lemma 2.4 to support theoretical results about the stability of GNNs and GC-GNNs.
Before proving our lemma, we first introduce some necessary preliminaries that we will later use in
the proofs.

Preliminary 1: Decomposition of message passing layer of GNNs The message passing scheme
adopted in popular GNNs iteratively updates a node’s representation/embedding according to the
multiset of its neighbors’ representations/embeddings and its current representation/embedding. Let
h
t
v denotes the representation of v in layer t, the massage passing scheme is given by:

h
t+1
v = M(ht

v, {h
t
u|(u, v) 2 E})

= U(ht
v,A({ht

u|(u, v) 2 E}))

Here, A is an aggregation function on the multiset S = {h
t
u|(u, v) 2 E}) and U is an update

function.

Definition C.1 A function f is claimed as a L-stable multiset function if 1)
P

h2S f(h) is unique
for each multiset S of bounded size; and 2) for any two multisets S1 and S2, ||

P
h2S1

f(h)�
P

h02S2
f(h

0
)||  L⇥ dS(S1, S2), where dS(S1, S2) = |S1|+ |S2|� |S1 \ S2|.

The L-stable multiset function f provides a unique mapping between the multiset space and represen-
tation space, while distance between multisets in the representation space are bounded through the
constant multplier L.

Corollary C.2 Assume that input feature space H is countable. Any message passing function M

over pairs (h, S), where h 2 H and S ⇢ H, can be decomposed as M(h, S) = �((1 + ✏)f(h) +

15

Under review as a conference paper at ICLR 2024

P
h02S f(h

0
)) for some L-stable multiset function f , some function � and infinitely many choices of

✏.

This corollary C.2 can be obtained by following the Lemma 5 and Corollary 6 in Xu et al. (2019).
Basically, since the space H is countable, we can always get a mapping Z : H ! N from h 2 H

to natural numbers. As S are bounded multiset, there always exists an upper bound B of their
cardinality such that |S| < B for any S. Hence, the example function f(h) = B

�Z(h) satisfies both
the uniqueness condition as well as the inequality condition in Definition C.1 where the constant
L = 1

B .

Preliminary 2: Graph canonization and individualization-and-refinement paradigm Here
we provide an extended discussion on the graph canonization and individualization-refinement
paradigm. To address the complex graph isomorphism/ graph canonization problem, practical graph
canonization tools resort to the individualization-and-refinement paradigm, where the color refinement
and individualization steps are iteratively performed to get a discrete colouring.

• 1. Color refinement step: The color refinement algorithm aims to recolor nodes in a graph
by similarity. The algorithm starts with some initial node colors, then the algorithm updates
node’s color round by round, and in each round, two nodes with the same color will get
different new color if the multiset of neighboring colors are different. This process continues
until an equitable colouring is obtained such that the node colors will not change even if
another color refinement round happens.

• 2. Individualization step: When a stable colouring generated by the color refinement step is
discrete, then returns a order of nodes in the canonical form. However, in many cases, the
stable colouring are not discrete. Then the individualization step selects a node in a color
class with more than one node and assigns a new (unseen) color to the node. Then the color
refinement step is implemented again.

Specifically, in the color refinement step, the new colors are obtained by lexicographically sorting
the pair of node current color and it’s multiset of neighboring colors. Hence, the new order of new
node colors always follows that of the previous colors. That is, at round t, if two nodes v, u have
different colors ct(u) and c

t(v) such that ct(u) < c
t(v), then after one round of color refinement, the

new colors of these two nodes have c
t+1(u) < c

t+1(v).

Above individualization-refinement paradigm in practical graph canonization tools provide a solution
to obtain a discrete coloring, yet not in a canonical way. That is, generated discrete coloring is not
guaranteed to be the same for graphs in the same isomorphic class. To fix this, practical tools usually
branch on all nodes of the same color in the individualization step and individualizes one node in
each branch. Then a tree of colouring can be obtained such that each leaf of the tree is a discrete
coloring of the input grpah G. Then the final discrete colouring is selected, for example, as the leaf
with the lexicographically minimal string that consists of the rows of the adjacency matrix according
to the discrete colouring (i.e. node orders). More details can be found in McKay & Piperno (2014).

Proof. (Part one: A GNN model g is stable under X) Here, we assume the function � in the
decomposition of message passing layer of GNNs is K-Lipschitz. A function � : (X, dx) ! (Y, dy)
between two metric spaces is K-Lipschitz if dy(�(x1),�(x2))  Kdx(x1, x2) for any x1, x2 2 X ,
where K is a constant.

Corollary C.3 MLPs are K-Lipschitz.

In popular message passing GNNs, � is always modeled by a MLP. Hence, we need to prove
corollary C.3 to use the K-Lipschitz assumption. For each MLP layer that characterized by the
trainable parameter tensors Wi and bi (bias), it can be represented as �(Wix+ bi), where � is the
activation function. Then we have ||�(Wix1 + bi)� �(Wix2 + bi)|| = ||

@�
@xWi(x1 � x2)||. Since

the activation function � usually takes ReLU/sigmoid/tanh, it’s straightforward that ||@�@x || is bounded
by a constant K1. Then we get ||@�@xWi(x1 � x2)||  K1||Wi||2||x1 � x2||, where K1||Wi||2 is a
constant independent of x1 and x2. Hence, we show that MLPs are K-Lipschitz.

Next, let’s prove the theoretical result. Without loss of generality, we assume that the GNN contains
a single message passing layer. For any two graphs G(1) = (A(1)

, X
(1)) and G

(2) = (A(2)
, X

(2)),

16

Under review as a conference paper at ICLR 2024

let ⇡⇤
2 ⇧(n) denotes the optimal permutation operation that best aligns the G1 and G2, and P

⇤ is
the corresponding permutation matrix. Then we have,

||g(A(1), X(1)) � g(A(2), X(2))||

=||
X

v2G(1)

�((1 + ✏)f(X(1)
v) +

X

v
02N(v|G(1))

f(X(1)

v
0)) �

X

u2G(2)

�((1 + ✏)f(X(2)
u) +

X

u
02N(u|G(2))

f(X(2)

u
0))|| (1)


X

v2G(1)

||�((1 + ✏)f(X(1)
v) +

X

v
02N(v|G(1))

f(X(1)

v
0)) � �((1 + ✏)f(X(2)

⇡⇤(v)
) +

X

u
02N(⇡⇤(v)|G(2))

f(X(2)

u
0))|| (2)

K
X

v2G(1)

||(1 + ✏)f(X(1)
v) +

X

v
02N(v|G(1))

f(X(1)

v
0) � (1 + ✏)f(X(2)

⇡⇤(v)
) �

X

u
02N(⇡⇤(v)|G(2))

f(X(2)

u
0)|| (3)

K(1 + ✏)
X

v2G(1)

||f(X(1)
v) � f(X(2)

⇡⇤(v)
)|| + K

X

v2G(1)

||
X

v
02N(v|G(1))

f(X(1)

v
0) �

X

u
02N(⇡⇤(v)|G(2))

f(X(2)

u
0)|| (4)

K ⇥ L ⇥ (1 + ✏)(
X

v

X(1)
v 6= X(2)

⇡⇤(v)
) + K ⇥ L ⇥ dS(N (v|G(1)), u

0
2 N (⇡⇤(v)|G(2))) (5)

K ⇥ L ⇥ (1 + ✏)d(G(1), G(2)) (6)

Here, we use the K-Lipschitz property in the step (4), and use the property of L-stable multiset
function in step (6). Furthermore, N (v|G(1)) denotes the set of neighboring nodes of v in G

(1), and
can be characterized by the vth row of adjacency matrix A

(1). N (⇡⇤(v)|G(2)) denotes the set of
neighboring nodes of v’s image in G

2, and can be characterized by the vth row of adjacency matrix
P

⇤
A

(2)
P

⇤T . Hence, we show that GNN g is stable under X with a constant C of K ⇥ L⇥ (1 + ✏).

Proof. (Part two: A GNN model g is not stable under X � P) Here we provide a counter
example. Let G(1) be a graph of n nodes such that 1) there is no node symmetry in the graph; 2) the
node vn has an initial color (integer feature) that is strictly larger than the colors of other nodes. Then,
we obtain a graph G

(2) by changing the initial color of node vn in G
(1) to another color which is

strictly smaller than the colors of other nodes. Then, we know that there is no node symmetry in the
graph G

(2), either. Furthermore, it’s straightforward that the best graph matching ⇡
⇤
2 ⇧(n) between

G
(1) and G

(2) is ⇡(i) = i for 8i = 1, 2, ...n and the corresponding permutation matrix P
⇤ = I is an

identity matrix.

Since there is no node symmetry in G
(1) and G

(2), the color refinement step in
graph normalization tools will generate discrete colourings for G

(1) and G
(2). Let

{⇢(v1|G(1)), ⇢(v2|G(1)), ..., ⇢(vn|G(1))} and {⇢(v1|G(2)), ⇢(v2|G(2)), ..., ⇢(vn|G(2)
} denote the

corresponding discrete colourings. As we discussed in preliminary 2, the output discrete colouring
from color refinement will keep the order of initial colors. Hence, we know that ⇢(vn|G(1)) = n,
⇢(vn|G(2)) = 1 and ⇢(vi|G(1)) = ⇢(vi|G(2)) + 1 for i = 1, 2, ...n � 1. Thus, we get
⇢(vi|G(1)) 6= ⇢(vi|G(2)) for i = 1, 2, ..., n, indicating that P (1)

v 6= P
(2)
v for 8v. Thus, we have,

||g(A(1)
, X

(1))� g(A(2)
, X

(2))||

�||

X

v2G(1)

(1 + ✏)(f(X(1)
v + P

(1)
v)� f(X(2)

v + P
(2)
v))|| (7)

�(1 + ✏)⇥ |G
(1)

|⇥
1

B
(8)

�1 = d(G(1)
, G

(2)) (9)

Since the function f is defined on the multiset whose cardinality is bounded by the overall graph size
n, we get B  |G

(1)
|.

D PROOF OF THEOREM 3.2

Proof. Following the proof of Lemma 2.4, we consider the same decomposition scheme M(h, S) =
�((1+ ✏)f(h) +

P
h02S f(h

0
)) of the message passing layer, yet the input space is X �P (where P

17

Under review as a conference paper at ICLR 2024

is the 2-dimensional tensor of one-hot encodings of discrete colouring generated by universal graph
normalization), instead of the input feature X .

Then, let’s consider any pairs N (v|G(1))) and N (⇡⇤(v)|G(2))). Since the discrete colouring in
any common subgraph G

0
of G(1) and G

(2) are identical, the number of same items in multisets
{X

(1)

v0 |v
0
2 N (v|G(1))} and {X

(2)

u0 |u
0
2 N (⇡⇤(v)|G(2))} will not change if we replace X

(1)

v0 with

X
(1)

v0 + P
(1)

v0 , and X
(2)

u0 with X
(2)

u0 + P
(2)

u0 . Then we get,

X

v
02N (v|G(1))

f(X(1)

v
0 + P (1)

v
0)�

X

u
02N (⇡⇤(v)|G(2))

f(X(2)

u
0 + P (2)

u
0)

=
X

v
02N (v|G(1))

f(X(1)

v
0)�

X

u
02N (⇡⇤(v)|G(2))

f(X(2)

u
0) (10)

Thus, we have

||g(A(1), X(1))� g(A(2), X(2))||

=||
X

v2G(1)

�((1 + ✏)f(X(1)
v + P (1)

v) +
X

v
02N (v|G(1))

f(X(1)

v
0 + P (1)

v
0))

�
X

u2G(2)

�((1 + ✏)f(X(2)
u + P (2)

u) +
X

u
02N (u|G(2))

f(X(2)

u
0 + P (2)

u
0))|| (11)

K
X

v2G(1)

||(1 + ✏)f(X(1)
v + P (1)

v) +
X

v
02N (v|G(1))

f(X(1)

v
0 + P (1)

v
0)

� (1 + ✏)f(X(2)
⇡⇤(v) + P (2)

⇡⇤(v))�
X

u
02N (⇡⇤(v)|G(2))

f(X(2)

u
0 + P (2)

u
0)|| (12)

K(1 + ✏)
X

v2G(1)

||f(X(1)
v + P (1)

v)� f(X(2)
⇡⇤(v) + P (2)

⇡⇤(v))||

+K
X

v2G(1)

||
X

v
02N (v|G(1))

f(X(1)

v
0 + P (1)

v
0)�

X

u
02N (⇡⇤(v)|G(2))

f(X(2)

u
0 + P (2)

u
0)|| (13)

=K(1 + ✏)
X

v2G(1)

||f(X(1)
v + P (1)

v)� f(X(2)
⇡⇤(v) + P (2)

⇡⇤(v))||

+K
X

v2G(1)

||
X

v
02N (v|G(1))

f(X(1)

v
0)�

X

u
02N (⇡⇤(v)|G(2))

f(X(2)

u
0)|| (14)

K ⇥ L⇥ (1 + ✏)d(G(1), G(2)) (15)

where we use the equation (11) in the step (14) to get step (15).

E PROOF OF LEMMA 3.3

Proof. Since the function l(v|G) : V ! N is an injective function, it can distinguish nodes in each
graph according to l(v|G). Furthermore, since for 8 v1, u1 2 G1, v2, u2 2 G2, G1, G2 2 G such
that l(v1|G) = l(v2|G) and l(u1|G) = l(u2|G), we have (v1, ui) 2 E1 $ (v2, u2) 2 E2, we know
that the connectivity between node pairs (v, u) of the same label pairs (l(v|G), l(u|G)) is shared
among all graphs. Let N be the total number of all potential different labels l(v|G), then we can
expand each graph to a larger graph of size N, where each node v has an order/position of l(v|G),
and rest positions are padded by dummy nodes that is not connected with any other nodes. Then, any
common subgraph G

0
of G1 and G2, is also a common subgraph of their converted larger graphs,

and it is obivous that the orders of nodes in each common subgraph of these generated larger graphs
are identical.

18

Under review as a conference paper at ICLR 2024

F PROOF OF LEMMA 3.4

Proof. Let G = (A,X) be an arbitrary graph of size n, and 8P 2 ⇧(n) where ⇧(n) is the
permutation group. {l(v1|G), l(v2|G)...l(vn|G)} is the discrete colouring of G generated by the
universal graph canonization. The discrete colouring is invariant to the permutation operation P as
graphs from the same isomorphic class has the same canonical form (so as the same output discrete
colouring from universal graph canonization). Here, we use L to denote a 2-dimension tensor of one-
hot features of this discrete colouring. Then, let G

0
= (PAP

T
, PX) (G

0
is isomorphic to G), then,

the corresponding discrete colouring tensor is PL. Let M be a stack of message passing layers, then
we have PM(A,X) = M(PAP

T
, PX) for 8X,A. Let R denote the readout function of UNGNN,

that is R({hv|v 2 V }) =
P

v2V Wl(v|G)hv, then R is invariant to the order of {hv|v 2 V } as
the corresponding weight matrix Wl(v|G) is solely decided by node’s discrete color l(v|G). Hence,
UNGNN g is a composition of functions R and M, then we get:

g(PAP
T
, PX) = R(M(PAP

T
, PX + PL))

= R(M(PAP
T
, P (X + L)))

= R(PM(A,X + L))

= R(M(A,X + L)) = g(A,X)

G MORE ABLATION RESULTS

Mayo RosMap Cancer Subtype
Methods Accuracy " F1 score " Accuracy " F1 score " Accuracy " F1 score "

GIN 0.496 ± 0.042 0.484 ± 0.036 0.471 ± 0.039 0482 ± 0.041 0.537 ± 0.045 0.512 ± 0.047
GCN 0.561 ± 0.049 0.535 ± 0.021 0.520 ± 0.036 0.571 ± 0.032 0.593 ± 0.039 0.561 ± 0.042

GIN + GC 0.483 ± 0.026 0.472 ± 0.031 0.486 ± 0.041 0.510 ± 0.037 0.539 ± 0.041 0.532 ± 0.069
GCN + GC 0.522 ± 0.019 0.539 ± 0.031 0.508 ± 0.032 0.527 ± 0.031 0.544 ± 0.025 0.582 ± 0.042

GIN + UGC 0.561 ± 0.027 0.570 ± 0.031 0.697 ± 0.041 0.624 ± 0.037 0.589 ± 0.041 0.562 ± 0.069
GCN + UGC 0.572 ± 0.021 0.619 ± 0.037 0.658 ± 0.030 0.621 ± 0.021 0.619 ± 0.025 0.581 ± 0.031

UGC-GNN (GIN) 0.624± 0.036 0.713 ± 0.022 0.701± 0.025 0.689± 0.019 0.714± 0.011 0.701± 0.032
UGC-GNN (GCN) 0.603± 0.031 0.652 ± 0.020 0.724± 0.021 0.697± 0.019 0.691± 0.013 0.706± 0.029

Table 8: Ablation study results. GC = graph canonization, UGC = universal graph canonization. Best
results are highlighted.

Ablation study reults. Table 8. This experiment tests the effectiveness of different components in
UGC-GNN and empirically supports theoretical findings in the paper. When comparing GIN (GCN),
GIN + GC (GCN + GC), and GIN + UGC (GCN + UGC), (1) we find GNNs with general graph
canonization usually causes the decrease of the testing performance (i.e. GIN + GC ¡ GIN, GCN +
GC ¡ GCN). This finding aligns well with Lemma 2.4, indicating that stability of GNN is of great
practical importance in real datasets especially when graphs are large. (2) We also observe that GNNs
with universal graph canonization significantly enhance the model performance, and the observation
empirically supports the Lemma 3.3. Furthermore, we also find that GIN (GCN)¡ GIN + UGC (GCN
+ UGC) ¡ and UGC-GNN (GIN or GCN). Consequently, the canonical information from the discrete
colouring {l(v1|G), l(v2|G)...l(vn|G)} enhance the base GNN architecture from the perspective of
both message passing process and the readout function.

H GRAPH STRUCTURED DATA IN BIOINFORMATICS AND THEIR GNN
BASELINES

The dominant graph-structured biological data in bioinformatics can be categorized into three types:
(1) molecular graphs, (2) biological interaction graphs and (3) gene networks/graphs. Different types
of these biological graph data have different SoTA GNN baselines.

In molecular graphs, atoms or other chemical compounds are used as nodes, and the bonds are
formulated as the edges. Molecular graphs are homogeneous graphs and are widely used as benchmark

19

Under review as a conference paper at ICLR 2024

datasets in the field of representation learning on graphs and GNNs (graph neural networks). Typical
molecular graph benchmark datasets include ZINC, QM9 Ramakrishnan et al. (2014), Molhiv in OGB
(Open Graph Benchmark), etc. Dominant baseline deep learning models for these molecular graph
datasets are popular GNN models, such as GIN, GCN, GINE, NGNN, PPGN, and these baselines are
used in our experimnets.

In biological interaction graphs, nodes represent genes, drugs, disease, RNA, etc, and an edge
indicates the existence of a known association between entities connected by the edge. Thus,
biological interaction graphs are heterogeneous graphs. Typical biological interaction graphs include
gene-drug interaction networks in the drug synergy prediction task, drug-protein interaction networks
Zitnik et al. (2018) in side effect prediction tasks, and miRNA-disease interaction networks Pan &
Shen (2019) in the disease classification task. For the representation learning tasks on biological
interaction graphs, various task-specific graph neural networks are proposed, and here we provide
some popular examples: TransSynergy Liu & Xie (2021) and SANEpool Dong et al. (2023) for
gene-drug interaction networks; Decagon for drug-protein interaction networks; and DimiG Pan
& Shen (2019) for miRNA-disease interaction networks. Overall, these task-specific GNNs focus
more on how to effectively construct the biological interaction graphs and represent initial features
related to genes/drugs/ disease/RNA. Instead of the architecture design of GNNs. Consequently,
these task-specific GNNs may not be well generalized to other graph learning tasks such as the gene
network representation learning. In the paper, we select TransSynergy, SANEpool, Decagon and
DimiG as baselines, and compare them with the proposed UGC-GNN.

In gene graphs/networks, genes are used as nodes, and an edge is used to link two genes if there
is a physical signaling interaction between the genes from the documented medical experiment.
Similar to molecular graphs, gene graphs/networks are also homogeneous graphs. Very limited
works are proposed for gene network representation learning. MLA-GNN is proposed for graph-level
classification tasks on gene networks, thus it can be used as a good baseline in the field.

20

	Introduction
	Other Related Works

	Graph Canonization and Stability of GNNs
	Graph Distance and Stable GNNs
	GNNs with Graph Canonization

	Universal Graph Canonization
	Universal Graph Canonization
	A Sufficient Condition for GNNs with Universal Graph Canonization

	Experiments
	Datasets
	Baselines and Experiment Configuration
	Evaluation of GC-GNN
	Evaluation of UGC-GNN

	Conclusion and Discussions
	Representation Learning Tasks on Gene Networks and Other Graph Benchmarks
	More Discussion of GC-GNN and UGC-GNN
	Proof of Lemma 2.3 and Lemma 2.4
	Proof of Theorem 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	More Ablation Results
	Graph Structured Data in Bioinformatics and their GNN Baselines

