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ABSTRACT

The rapid adoption of deep neural networks underscores an urgent need for mod-
els to be safe, trustworthy and well-calibrated. Despite recent advancements in
network calibration, the optimal combination of techniques remains relatively un-
explored. By framing the task as a multi-objective optimization problem, we
demonstrate that combining state-of-the-art methods can further boost calibra-
tion performance. We feature a total of seven state-of-the-art calibration algo-
rithms and provide both theoretical and empirical motivation for their equal and
weighted importance unification. We conduct experiments on both in-distribution
and out-of-distribution computer vision and natural language benchmarks, investi-
gating the speeds and contributions of different components. Our code is available
anonymously at: https://anonymous.4open.science/r/Peacock-1CE8 .

1 INTRODUCTION

Key requirements for the safe deployment of neural networks include multiple desirable qualities,
such as high accuracy, fast training speeds and trustworthy predictions. While the recent successes
in deep learning have increased the use of complex neural networks, a common observation is that
deep models tend to be miscalibrated, exhibiting either under- or over-confident predictions (Guo
et al., 2017).

Miscalibration can be particularly dangerous for high-stakes, safety-critical tasks such as medical
prognosis (Esteva et al., 2017; Bandi et al., 2019), object-detection (Munir et al., 2023a;b; Liu et al.,
2024), AI fairness and decision-making (Pleiss et al., 2017; Corvelo Benz & Rodriguez, 2023). Such
tasks demand reliable decision-making algorithms, necessitating accurate confidence estimates that
reflect a model’s uncertainty (Jiang et al., 2018; Kendall & Gal, 2017). Specifically, calibration
ensures that a model’s predicted confidences align with its actual correctness. For instance, if a
model assigns 0.9 confidence to a set of 100 samples, we should expect the model to be correct for
90 instances only.
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Figure 1: By unifying multiple calibration
algorithms, Peacock outperforms individ-
ual methods, achieving state-of-the-art ID
and OOD calibration. (Bigger is better)

Modern neural networks must not only remain well-
calibrated in-distribution (ID), but also display invari-
ance properties and remain robustly calibrated against
out-of-distribution (OOD) shifts (Wald et al., 2021).
This is crucial for real-world deployment, where mod-
els must generalize well and express uncertainty when
handling unseen inputs (see Fig. 2b). For instance,
OOD shifts in computer vision might involve changes
in saturation and illumination, while in natural lan-
guage tasks, they can arise from differences in syntax
or spelling mistakes (Zhang et al., 2023).

While most calibration techniques tend to outperform
the vanilla cross-entropy (CE) loss, they each tackle
radically different issues, enabling independent perfor-
mance boosts through different approaches. Each of
these techniques exhibit varying trade-offs in ID/OOD
performance (see Fig. 1 showing the 100% - ECE%)
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(b) OOD shifts pose a major challenge in calibra-
tion, hindering model performance. By leverag-
ing the strengths of various algorithms, we can
achieve better results.

Figure 2: Motivated by recent contributions, we propose Peacock for calibration under OOD shifts.

and computational complexity, making it difficult to pinpoint a clear winner (Cheng & Vasconce-
los, 2022). Although it is theoretically possible for many calibration methods to be combined, the
question remains on which of and how can these methods be fruitfully integrated together?

In this paper, our main goal is to unify different proposed calibration approaches into a single cal-
ibration framework named Peacock. Our claim is that by jointly optimizing multiple calibration
objectives, performance boosts can be achieved for ID + OOD classification tasks. Theoretically,
we demonstrate that Peacock’s calibration errors will always be bounded by the average calibration
errors of all its components. We also propose a novel weighted importance form of Peacock that
is fast and effective in balancing the contributions of different components. Apart from presenting
Peacock, this paper is also doubly positioned as a literature survey of recently published calibration
strategies (see Fig. 2a).

To demonstrate the combined efficacy of different calibration methods, we revisit a total of seven
different SOTA calibration baselines and pick the final six to be integrated into Peacock. We further
evaluate both ID and OOD performances of Peacock on popular synthetic and in-the-wild computer
vision and natural language tasks. Our contributions can be summarized into the following points.

• Peacock: We present Peacock, a fully integrated multi-objective framework for deep neural
network calibration.

• Equal and Weighted Importance: We motivate Peacock with theoretical guarantees and
propose novel ways to weight the contributions of different calibration components.

• Review of Literature: This paper additionally serves as a condensed survey1 of all existing
algorithms proposed in the calibration literature.

• Evaluation and Analysis: We evaluate across popular synthetic and in-the-wild OOD
vision and text benchmarks, empirically analyzing the speeds, effects and contributions of
different components.

2 RELATED WORK

Multi-Objective Optimization The primary goal of multi-objective optimization (MOO) is to si-
multaneously optimize multiple loss2 terms {L1, ...LA} on a single model. As these differing loss
functions may possibly contrast and conflict with each other (Sener & Koltun, 2018). Obtaining a
way to balance/weight these losses during optimization is of great interest, since learned represen-
tations between losses can be shared (Caruana, 1997; Zamir et al., 2018), with the added benefit

1 To the best of our ability, we cover all published works and further discuss them in Appendix A
2 For clarity, the term loss loosely refers to auxiliary functions, whilst objective function represents the

final learning goal during model training.
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of avoiding model redundancy in the form of large ensembles (Dosovitskiy & Djolonga, 2020).
Prevalent methods include grid-search tuning, which can be cumbersome and fixating predefined
weights during training may not guarantee optimal performance (Groenendijk et al., 2021). Other
approaches include learning the hardest task first (Guo et al., 2018), self-paced learning (Li et al.,
2017), aleatoric uncertainty estimation (Kendall & Gal, 2017; Kendall et al., 2018), gradient nor-
malization (Chen et al., 2018), pareto frontiers (Sener & Koltun, 2018; Lin et al., 2019; Xiao et al.,
2023; Liu et al., 2021) and co-efficient of variations (Groenendijk et al., 2021). Additionally, we
refer readers to (Zhang & Yang, 2017; Gong et al., 2019) for a comprehensive review and com-
parisons on multi-objective methods. In this work, our focus is directed towards gradient-based
multi-objective optimization for balancing calibration loss terms.

Deep Uncertainty Calibration In Fig. 2a, we provide an overview of recent calibration algo-
rithms and metrics. Examples of these algorithms include (1) Entropy-based methods that control
the entropy of the model (Mukhoti et al., 2020; Wang et al., 2021; Leng et al., 2022; Ghosh et al.,
2022; Tao et al., 2023; Neo et al., 2024). (2) Margin-based methods that directly limit model con-
fidences (Hebbalaguppe et al., 2022; Liu et al., 2022a; Cheng & Vasconcelos, 2022; Liu et al.,
2023a;b) (3) Regularizers that augment the training inputs or model (Zhang et al., 2020; Sapkota
et al., 2023; Noh et al., 2023). (4) Post-hoc processing, which requires tuning the model on a hold-
out validation set in order to scale predictions (Wenger et al., 2020; Tomani et al., 2021; Gupta
et al., 2021; Tomani et al., 2022; Kuleshov & Deshpande, 2022; Gruber & Buettner, 2022; Yu et al.,
2022; Tomani et al., 2023; Joy et al., 2023). Calibration metrics include binning and binning-free
approaches (Gupta et al., 2021; Roelofs et al., 2022; Yang et al., 2023; Xiong et al., 2023). Addi-
tionally, we refer readers to Appendix A.5 for a discussion on calibration metrics. To keep the scale
of our experiments manageable, we highlight only the latest algorithms of each sub-group used in
Peacock (e.g., AdaFocal).

3 BACKGROUND

3.1 DEEP NEURAL NETWORK CALIBRATION

Consider a classification problem over an input feature space X and output space Y , where N la-
belled i.i.d pairs (xi, yi)

N
i=1 are randomly sampled from a training set D. The model/hypothesis is

then simply a mapping hθ : X → Y,where Y ∈ [0, 1] and θ denotes a deep neural network consist-
ing of K neurons. The model is tasked to estimate a valid posterior such that

∑K
k=1 Pi(yk|x) = 1,

with the predicted top-1 class label ŷ := argmaxhθ
i (x) obtained from the logits with the top

softmax confidence P̂ (hθ) := maxk Pi(yk|x). The model is considered perfectly calibrated if
and only if its confidence matches its probability of being correct, satisfying the formal definition
P(ŷ = y|P̂ = P ) = P ∀ ∈ P [0 − 1]. As this definition of calibration cannot be computed with
finite samples, the most widely used approximation is the expected calibration error (ECE) (Naeini
et al., 2015):

Definition 3.1 (Expected Calibration Error) The empirical expected calibration error of a single
hypothesis hθ(x) can be written as Eq.3 in (Zhang et al., 2020) and Eq.7 in (Yang et al., 2023):

ECEd(hθ) =

B∑
b=1

nb

N
||P̄ (hθ

b (x))− ȳb||dd (1)

whereby the average predicted confidences P̄ (hθ
b (x)) and targets ȳb are partitioned into B bins,

each containing nb samples and ||.||dd is the d-th power of the Ld norm between the predictions and
targets.

For OOD scenarios, the test distribution may diverge from the samples observed during training.
Specifically, these OOD shifts can be caused by either concept shifts to the classes (changes in
the posterior distribution P (Y |X)) or covariate shifts to input features (changes in the marginal
distribution P (X)) (Shen et al., 2021). These OOD shifts tend to degrade model accuracy and
calibration (Ovadia et al., 2019) which can be problematic for deployment. Unfortunately, achieving
good calibration on both ID and OOD problem sets is non-trivial, since OOD samples typically vary

3
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greatly from ID samples with the type and magnitude of shift unknown (Neo et al., 2024). In
this work, our focus is on the problem of covariate shifts, with the goal of achieving good top-1
calibration and generalization across both ID and OOD settings.

3.2 CALIBRATION ALGORITHMS AND TECHNIQUES

Although many calibration algorithms have been proposed, each of these works tackle fundamen-
tally different issues, with varying results and no consensus on which approach is the best. We
diagnose the prevalent issues in deep neural network calibration and highlight the approaches of
seven SOTA algorithms.

Adaptive Focal Parameter Selection The Focal loss (FL) (Lin et al., 2017) has been a piv-
otal contribution in network calibration (Mukhoti et al., 2020). As a trade-off between min-
imizing the Kullback-Leibler divergence and maximizing entropy, the FL: LF = −

∑
k

(
1 −

Pi(yk|xi)
)γ

logPi(yk|xi) is sensitive to the hyper-parameter γ, which controls the convexity of
the entropy term. While strictly setting γ > 1 reduces over-confidence, it can also cause under-
confidence. To circumvent this, Adaptive FL (AdaFocal) (Ghosh et al., 2022) conditionally switches
between the FL and Inverse FL (Wang et al., 2021) with different selected values of γ.

LAda =


−
∑
k

(
1− Pi(yk|x)

)γt,b logPi(yk|x) if γt,b ≥ 0

−
∑
k

(
1 + Pi(yk|x)

)|γt,b| logPi(yk|x) if γt,b < 0,

 (2)

Maximum Entropy Constraints Based on the Principle of Maximum Entropy (Jaynes, 1957) and
an extension of the FL. MaxEnt loss (Neo et al., 2024) is designed to handle OOD samples using
statistical constraints computed from the prior distribution of the training set.

LME
M = −

∑
k

(1− Pi(yk|x))γ logPi(yk|x)

+ λµ

[∑
k

f(Y)Pi(yk|x)− µG︸ ︷︷ ︸
Global Expectation

+
∑
k

f(Y)Pi(yk|x)− µLk︸ ︷︷ ︸
Local Expectation

]
(3)

Whereby the global expectations are computed from the entire training set such as E[Y] =∑
k Pi(yk|x)f(Y) = µG and the local expectations are computed sample-wise from the class value

characteristic function f(Y). The Lagrange multiplier λµ controls the strength of the constraints,
which can be solved cheaply using a numerical root-finder.

Under- and Over-confidence Trade-off A caveat to FL and its extensions alike, is that maximiz-
ing the entropy term tends to penalize all output predictions, causing under-confidence (Charoen-
phakdee et al., 2021). Dual FL (Tao et al., 2023) maximizes the gap between the ground truth
Pi(yGT |x) and the highest confidence Pi(yj |x) after the argmax class, balancing the trade-off be-
tween over- and under-confident predictions.

LDual = −
∑
k

(1− Pi(yk|x) + Pi(yj |x))γ logPi(yk|x)

where Pi(yj |x) = max
k
{Pi(yk|x)|Pi(yk|x) < Pi(yGT |x)}

(4)

Pairwise Binary Discriminatory Constraints As binary problems are easier to calibrate, CPC
loss (Cheng & Vasconcelos, 2022) proposes to decompose the original multi-class problem into
K(K−1)

2 binary classification problems. Whereby the predictions Pi(yk|x) are calibrated against the
confidences Pi(yl|x) of the remaining (K − 1) pairs that do not involve the true class:

4
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L1v1
CPC = − 1

(K − 1)

∑
l ̸=k

log
Pi(yk|x)

Pi(yk|x) + Pi(yl|x)
(5)

Conditional Label Smoothing Label smoothing (LS) (Müller et al., 2019) improves calibration
by artificially softening targets with a constant margin ϵ. However, LS often leads to under-confident
predictions and requires time-consuming grid searches to find an optimal ϵ. To address these lim-
itations, several approaches have proposed adaptive or conditional label smoothing functions (see
Appendix A). Building upon these methods, Adaptive Conditional Label Smoothing (ACLS) (Park
et al., 2023) aims to dynamically approximate the label smoothing function.

LACLS =

λ1 max(0, hθ
k(x)−min

k
(hθ

k(x))−mACLS)
2 if k = ŷ

λ2 max(0, hθ
ŷ(x)− hθ

k(x)−mACLS)
2 if k ̸= ŷ

 (6)

When k = ŷ, the smoothing function is directly proportional to hθ
k(x), thereby lowering confidences.

Similarly, when k ̸= ŷ, the effects of the smoothing function decreases, allowing the logits and
confidences to increase. mACLS denotes the ACLS margin and λ1, λ2 are hyperparameters for cases
when k = ŷ and k ̸= ŷ.

Feature and Label Regularization Mixup (Zhang et al., 2018) is highly effective for network
calibration (Thulasidasan et al., 2019; Chidambaram & Ge, 2024; Zhang et al., 2022). By interpo-
lating a pair of inputs (xi, xj) and targets (yi, yj), the augmented inputs and smoothed labels (x̃, ỹ)
are obtained using the following equations:

x̃ = βxi + (1− β)xj

ỹ = βyi + (1− β)yj
(7)

where β ∈ [0 − 1] ∼ Beta(α, α) is a blending coefficient, randomly drawn from a Beta distribu-
tion. By considering the ordinal ranking of training samples, RankMixup (Noh et al., 2023) further
improves vanilla mixup by enforcing the confidences of interpolated samples to be lower than the
confidences of original samples. The ordinal relationship between “easy” and “hard” samples is
maintained by a margin mMRL.

LMRL = max(0,max
k

P̃i(ỹ|x̃)−max
k

Pi(y|x) +mMRL) (8)

RankMixup (Noh et al., 2023) can be computationally inefficient due to its requirement for two
forward passes: one for the original samples Pi(y|x) and another for the mixed samples P̃i(ỹ|x̃). To
improve computational efficiency, we propose an optimized version of RankMixup within Peacock
that performs image and label mixing batchwise, enabling a single forward pass and faster compute
times for P̃i(ỹ|x̃). Additional details for speeding up RankMixup can be found in Appendix B.2.

Adaptive Temperature Scaling As a post-hoc method, temperature scaling (TS) (Platt & Karam-
patziakis, 2007) manipulates the predictions by a scalar T ∈ R+. Similar to LS, TS tends to reduce
the confidence of every sample - even for correct predictions and finding a suitable T requires a
grid-search over a separate validation set. Adaptive Temperature scaling (AdaTS) (Joy et al., 2023)
aims to learn samplewise temperatures from the features hθ(x). By jointly learning a conditional
variational autoencoder (Kingma & Welling, 2014) and a multi-layer perceptron ϕ, the samplewise
temperatures are obtained as a post-processing step.

LAdaTS = −ELBO[hθ
i (x)]− log(

exp (hθ
i (x)/Ti)∑K

k=1 exp (h
θ
k(x)/Ti)

) (9)

4 MOTIVATION AND PEACOCK (PUTTING IT ALL TOGETHER)

Component Synergy Why combine calibration methods? Despite their diverse approaches, all
calibration algorithms discussed in Section 3.2 share the common goal of enhancing model cali-

5
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bration. This suggests that they can be effectively integrated into a unified framework, leveraging
their complementary strengths to achieve even better results. This section outlines our theoretical
motivation for unifying calibration algorithms into Peacock. We first demonstrate how their equal
combination improves calibration performance, subsequently we propose a novel weighted impor-
tance formulation that dynamically balances loss terms to further boost performance.

4.1 EQUAL IMPORTANCE FORMULATION

Consider a multi-objective functionL(θ) = 1
A

∑A
t=1 Lt(θ) comprising of a linear, equally weighted

sum of A correlated loss terms/algorithms. From Definition 3.1, each empirical loss term Lt(θ) ≜
1
N

∑
i L(P̂i(h

θ
t ), yi)) yields an individual hypothesis P̂ (hθ

t ) with a corresponding calibration er-
ror P̂ (hθ

t ) = ȳ + ECEd(hθ
t ). The unified hypothesis Hθ of the multi-objective learner L(θ)

can then be interpreted as the average of each individual hypothesis P̄ (Hθ) = 1
A

∑A
t=1 P̂ (hθ

t ) =

ȳ + ECEd(Hθ). When d = 2, the averaged squared ECE across all individual hypotheses is given
by:

ECE
2
(hθ) =

1

A

A∑
t=1

ECE2(hθ
t ) =

ECE(hθ
1)

2 + ECE(hθ
2)

2 + ...+ ECE(hθ
t )

2

A
(10)

As we equally consider the contributions of each individual hypotheses/loss term, with some rear-
rangement the expected squared ECE of the unified multi-objective learner can be obtained as:

ECE2(Hθ) = E

( 1

A

A∑
t=1

ECE(hθ
t )

)2
 =

∫ (
1

A

A∑
t=1

ECE(hθ
t )

)2

p(x)dx (11)

where p(x) is the prior probability of each input. Then from Eq. (10) and Eq. (11), the combined
learner is safely bounded by the averaged squared ECE of all individual hypotheses.

ECE2(Hθ) ≤ ECE
2
(hθ) (12)

As the ECE1 and ECE2 are highly correlated (Zhang et al., 2020), we expect the upper bound in
Eq. (12) to hold. This upper bound remains applicable even for temperature-scaled variants of each
hypothesis, where T is a temperature function.

ECE2(T (Hθ)) ≤ ECE
2
(T (hθ)) (13)

Proof. See Appendix C.

Similar to model ensembles (Zhou, 2012), loss ensembles allows a single model to perform well
on multiple tasks, with additional practical benefits, such as sharing lower-level features and better
compute times (Dosovitskiy & Djolonga, 2020). However, loss terms can often be conflicting,
requiring trade-offs between different objectives.

4.2 WEIGHTED IMPORTANCE FORMULATION

To address these challenges, we propose a weighted importance formulation in the following section.
This approach aims to find a suitable set of weights that optimizes the overall performance of the
multi-objective learner. The weighted multi-objective optimization problem generally yields the
following minimization problem:

min
θ
L(θ) =

A∑
t=1

wtLt(θ) (14)

where wt are a set of unknown scalar weights controlling each loss term. In many cases, obtaining a
suitable set of weights for Eq. (14) is highly desirable. However, common approaches would either
typically require expensive grid searches or predefined heuristics (Kendall et al., 2018; Chen et al.,
2018). A well-studied approach in multi-objective optimization are Pareto optimal solutions, which
delivers different trade-offs amongst loss terms. The goal of achieving Pareto optimality (Sener &
Koltun, 2018; Lin et al., 2019) is defined with the following necessary conditions.

6
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Definition 4.1 (Conditions for Pareto Optimal Calibration)

1. Pareto dominance A solution θ dominates another solution θ̄ where θ ≺ θ̄, if Lt(θ) ≤
Lt(θ̄) for all objectives t and L(θ1, ...,θA) ̸= L(θ̄1, ..., θ̄A).

2. Pareto optimality Solution θ∗ is considered Pareto optimal if there exists no other solution
θ that dominates θ∗ such that θ ≺ θ∗.

Assuming loss terms are convex and optimizable with gradient descent, Pareto optimal weights
for each loss can be obtained through the Karush-Kuhn-Tucker (KKT) conditions (Fliege & Svaiter,
2000; Schäffler et al., 2002), by minimizing the following objective (Désidéri, 2012; Sener & Koltun,
2018):

min
w1,...,wt

{∣∣∣∣∣∣∣∣ A∑
t=1

wt∇θLt(θ)

∣∣∣∣∣∣∣∣2
2

∣∣∣∣ A∑
t=1

wt = 1, wt ≥ 0 ∀t

}
(15)

Previous works (Désidéri, 2012; Sener & Koltun, 2018) have shown that the solution to Eq. (15) is
either zero or provides a gradient direction that improves all loss components.

Practical Considerations Generally, optimizing for wt in Eq. (15) requires a separate optimizer
and the recomputation of the gradients∇θLt(θ) for each loss term. This involves retaining the com-
putational graph3 for A backward passes, which slows down training speeds and grows prohibitively
more expensive as A becomes larger.

To circumvent this, we propose a fast, elegant and efficient alternative to recomputing gradients, by
replacing ∇θLt(θ) with decrease rate estimates for each loss term. Assuming model parameters θ
are updated via θ′ ← θ − η∇θLt(θ), we propose to balance learning loss terms with the following
direction-orientated objective:

min
w1,...,wt

{∣∣∣∣∣∣∣∣ A∑
t=1

wt

√
∆θLt(θ)

η

∣∣∣∣∣∣∣∣2
2

∣∣∣∣ A∑
t=1

wt = 1, wt ≥ 0 ∀t

}
(16)

Proof. See Appendix C.2.

where the decrease rate estimates
√

∆θLt(θ)
η , are derived using the first-order Taylor approximation

with a sufficiently small step size η. As long as the KKT conditions are satisfied and loss termsLt(θ)
are monotonically decreasing, faster performance can be achieved using Eq. (16). With the added

benefit of wt ∝
√

∆θLt(θ)
η which ensures balanced learning rates across all loss terms, preventing

any single term from dominating the optimization process.

Scaled Dot-Product
Attention

Average and
Normalize

(Input)

LinearLinearLinear

V QK

(Output)

Figure 3: Our direction weighted
self-attention block learns the im-
portance of each loss term.

Direction Weighted Self-Attention To optimize the objec-
tive in Eq. (16), we propose using a direction weighted self-
attention block. Fig. 3 illustrates our self-attention block,
which accepts an array of loss terms Lt(θ) as inputs and out-
puts a set of weights wt. The Value (V), Key (K) and Query
(Q) neurons are of size A × A and the softmax function σ
is applied to ensure that

∑
t wt = 1. The learning dynamics

of the direction weighted self-attention block are discussed in
Appendix B.3.

Full details can be found in Algorithm 1, which shows all cal-
ibration components of Peacock and an optional step for ob-
taining importance weights. A peculiar finding in our ablation
study, is that removing ACLS tends to lead to better perfor-
mance in Peacock. Since LDual

AdaFocal contains the CE loss, we
only apply importance weights to the auxiliary loss terms with
the final objective function given by: LPeacock = LDual

AdaFocal + w1LME
constraints + w2L1v1

CPC + w3LMRL.

3 For more details, see Pytorch autograd framework: https://pytorch.org/docs/stable/autograd.html
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Dataset Metric CE MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10-C

Acc. ↑ 77.9±0.3 78.3±0.2 77.7±0.3 77.8±0.3 77.6±0.2 77.9±0.3 78.1±0.4 76.8±0.2 77.3±0.4
ECE ↓ 14.5±0.4 6.5±0.2 6.8±0.2 11.9±0.3 11.2±0.2 7.4±0.3 11.2±0.4 6.3±0.1 6.2±0.3

CECE ↓ 3.3 ±0.1 2.6±0.1 2.6±0.1 2.9±0.1 2.8±0.1 2.7±0.1 2.8±0.1 2.7±0.1 2.6±0.1
KSE ↓ 14.5±0.4 6.2±0.1 6.5±0.3 11.8±0.2 11.1±0.1 7.0±0.3 11.3±0.4 6.1±0.2 6.1±0.3

CIFAR100-C

Acc. ↑ 52.5±0.1 52.4 ±0.1 52.9 ±0.2 52.3±0.1 52.0±0.1 52.8±0.1 52.6±0.1 51.8±0.1 52.6±0.1
ECE ↓ 10.6±0.1 11.6±0.6 13.6±0.1 11.0±1.4 13.2±0.5 15.7±0.1 12.2±0.2 9.6±0.2 9.3±0.1

CECE ↓ 0.4±0.1 0.5±0.1 0.5±0.1 0.4±0.1 0.4±0.1 0.5±0.1 0.4±0.1 0.4±0.1 0.4±0.1
KSE ↓ 9.3±0.1 11.4±0.6 13.3±0.1 10.3±1.5 11.5±0.5 15.3±0.1 11.7±0.3 9.6±0.4 9.2±0.6

TinyImageNet-C

Acc. ↑ 25.2±0.1 22.0±0.1 25.1±0.1 23.1±0.3 23.7±0.1 22.9±0.6 22.1±0.1 23.3±0.5 23.6±0.2
ECE ↓ 15.7±0.5 12.8±0.1 13.8±0.4 20.2±0.1 16.0±0.5 19.2±0.4 19.8±0.2 10.6±0.2 10.4±0.2

CECE ↓ 0.3±0.1 0.3±0.1 0.3±0.1 0.4±0.1 0.3±0.1 0.3±0.1 0.3±0.1 0.3±0.1 0.3±0.1
KSE ↓ 15.7±0.5 12.8±0.2 13.8±0.3 20.2±0.2 15.7±0.2 19.2±0.7 19.8±0.1 10.6±0.2 10.3±0.2

Camelyon17

Acc. ↑ 81.7±0.7 79.7±1.7 74.5±0.1 74.9±4.0 77.7±1.6 78.4±2.9 77.0±1.2 79.3±2.7 83.2±1.1
ECE ↓ 15.5±1.1 12.4±0.1 20.4±0.4 22.4±4.6 20.2±1.6 15.4±2.5 19.8±0.2 11.7±0.7 9.8±1.8

CECE ↓ 16.7±1.3 16.2±0.1 23.7±0.7 23.6±4.8 21.3±2.0 20.3±2.9 22.0±1.1 14.0±0.4 13.7±1.6
KSE ↓ 15.5±1.1 12.3±0.8 20.4±0.1 22.4±4.6 20.2±1.6 15.4±2.4 19.6±0.1 11.7±0.7 9.8±1.8

iWildCam

Acc. ↑ 52.2±0.3 50.9±1.0 54.1±1.7 56.7±0.3 55.8±2.2 54.6±2.1 55.2±2.2 51.7±0.8 54.5±0.8
ECE ↓ 30.6±0.8 21.0±3.2 23.0±0.5 25.5±0.7 20.3±1.1 13.0±2.5 20.6±1.8 9.7±0.3 12.6±1.4

CECE ↓ 0.4±0.1 0.4±0.1 0.3±0.1 0.4±0.1 0.3±0.1 0.4±0.1 0.3±0.1 0.3±0.1 0.3±0.1
KSE ↓ 30.6±0.8 21.0±3.2 23.0±0.5 25.5±0.7 19.5±1.6 13.0±2.5 20.6±1.8 9.7±0.3 12.6±1.4

FmoW

Acc. ↑ 35.1±0.5 33.5±0.1 35.5±0.7 35.8±0.1 36.4±0.1 35.1±0.2 37.5±0.1 35.1±0.2 35.5±0.1
ECE ↓ 39.8±0.2 20.0±9.9 20.9±8.6 41.7±0.1 22.4±0.9 10.7±0.1 21.7±0.2 10.6±0.4 10.5±0.3

CECE ↓ 1.5±0.1 1.0±0.3 1.0±0.2 1.5±0.1 0.9±0.1 0.6±0.1 0.9±0.1 0.6±0.1 0.6±0.1
KSE ↓ 39.8±0.2 20.0±9.9 20.9±8.6 41.7±0.1 22.4±0.9 10.7±0.1 21.7±0.2 10.6±0.4 10.5±0.3

Amazon

Acc. ↑ 55.8±0.3 64.6±0.4 59.6±2.7 56.9±0.1 56.9±0.1 60.7±3.8 56.9±0.2 57.5±0.6 64.9±0.8
ECE ↓ 7.0±0.5 5.0±0.6 6.7±1.0 43.1±0.1 7.4±0.5 5.8±2.3 42.0±0.1 6.5±3.2 5.0±1.1

CECE ↓ 6.4±0.3 3.8±0.6 3.3±0.8 17.2±0.1 4.8±0.2 2.5±0.9 16.8±0.1 2.9±1.3 2.3±0.3
KSE ↓ 7.0±0.5 5.1±0.6 7.5±0.6 43.1±0.3 10.9±3.3 8.1±0.1 42.1±0.1 8.6±1.0 6.6±0.4

CivilComments

Acc. ↑ 90.3±1.0 91.3±0.1 91.4±0.1 88.6±1.0 88.6±0.8 91.5±0.1 88.6±0.1 90.1±0.7 90.8±0.5
ECE ↓ 10.4±0.4 4.8±0.2 7.8±1.7 11.4±0.5 2.4±0.4 4.2±0.1 11.1±0.1 2.1±0.8 4.2±1.0

CECE ↓ 10.4±0.5 5.6±0.1 8.1±1.8 11.4±0.5 2.4±0.4 4.8±0.3 11.1±0.2 2.2±0.3 4.6±0.8
KSE ↓ 10.4±0.4 6.7±0.1 7.7±1.7 5.8±0.1 2.9±0.4 4.3±0.1 11.0±0.1 3.3±0.8 4.2±1.0

Table 1: We report the OOD test scores (%) computed across 3 seeds, evaluated on both synthetic
and wild benchmarks for Peacock and recent baselines. Peacock greatly improves calibration and
maintains model accuracy. The best calibration scores in bold, second best are underlined.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENT SETUP

Evaluation Metrics Following (Guo et al., 2017; Mukhoti et al., 2020; Neo et al., 2024), we use
the Expected Calibration Error (ECE), Classwise Calibration Error (CECE) (Nixon et al., 2019) and
Kolmogorov-Smirnov Error (KSE) (Gupta et al., 2021) for evaluation. For fair comparisons, we
follow the evaluation protocols of other authors and compute calibration errors using 15 bins with
the mean and standard deviation shown across seeds. Additional details of each metric are included
in Appendix A.5.

Datasets We evaluate Peacock on a total of eight OOD image and text benchmarks. For synthetic
datasets, we use CIFAR (Krishnan & Tickoo, 2020) and TinyImageNet (Deng et al., 2009) for train-
ing/validation and CIFAR-C/TinyImageNet-C (Hendrycks & Dietterich, 2019) for testing. For Wild
datasets, we use Camelyon-17 (Bandi et al., 2019), iWildCam (Beery et al., 2020), FmoW (Christie
et al., 2018), Amazon (Ni et al., 2019) and CivilComments(Borkan et al., 2019) from the Wilds
benchmark (Koh et al., 2021). OOD data is never used for training or validating a model, only for
testing.

Baselines We compare equal and importance weighted Peacock against an uncalibrated baseline
(CE) and six components, specifically MaxEnt (Neo et al., 2024), AdaFocal (Ghosh et al., 2022),
RankMixup (Noh et al., 2023), CPC (Cheng & Vasconcelos, 2022), Dual (Tao et al., 2023), ACLS
(Park et al., 2023). For our analysis on image tasks, we use ResNet-18, ResNet-50 (He et al.,
2016), SWINV2 (Liu et al., 2022b) and RoBERTa Liu et al. (2019b) for text tasks. We perform
post-hoc processing with AdaTS (Joy et al., 2023) and compare different weighted formulations
analyzing the overall contributions of each component used in Peacock. For additional details of
each dataset task, hyper-parameters and illustrations of synthetic and wild OOD shifts, we refer
readers to Appendix D.1.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Dataset ECE ↓ CE MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10-C
Pre 14.5±0.4 6.5±0.2 6.8±0.2 11.9±0.3 11.2±0.2 7.4±0.3 11.2±0.4 6.3±0.1 6.2±0.3
Post 7.5±0.1 6.9±0.2 6.9±0.4 7.1±0.3 7.0±0.1 7.3±0.3 7.3±0.1 6.6±0.1 6.9±0.3
Avg. 11.0±0.3 6.7±0.2 6.9±0.3 9.5±0.3 9.1±0.2 7.4±0.3 9.3±0.3 6.4±0.1 6.6±0.3

CIFAR100-C
Pre 10.6±0.1 11.6±0.6 13.6±0.1 11.0±1.4 13.2±0.5 15.7±0.1 12.2±0.2 9.6±0.2 9.3±0.1
Post 8.1±0.4 7.2±0.1 7.5±0.1 8.0±0.1 10.2±0.2 8.4±0.2 8.1±0.4 8.7±0.2 8.9±0.2
Avg. 9.4±0.3 9.4±0.4 10.6±0.1 9.5±1.0 11.7±0.3 12.1±0.2 10.2±0.3 9.2±0.2 9.1±0.2

TinyImageNet-C
Pre 15.7±0.5 12.8±0.1 13.8±0.4 20.2±0.1 16.0±0.5 19.2±0.4 19.8±0.2 10.6±0.2 10.4±0.2
Post 25.4±0.3 20.2±0.2 26.1±0.4 24.3±0.3 20.7±0.4 24.3±0.3 24.4±0.4 11.9±0.2 12.6±0.2
Avg. 20.5±0.4 16.5±0.2 20.0±0.4 22.3±0.3 18.4±0.5 21.8±0.4 22.1±0.3 11.2±0.4 11.5±0.4

Camelyon17
Pre 15.5±1.1 12.4±0.1 13.8±0.4 20.2±0.1 16.0±0.5 19.2±0.4 19.8±0.2 11.7±0.7 9.87±1.8
Post 33.1±0.4 11.2±1.1 15.4±1.5 14.9±1.4 12.2±1.4 18.1±0.3 11.6±0.7 9.87±3.0 12.2±1.7
Avg. 24.3±0.8 11.8±0.6 14.6±1.0 17.6±0.8 14.1±0.9 18.7±0.4 15.7±0.4 10.8±1.5 11.0±1.8

iWildCam
Pre 30.6±0.8 21.0±3.2 23.0±0.5 25.5±0.7 20.3±1.1 13.0±2.5 20.6±1.8 12.0±0.1 11.7±2.3
Post 8.0±2.2 8.6±0.6 7.9±1.3 9.5±2.5 11.7±1.9 8.0±1.0 7.9±0.4 8.9±0.6 6.7±0.5
Avg. 19.3±1.5 14.8±2.4 15.5±1.1 17.5±1.6 16.0±1.6 10.5±1.6 14.3±1.2 10.5±0.4 9.2±1.4

FmoW
Pre 39.8±0.2 20.0±9.9 20.9±8.6 41.7±0.1 22.4±0.9 10.7±0.1 21.7±0.2 10.6±0.4 10.5±0.3
Post 25.6±0.6 4.9±0.9 6.2±0.5 7.9±0.3 7.6±0.9 5.6±0.9 6.1±0.5 5.3±0.8 5.9±0.5
Avg. 32.7±0.5 12.5±5.5 13.6±4.7 24.8±0.5 15.0±0.8 8.2±0.2 13.9±0.2 7.9±0.4 8.2±0.8

Table 2: ECE (%) scores before and after AdaTS (Joy et al., 2023) for the different OOD datasets.
Peacock delivers the best overall calibration performance, despite using temperatures obtained ID.

5.2 COMPARISONS TO PUBLISHED BASELINES

In-Distribution Performance Fig. 1 and Table 5 showcase the ID results, demonstrating Pea-
cock’s consistently strong calibration performance across datasets. Following Eq. (12), Peacock’s
ECE is significantly lower than the empirical average ECE of all methods. While individual al-
gorithms may vary in performance across datasets, we demonstrate that combining them through
Peacock consistently improves calibration - with no significant loss in accuracy. Additional ID re-
sults and discussions are included in Appendix D.2.

Out-of-Distribution Performance Similar to the ID results, each individual algorithm’s inde-
pendent performance varies across different datasets. Table 1 shows that by combining algorithms
through equal importance Peacock, consistent improvements in OOD performance can be achieved
on both synthetic and real-world image and text datasets. Our findings further demonstrate that the
equal importance formulation of Peacock also adheres to the theoretical upper bound in Eq. (12)
for OOD performance. Finally, Peacock can be further enhanced using our weighted importance
formulation, achieving improved results and good generalization properties across all datasets.

Uncalib.
MaxE
AdaFocal

RankMixup CPCDual
ACLS
Peacock

0

10

20

30

40

Se
c.

/e
po

ch

Figure 4: Wall-clock time for each
method on CIFAR10. Peacock is as
fast as each of its components.

Training Time per Epoch Fig. 4 shows the average wall-
clock time per epoch (forward pass, loss-calculation and back-
propagation) for each method trained on CIFAR10. We report
the wall-clock time in seconds on a NVIDIA GeForce RTX
2070 GPU with i7-10700 CPU. In general, each algorithm has
similar speeds, with RankMixup taking the longest since an-
other forward pass is required to obtain the logits of interpo-
lated samples. On the other hand, Peacock is optimized (see
Appendix B.2) to remain competitive with other baselines, de-
spite combining multiple algorithms together.

5.3 POST-HOC PROCESSING

For post-hoc calibration, we apply AdaTS (Joy et al., 2023) to each method. The samplewise tem-
peratures are obtained from an ID validation set and applied to the OOD test sets. Table 2 presents
the ECE scores of each algorithm before and after applying AdaTS for all six OOD image datasets.
Our findings demonstrate that Peacock delivers the best overall calibration performance, both before
and after temperature scaling. In cases where Peacock does not deliver the best calibration, we can
see that its performance is relatively close to the best score. While AdaTS generally improves OOD
ECE, applying it to already well-calibrated models can sometimes lead to degraded performance.
For instance, MaxEnt Loss achieves the best OOD calibration with 4.9% on FmoW without AdaTS,
but applying it subsequently would cause the ECE to worsen to 12.5%. This discrepancy can be
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Figure 5: Solution given by different MOO algorithms for each of the auxiliary test losses. Our
importance formulation effectively balances trade-offs between loss terms. Bottom-left is better.

Algorithm Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑A

t wt = 1

Equal-Importance 51.8±0.1 9.6±0.2 50.1±0.2 0.33 0.33 0.33 Yes
MTAN (Liu et al., 2019a) 50.8±0.1 10.2±0.4 50.7±0.2 0.33 0.33 0.33 Yes
CoVV (Groenendijk et al., 2021) 52.6±0.1 12.0±0.4 50.6±0.2 0.01 0.52 0.47 Yes
GradNorm (Chen et al., 2018) 48.9±0.6 9.3±0.7 85.8±0.7 2.99 0.00 0.00 No
MT-MOO (Sener & Koltun, 2018) 51.9±0.5 9.3±0.5 67.5±0.5 0.36 0.47 0.16 Yes
Weighted-Importance (Ours) 52.6±0.1 9.3±0.3 50.5±0.2 0.00 0.51 0.49 Yes

Table 3: Comparisons of different multi-objective optimization methods for Peacock. Our weighted
importance formulation is fast and effective.

attributed to the disconnect between the training, validation sets and test set, explaining the higher
calibration errors after temperature scaling (Ovadia et al., 2019). However, by combining multi-
ple calibration algorithms together, Peacock displays the best generalization behavior even when
using temperatures obtained ID. As AdaTS is designed solely for image tasks, we apply vanilla
TS for Amazon and CivilComments indicating their results and ideal temperatures obtained from
grid-search in Table 7. We further highlight that temperature scaling only manipulates the predicted
confidences and does not affect recognition accuracy.

5.4 WEIGHTED PEACOCK PERFORMANCE AND ANALYSIS

We compare various weighted objective optimization methods for Peacock. Namely, using equal
weights, MTAN (Liu et al., 2019a), GradNorm (Chen et al., 2018), CoVV (Groenendijk et al.,
2021), MT-MOO (Sener & Koltun, 2018) and our proposed weighted importance variant, on
CIFAR100/100-C using ResNet-18. All MOO methods are initialized with uniform weights, with
the final test accuracy, ECE and weights shown upon convergence with the average training wall
clock time per epoch in Table 3. Our results indicate that while each algorithm yields distinct solu-
tions/weights for each loss term, they achieve comparable accuracies and calibration errors. Grad-
Norm and MT-MOO have longer training times (about 65% and 35% respectively) since they require
the recomputation of ∇θLt(θ) for each loss term. Conversely, MTAN and CoVV offers faster per-
formance, but has higher ECE. Fig. 5 further demonstrates that the auxiliary test losses for each
MOO method yield similar solutions, with MT-MOO achieving the optimal solution. Our method
closely approximates MT-MOO but is faster and more efficient. We further discuss contributions of
each calibration loss term in Appendix D.3 and the limitations of our work in Appendix E.

6 CONCLUSIONS

We present Peacock, a unified framework for neural network calibration. By formulating unification
as a multi-objective optimization problem, we demonstrate that combining calibration components
improves performance on both ID and OOD tasks. Our proposed weighted importance form of
Peacock is fast and effective in delivering good Pareto Optimal performance. Despite incorporating
multiple algorithms, Peacock’s complements post-hoc processing and remains fast in terms of com-
putational speed. Our method shows clear performance gains with RankMixup and MaxEnt loss
offering the most improvements.
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A CALIBRATION ALGORITHMS AND METRICS

In this section, we further discuss in detail the various families of approaches commonly used to
improve and measure neural network calibration.

A.1 ENTROPY-BASED METHODS

Entropy-based methods have played an important role in calibrating deep neural networks, as max-
imizing the entropy helps penalize overconfident predictions (Pereyra et al., 2017; Mukhoti et al.,
2020; Neo et al., 2024). As mentioned in the main text, naively penalizing all predictions can cause
underconfident predictions. While various works have proposed different approaches in controlling
the entropy term, the Focal Loss (Lin et al., 2017; Mukhoti et al., 2020; Ghosh et al., 2022) and it’s
variants offer adaptive/automated mechanisms in obtaining suitable values of γ for each sample.

While these automated mechanisms tend to help with ID calibration, many works fail to acknowl-
edge the importance of OOD calibration since the parameters obtained during training/validation
may not work during testing (Ovadia et al., 2019). As a work-around, we find that entropy-based
methods can be extended to include OOD Maximum Entropy constraints (Jaynes, 1957; Neo et al.,
2024) or Dual logit manipulation (Tao et al., 2023), showcasing the versatility of entropy-based
methods. Since these methods all share the form of the Focal loss, we can easily pair all of them
together into a single step.

A.2 REGULARIZERS

Mixup is an effective regularization technique that augments (Zhang et al., 2018) both input fea-
tures and labels. Mixup works particularly well on both wider and deeper networks (Zhang et al.,
2022) and can be particularly useful in improving network calibration (Thulasidasan et al., 2019;
Chidambaram & Ge, 2024). As an extension to vanilla Mixup, RankMixup (Noh et al., 2023) can
be used to ensure that the augmented samples have lower confidences than the original samples.

A.3 MARGIN-BASED METHODS

Margin-based methods tend to restrict model confidences by a constant margin/factor. For example,
label smoothing (LS) (Müller et al., 2019) softens the targets using a constant factor ϵ. Mathemat-
ically, the smoothed label si is acquired after uniformly adjusting the target si = (1 − ϵ)yk + ϵ

K ,
which is then used to train the network. Although vanilla LS can be used to improve miscalibration,
imposing a constant smoothing factor for all training labels can lead to under-confident predictions.
Furthermore, searching for a suitable ϵ is computationally expensive as it requires a grid-search
across multiple models during the training phase.

Instead of implementing a fixed constant, several works have been proposed to adaptively or con-
ditionally approximate the label smoothing function during training. For example, MDCA (Heb-
balaguppe et al., 2022) utilizes a regularization term, which enforces predicted confidences to be as
close to the average accuracy as possible. This can lead to a parabolic smoothing function (Park
et al., 2023), that is adaptively dependent on the predicted confidences. Which can be problematic,
since both high and low confidence predictions are weakly penalized. Another approach would be
to only conditionally smooth predictions based on a margin. For instance, MBLS (Liu et al., 2022a)
and CALS-ALM (Liu et al., 2023a) propose to restrict output logits by a user defined margin, but
can be sensitive to hyper parameter settings. CRL (Moon et al., 2020) ordinarily ranks predictions
based on the number of times each sample is predicted correctly, however it requires a buffer to store
the correctness history. Which can be empty during the earlier stages of training and idle during later
phases when the model’s accuracy is high.

By adopting a smoothing and indicator function, the Adaptive Conditional Label Smoothing (ACLS)
(Park et al., 2023) method seeks to combine the benefits of both adaptive and conditional methods
without the use of an additional correctness history.
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A.4 POST-HOC PROCESSING

The fundamental idea behind post-hoc processing methods is to obtain a mapping func-
tion/temperature that modifies the model’s logits thus changing it’s predicted confidence. The most
popular post-processing step is the vanilla temperature scaling (TS) (Platt & Karampatziakis, 2007),
which manipulates the model’s confidences without changing the final class label predictions. For
example, a value of T < 1 leads to a lower entropy or “peaky” distributions and a value of T > 1
gives higher entropy or “flatter” predictions.

The typical approach in obtaining the temperature parameter, is to minimize the average calibration
error or NLL over a seperate valdation set. While vanilla TS has been found to be effective in
reducing network over-confidence (Guo et al., 2017), it generally reduces the confidence of every
sample - even when predictions are correct. Other forms of post-hoc processing include calibration
using, model ensembles (Zhang et al., 2020), splines (Gupta et al., 2021) and distribution matching
(Kuleshov & Deshpande, 2022; Tomani et al., 2023). For our post-processing step, we use AdaTS
since it is the SOTA method for post-processing methods and adaptively chooses a samplewise
temperature for scaling model predictions.

A.5 CALIBRATION METRICS

Expected Calibration Error (ECE): The ECE is the most widely used metric in the literature
and directly tied to the definition of calibration (Guo et al., 2017; Tomani et al., 2021). By splitting
the predicted confidences in B evenly separated bins, each containing nb samples. The ECE is then
simply a scalar measuring the weighted errors between the acc and conf of each bin (Naeini et al.,
2015): ECE =

∑B
b=1

nb

N |acc(b)− conf(b)|. Despite the ECE’s popularity, many recent works have
pointed out the limitations of the ECE, such as bin size sensitivity and it’s lack of consideration for
classwise calibration. For a fair and thorough analysis, we introduce other calibration metrics that
cover the weaknesses of the ECE.

Classwise ECE (CECE): As most calibration metrics typically only considers the max confi-
dence probabilities, the CECE considers the macro-averaged ECE of all K classes. Predictions are
binned individually for each respective class and the calibration error is measured for each class
level bin (Nixon et al., 2019). CECE = 1

K

∑B
b=1

∑K
k=1

nb,k

N |acc(b, k)− conf(b, k)|.

Overconfidence Error (OE): For safety-critical applications, overconfident mispredictions are
potentially hazardous. The OE penalizes overconfident bins that have higher confidences than accu-
racy (Thulasidasan et al., 2019): OE =

∑B
b=1

nb

N

[
conf(b)×max(conf(b)− acc(b), 0)

]
.

Kolmogorov-Smirnov Error (KSE): As many calibration metrics are often sensitive to the num-
ber of B bins used during the partitioning of empirical distributions. The KSE(Gupta et al., 2021)
is a bin-free alternative that numerically approximates the differences between two empirical cu-
mulative distributions. The KSE for top-1 classification is given as the following integral, with zk
denoting the predicted probabilities: KSE =

∫ 1

0
|P (k|zk)− zk|P (zk)dzk.

Adaptive ECE (AdaECE: as the ECE is known to be biased towards higher confidence bins,
the AdaECE (Nguyen & O’Connor, 2015) is proposed to adaptively/evenly measure samples across
bins: AdaECE =

∑B
b=1

nb

N |acc(b)− conf(b)| s.t. ∀b, i · |Bb| = |Bi|.

Negative Log-likelihood (NLL): Commonly referred to as cross entropy in deep learning. The
NLL (Hastie et al., 2001) measures the alignment between a model’s confidence Pi(yk|x) and targets
yk: NLL = − 1

N

∑N
i=1

∑K
k=1 yk logPi(yk|x).
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Algorithm 1: Peacock - Unified Multi-Objective Optimization Calibration Framework
Data: Given training and validation set Dtrain = (xi, yi)

N
i=1, Dval = (xv, yv)

V
v=1

1: Initialize neural network parameters θ, learning rate schedule η and uniformly distributed weights wt = 1
A

2: Compute the global and local expectations for the mean and variance constraints µ, σ2

3: ↪→ E[Y] = µ and E[Y2] = σ2

4: Solve numerically for λµ ← NewtonRaphson() // MaxEnt loss root-finder
5: for e ∈ epochs do
6: for i ∈ B do // Sample mini-batch of size B

7: Perform FastMixup on images: x̃ = βxi + (1− β)xj // RankMixup
8: Perform FastMixup on labels: ỹ = βyi + (1− β)yj // RankMixup
9: Compute 1v1 loss: L1v1

CPC = − 1
(C−1)

∑
j ̸=y log

Piy

Piy+Pij
// CPC loss

10: if γt,b ≥ 0 then
11: LDual

AdaFocal = −
∑

k(1− Pi + Pj)
γt,b logPi // Dual AdaFocal loss

12: else if γt,b < 0 then
13: LDual

AdaFocal = −
∑

k(1 + Pi + Pj)
|γt,b| logPi // Inverse Dual AdaFocal loss

14: Compute MaxE loss LME = λµ(
∑

k f(Y)Pi(yk|x)− µG +
∑

k f(Y)Pi(yk|x)− µLk) // MaxEnt loss
15: Compute MRL loss LMRL = max(0,maxk P̃ −maxk P + mMRL) // RankMixup
16: if j = ŷ then
17: LACLS = λ1 max(0, gθ

j (x)−mink(g
θ
k(x))−mACLS)

2 // ACLS regularizer
18: else if j ̸= ŷ then
19: LACLS = λ2 max(0, gθ

ŷ(x)− gθ
j (x)−mACLS)

2 // ACLS regularizer
20: wt = ImportancePeacock(Lt(θ)) // Compute importance loss weights
21:
22: Compute Peacock:
23: ↪→ LPeacock = LDual

AdaFocal + w1LME
constraints + w2L1v1

CPC + w3LMRL

24: θnew ← θold − η∇θLPeacock // Update parameters θ by gradient descent
25: return θ
26:
27: Apply temperature scaling: θAdaTS ← AdaptiveTS(Dval, θ) // AdaTS
28: Function NewtonRaphson():
29: δ = 1e-15 // A small tolerance or stopping condition
30: while g(λ) > δ do
31: λn+1 = λn − g(λ)

g′(λ)
// Update Lagrange Multipliers λn

32: return λn

33: Function ImportancePeacock():

34: minwt

{∣∣∣∣∣∣∣∣∑A
t=1 wt

√
∆θLt(θ)

η

∣∣∣∣∣∣∣∣2
2

∣∣∣∣∑A
t=1 wt = 1, wt ≥ 0 ∀t

}
35: return wt

36: Function AdaptiveTS(Dval, θ):
37: Initialize VAE and MLP parameters Q,ϕ
38: while t < steps do
39: for v ∈ B do // Sample mini-batch of size B
40: ∇V AE ← ∇ELBO[Φ(x)]
41: q̃ = {logP (z|y)|∀y} z ∼ Qϕ(z|x)
42: ∇T ← log(softmax(gθ/T ))
43: (θ, ϕ)t+1 ← (θ, ϕ)t − αlr(∇V AE +∇T )
44: return θAdaTS

B IMPLEMENTATION DETAILS FOR PEACOCK

B.1 ALGORITHM DETAILS AND HYPERPARAMETERS

For our implementation of Peacock, we first select the mean constraint for of MaxEnt loss as our
starting algorithm and compute Lagrange multipliers λn using the Newton Raphson method. This
step is performed in O(n) time using the helper function g(λ) and its derivative g′(λ) before model
training begins.

For each iteration, the pairwise 1v1 constraints of CPC loss are first computed before incorporating
the adaptive γ selection mechanism of AdaFocal loss. This step also includes the second highest
confidence Pi(yj |x) from Dual Focal loss to AdaFocal loss. This way we can reduce compute
overhead by combining both calibration methods into a single step: LDual

AdaFocal = LAdaFocal + LDual.

Next, RankMixup is performed for every sampled input image and label, with the MRL loss com-
puted using the coefficients α and m. For texts datasets, we perform RankMixup at the feature level.
Although vanilla Mixup has been found to hurt ID calibration performance (Wang et al., 2023), our
findings suggest that by combining RankMixup with other algorithms good balance between ID and
OOD calibration can be achieved. In our experience, we find that a large ACLS margin, can lead
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Hyperparameters Values
Learning rate η 0.1

Batch size 512 or 256
Optimizer SGD or Adam
Scheduler Cosine Annealing or Fixed

Epochs 200 or 50
Margin mACLS 6.0

Mixup α 1.0
Mixup margin mMRL 2.0

γ starting 1.0
γ max 20.0
γ min -2.0

No. of bins B 15.0
Learning rate for attention block 3e-4

Table 4: Hyperparameters used for optimizing Peacock

to numerical instability when the number of classes is large, thus we fixed mACLS = 6.0. For com-
pleteness, we include the ACLS step in Algorithm 1, however in our ablation study we show that
ACLS does not improve overall calibration performance and is not included during optimization
or our final proposed version of Peacock. Next, an optional post-processing step using AdaTS is
performed by learning the adaptive temperature on a seperate validation set. Finally, for the impor-
tance weighted form of Peacock, we randomly initialize a self-attention block and optimize it with
Eq. (16) with Adam optimizer and a learning rate of 3e-4 to learn a set of importance weights for
each loss term.

Hyperparameters In general, we try to keep the default settings of each algorithm. However,
when trying to combine multiple of these components, it may become inevitable for some tuning to
be performed. Indeed, performing a grid-search would be the best way to obtain the optimal hyper-
parameters. However, as discussed in our Limitations, the number of parameters scale exponentially
with the number of calibration components selected for optimization. This can be easily become
very compute intensive and would not be the focus of our work.

B.2 ACCELERATING RANKMIXUP

Fig. 6 illustrates the comparisons between the original RankMixup method and the optimized ver-
sion proposed in our paper. RankMixup, in its original form, requires two forward passes during
training: one for a full minibatch (e.g., 512) of original images and another full minibatch of mixed
images. This process can be computationally expensive, especially for large datasets or complex

Model ModelModel

Full minibatch of
Original Images

Full minibatch of
Mixed Images

Logits Mixed logits

RankMixup Peacock Fast
RankMixup (Ours)

Requires two
forward passes

Requires one
forward pass

Half minibatch of
Mixed Images

Half minibatch of
Original Images

Concatenate

Half minibatch
of Logits

Half minibatch
of Mixed logits

Track minibatch
indices

Optimize

Figure 6: During training, RankMixup requires two forward passes: one for original images and
one for mixed images, in order to compute LMRL. We optimize RankMixup by mixing images and
labels batchwise, resulting in a 2x speed up during training.
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Figure 7: When using equal weights (left), the model optimizes loss terms equally. Our direction-
weighted self-attention block, on the other hand, learns to dynamically adjust the importance of
each loss term during training, enabling a more balanced optimization of the overall objective. All
weights are initialized uniformly with plots smoothed for readability.

models. As a workaround, we propose an optimized variant of FastRankMixup, which addresses
this limitation by dividing a full batch of images into two halves: containing a minibatch of half
original and half mixed images (e.g., 512 ÷ 2 = 256).

This way, we only require a single forward pass instead of the two forward passes, delivering a 2x
speedup during training compared to the original RankMixup implementation. This improvement in
training efficiency can be particularly beneficial for large-scale training tasks, where computational
resources are often constrained. A caveat to this method is that the minimum batchsize required will
always be two, as at least two samples are needed to be paired together for Mixup to be performed.

0.9 0.05 0.05

w1 w2 w3

(a) Simple Linear Layer

0.10 1.35 0.63

0.03 2.42 0.79

0.78 0.57 1.62
 

(b) Self-Attention

Figure 8: Comparisons between a simple linear layer versus self-attention for Peacock. Self-
attention is better suited for capturing the complex relationships between loss terms.

B.3 LEARNING DYNAMICS OF DIRECTION WEIGHTED SELF-ATTENTION BLOCK

The importance-weighted formulation of Peacock utilizes a novel direction weighted self-attention
block. This subsection discusses the learning dynamics and certain key considerations of the self-
attention block. Fig. 7 illustrates the differences between the learning dynamics of the equal and im-
portance weighted Peacock on CIFAR100. By assigning equal weights to each loss term, the model
regards all auxiliary losses equally. Conversely, our proposed direction weighted self-attention block
outputs importance weights at every timestep, using Eq. (16). This leads to an overall balanced and
more stable learning process during optimization. Note that all loss terms are normalized before
being passed into the self-attention block during training. Additionally, the direction weighted self-
attention block provides certain key benefits:

• Softmax of Self-Attention: The softmax function of the self-attention block implicitly
enforces KKT conditions, simplifying the optimization process.

• Better learns relationships across losses: The design of self-attention enables better
learning of inter-dependencies among loss terms, compared to a linear layer (see Fig. 8).
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C PROOFS

C.1 TEMPERATURE-SCALED BOUNDS

Consider a temperature/mapping function T which scales the output logits/hypothesis hθ of a model.
Then the average of each temperature scaled hypothesis is given as:

ECE
2
(T (hθ)) =

1

A

A∑
t=1

ECE2(T (hθ
t )) =

ECE(T (hθ
1))

2 + ECE(T (hθ
2))

2 + ...+ ECE(T (hθ
t ))

2

A

(17)
Considering equal contributions of each individual temperature scaled hypothesis, the temperature
scaled multi-objective learner T (Hθ) has the expected squared ECE:

ECE2(T (Hθ)) = E

( 1

A

A∑
t=1

ECE(T (hθ
t ))

)2
 =

∫ (
1

A

A∑
t=1

ECE(T (hθ
t ))

)2

p(x)dx (18)

which follows the same bounds as previously defined in the main paper.

ECE2(T (Hθ)) ≤ ECE
2
(T (hθ)) (19)

Empirically, Table 2 demonstrates that if the same mapping function or temperature T is applied to
each hypothesis (e.g., AdaTS), then the average of the scaled combined learner will also obey the
upper bound of the above inequality.

C.2 ESTIMATING THE GRADIENT

Recall in Section 4.2 of our main paper, the direct computation of ∇θLt(θ) requires the use of
retaining the computational graph4 after the backward pass, which can be compute intensive and
significantly slows down training time. In this section, we demonstrate that decrease rate estimates
for each loss term can act as alternatives to direct gradient recomputation. By simply storing the
previous loss value computed (single step look-back), we can avoid graph retention during the opti-
mization for wt. Using a simple example, we also show that our decrease rate estimates are closely
related to the solutions obtained using gradient descent. For simplicity, we denote the partial deriva-
tives as ∇θLt(θ) =

∂Lt(θ)
∂(θ) and the difference between old and new parameters as ∆θLt(θ).

4 For more details, see Pytorch autograd framework: https://pytorch.org/docs/stable/autograd.html
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(a) Toy sketch illustrating the solution of our
method (green) compared to gradient descent
(blue). Our method closely approximates
gradient descent.

0 200 400 600 800 1000
Steps/Iterations

0

2

4

6

8

10

Pa
ra

m
et

er
s 

 

Gradient Descent
Approximate (Ours)

(b) We compare the solutions given by our
method and gradient descent, for η = 0.1,
our solution is close to the solution by gradi-
ent descent.
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Consider the following task of approximating ∇θLt(θ). By using the first order form of Taylor’s
Theorem, the loss gradients can be rewritten as the following equation:

∇θLt(θ) =
Lt(θnew)− Lt(θold)

∆θ
+ ϵ(θ) =

∆θLt(θ)

∆θ
+ ϵ(θ) (20)

where ∆θLt(θ) is the rate of change for each loss term with respect to the change of model param-
eters θnew and θold, paired by a small error term ϵ(θ). From the gradient descent update rule, the
change in model parameters is given by:

θnew = θold − η∇θLt(θ)

∆θ = −η∇θLt(θ)
(21)

where the difference between new and old network parameters are obtained using the gradients and
a learning rate η. By substituting Eq. (21) into Eq. (20):

∇θLt(θ)
2 =

∆θLt(θ)

−η
+ ϵ(θ) =

Lt(θold)− Lt(θnew)

η
+ ϵ(θ)

*Note the flip in sign

∇θLt(θ) =

√
∆θLt(θ)

η
+ ϵ(θ) ≈

√
∆θLt(θ)

η

(22)

with the small error term ϵ(θ) dropped.

Key Assumptions: Our main paper highlighted the essential assumptions underlying this formu-
lation: 1.) The loss terms Lt are convex and optimizable by gradient descent. 2.) Each loss term
monotonically decreases i.e., the loss evaluated at previous iterations will always be strictly larger
than the loss at the current iteration Lt(θold) > Lt(θnew). This assumption ensures that the ratio√

∆θLt(θ)
η remains positive, avoiding the computation of complex numbers. Moreover, the small

learning rates commonly used in deep learning frameworks tend to be sufficiently small (e.g., η =
2.5e-4) allowing for accurate linear approximations. In practice, we can apply the ReLU function

to the gradient update, i.e
√

ReLU(∆θLt(θ)
η ) if the gradient descent step leads to an increase in the

loss, violating the assumption that Lt(θold) > Lt(θnew). This ensures that the update is scaled down
or ignored in the optimization process.

Simple Empirical Example We further support our findings by including a simple empirical ex-
ample comparing gradient descent and our proposed method. Consider a smooth, convex objective
function Lθ = θ2. Fig. 9a illustrates our goal of obtaining a set of parameters θ such that Lθ is
minimized. For a fixed learning rate of η = 0.1, 1000 iteration steps and a starting point of θ = 10,
our solution given by our method (in green) is relatively close compared to the solution given by
gradient descent (in blue), with a slight delay and an error of roughly 0.5. We can further improve
our method’s solution by reducing the learning rate to η = 0.01, which provides an even closer
estimate to the solutions given by gradient descent and a reduced relative error of roughly 0.05.

D SUPPLEMENTARY EXPERIMENTS AND RESULTS

D.1 DATASET DETAILS

Synthetic OOD We train our models with clean images from the original CIFAR, TinyImageNet
and evaluate their OOD performance on their corrupted forms CIFAR-C, TinyImageNet-C.

1. CIFAR10/CIFAR100 (Krizhevsky & Hinton, 2009) RGB images of size (32x32) containing
ten and hundred classes. The training/validation/testing sets contain 45,000/5,000/10,000
samples respectively.
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2. TinyImagenet (Deng et al., 2009) A miniature version of the ImageNet dataset containing
images of size (64x64) of 200 classes. There are 100,000 images for training and 10,000
images for validation/testing.

3. CIFAR10-C/CIFAR100-C/TinyImagenet-C (Hendrycks & Dietterich, 2019) A widely pop-
ular calibration benchmark, containing corrupted variants of CIFAR and TinyImageNet.
Standard image corruptions (total of 19) are applied on the original test sets across five
increasing levels of severities.

Real-world OOD For wild OOD, we learn our models using the provided ID training sets and
OOD sets for validation and testing (Koh et al., 2021).

1. Camelyon17 (Bandi et al., 2019): A binary task to detect if a (32x32) cell tissue slide is
benign or malignant. The images are collected across different hospitals with equipment
that may vary OOD from the training set.

2. iWildCam (Beery et al., 2020): Animal species tend to vary across different backgrounds
and terrains. The goal is to classify 182 animal classes collected from camera traps de-
ployed in different areas of the wilderness.

3. FMoW (Christie et al., 2018): Satellite imagery of topographies and buildings alike tend to
differ greatly across countries. The task is classify the OOD shifted terrains from one out
of 62 classes.

4. CivilComments (Borkan et al., 2019): A binary text-classification task, where the model
needs to identify toxic comments. The OOD shifts stem from inputs collected from differ-
ing demographics such as gender, religion, etc.

5. Amazon (Ni et al., 2019): A consumer-rating dataset where the input is a text review, with
a label from a 1-to-5 star rating.

D.2 SUPPLEMENTARY EXPERIMENTS AND RESULTS

ID Results: As demonstrated in Table 5, our synthetic benchmark results confirm Peacock’s highly
competitive performance on ID test sets. As discussed in the main text, Peacock’s calibration error
is inherently bounded by the average calibration error of its constituent components. Consequently,
even if some components underperform, Peacock’s overall calibration remains well-calibratied, ir-
respective of whether the data is in-distribution (ID) or out-of-distribution (OOD).

Additional OOD Results: Table 5, shows OOD supplementary results evaluated using AdaECE
(Nguyen & O’Connor, 2015) and OE (Thulasidasan et al., 2019). Our analysis using these additional
metrics aligns with the results presented in our primary findings. While the theoretical proofs in our
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Figure 11: Covariate shifts can be simulated using common image corruptions or caused by natural
differences during data collection in-the-wild.

Dataset Metric MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10

Acc. ↑ 94.0±0.2 93.4±0.4 94.1±0.1 94.6±0.1 94.5±0.1 94.3±0.1 93.8±0.1 93.9±0.2
ECE ↓ 1.1±0.1 0.8±0.1 3.1±0.1 2.9±0.1 1.3±0.1 3.0±0.1 0.6±0.1 0.6±0.1

CECE ↓ 0.4±0.1 0.3±0.1 2.8±0.1 2.7±0.1 0.4±0.1 2.7±0.1 0.2±0.1 0.2±0.1
NLL ↓ 249.8±0.4 232.7±0.1 346.9±0.2 394.4±0.2 253.7±0.1 345.3±0.3 224.4±0.4 224.5±4.1

CIFAR100

Acc. ↑ 73.8 ±0.1 75.8 ±0.1 74.9±0.3 74.7±0.1 75.4±0.1 75.3±0.1 74.5±0.4 73.5±0.5
ECE ↓ 5.4±0.5 6.8±0.1 4.9±0.1 8.8±0.3 9.1±0.1 4.5±0.3 4.1±0.3 3.9±0.2

CECE ↓ 0.2±0.1 0.1±0.1 2.9±0.1 2.3±0.2 0.1±0.1 1.7±0.1 0.1±0.1 0.1±0.1
NLL ↓ 312.7±0.6 306.5±2.3 348.6±0.7 432.2±0.8 319.8±0.4 346.6±1.0 298.3±1.2 283.9±0.1

TinyImageNet

Acc. ↑ 63.1±0.3 60.8±0.1 61.6±0.3 65.0±0.3 63.2±0.3 64.9±0.1 61.2±0.1 62.3±0.4
ECE ↓ 18.2±0.3 6.1±0.5 5.5±0.3 10.3±0.4 6.8±0.1 5.0±0.3 6.2±0.3 3.9±0.3

CECE ↓ 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1
NLL ↓ 322.0±0.5 320.5±0.3 343.2±1.0 358.5±1.6 339.2±1.0 342.3±0.4 333.9±2 324.2±2.4

Table 5: We report the ID test scores (%) for reruns computed across 3 seeds for Peacock and its
components.

main paper and Appendix C are explicitly stated only for the ECE, we anticipate that our arguments
remain valid for other calibration metrics, which are often derivatives or closely related to ECE. We
intend to explore this aspect further in future research.

Additional Multi-Objective Optimization Results: Additional results for our proposed
weighted-importance formulation are provided in Table 8 and Table 9. Our results highlight the
versatility, effectiveness and speed acorss a wide variety of different architectures and methods.
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Dataset Metric MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

CIFAR10-C
AdaECE ↓ 6.9±0.1 6.2±0.4 11.5±0.2 10.7±0.4 7.2±0.2 11.5±0.1 6.3±0.1 6.2±0.3

OE ↓ 3.9±0.3 3.0±0.3 9.6±0.2 9.1±0.4 3.8±0.1 9.5±0.1 3.3±0.1 3.5±0.2

CIFAR100-C
AdaECE ↓ 11.0±0.1 13.7±0.3 8.4±0.2 13.7±0.2 15.5±0.1 10.2±0.3 9.7±0.3 9.6±0.3

OE ↓ 0.5±0.1 0.7±0.1 2.5±0.2 1.8±0.1 0.7±0.1 2.01±0.1 1.3±0.1 1.6±0.1

TinyImageNet-C
AdaECE ↓ 12.6±0.3 13.9±0.3 20.2±0.2 16.3±0.2 18.8±0.2 20.6±0.4 10.4±0.2 10.7±0.2

OE ↓ 4.4±0.3 4.5±0.3 10.4±0.2 8.5±0.2 9.4±0.2 11.1±0.4 2.3±0.2 2.3±0.2

Camelyon17
AdaECE ↓ 12.3±0.4 20.4±0.1 22.4±4.6 20.1±1.6 15.4±2.5 19.6±0.2 11.7±0.7 9.8±1.8

OE ↓ 10.9±0.8 19.6±0.1 22.0±4.6 19.8±1.6 14.3±2.4 18.9±0.1 10.6±0.4 9.0±1.6

iWildCam
AdaECE ↓ 21.0±3.2 23.0±0.5 25.5±0.7 20.3±1.1 13.0±2.5 20.6±1.8 9.7±0.3 12.6±1.4

OE ↓ 14.3±3.6 16.8±0.2 20.4±0.8 15.5±0.2 8.21±1.4 15.4±1.2 5.2±0.2 7.9±1.0

FmoW
AdaECE ↓ 20.0±9.9 20.9±8.6 41.7±0.1 22.4±0.9 9.73±0.1 21.7±0.2 10.5±0.2 10.6±0.1

OE ↓ 13.7±7.7 14.2±7.0 33.7±0.2 16.7±0.8 4.78±0.1 14.6±0.2 5.5±0.3 5.4±0.3

Table 6: We report additional OOD test scores (%) for reruns evaluated on both synthetic and wild
benchmarks for Peacock and its components.

Dataset ECE ↓ CE MaxEnt AdaFocal RankMixup CPC Dual ACLS Peacock (Eq.) Peacock (Impt.)

Amazon

Pre 7.0±0.5 5.0±0.6 6.7±1.0 43.1±0.1 7.4±0.5 5.8±2.3 42.0±0.1 6.5±3.2 5.0±1.1
Post 11.6±0.5 7.6±0.4 10.0±0.3 41.0±0.2 3.4±1.2 5.0±1.5 26.3±0.1 5.6±1.7 4.8±0.2
Avg. 9.3±0.5 6.3±0.2 8.4±0.2 42.0±0.3 5.4±0.3 5.4±0.2 34.2±0.3 6.1±0.3 4.9±0.3

Temp. 1.50 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

CivilComments

Pre 10.4±0.4 4.8±0.2 7.8±1.7 11.4±0.5 2.4±0.4 4.2±0.1 11.1±0.1 2.1±0.8 4.2±1.0
Post 6.3±0.9 8.2±0.7 11.6±0.2 11.0±0.1 2.2±0.3 7.5±0.4 6.7±0.1 5.7±0.7 7.5±0.5
Avg. 8.4±0.6 6.5±0.2 9.7±1.5 11.2±0.5 2.3±0.4 5.9±0.1 8.9±0.2 3.9±0.9 5.8±0.9

Temp. 2.00 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

Table 7: Vanilla temperature scaling results with temperatures obtained post-grid search for Wilds-
Text datasets.

Algorithm Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑A

t wt = 1

Equal-Importance 76.8±0.2 6.3±0.1 48.3±0.2 0.33 0.33 0.33 Yes
MTAN (Liu et al., 2019a) 76.5±0.1 6.5±0.1 48.5±0.2 0.33 0.33 0.33 Yes
CoVV (Groenendijk et al., 2021) 77.3±0.1 6.5±0.1 48.9±0.1 0.01 0.52 0.47 Yes
GradNorm (Chen et al., 2018) 75.7±0.6 6.8±0.4 79.1±0.1 2.99 0.00 0.00 No
MT-MOO (Sener & Koltun, 2018) 76.4±0.4 6.5±0.1 66.3±0.3 0.36 0.47 0.16 Yes
Weighted-Importance (Ours) 77.3±0.4 6.2±0.3 48.5±0.2 0.00 0.53 0.47 Yes

Table 8: Comparisons of different multi-objective optimization methods for Peacock evaluated on
CIFAR10/CIFAR10-C using ResNet-18.

Algorithm (CIFAR10-C) Acc (%) ECE (%) Speed (Sec) w1 w2 w3
∑

t wt = 1

Equal-Importance 82.7±0.1 9.8±0.3 838±3 0.33 0.33 0.33 Yes
CoVV (Groenendijk et al., 2021) 83.1±0.2 8.5±0.3 827±5 0.02 0.22 0.76 Yes
GradNorm (Chen et al., 2018) 80.2±0.4 9.7±0.4 1347±3 3.00 0.00 0.00 No
MT-MOO (Sener & Koltun, 2018) 80.7±0.1 9.8±0.1 915±3 0.43 0.54 0.03 Yes
Weighted-Importance (Ours) 81.0±0.4 6.1±0.3 840±5 0.00 0.53 0.47 Yes

Table 9: Comparisons of different multi-objective methods for Peacock using SWINV2.

D.3 ABLATION STUDIES

To gain a better understanding of each component in Peacock, we provide an ablation study that
removes each component from the full combination of Peacock. In Table 10, we show the respective
ECE, OE and KSE scores of each combination evaluated on CIFAR/CIFAR-C. While each com-
ponent generally helps improve calibration performance, we identify RankMixup and MaxEnt loss
as two of the most critical building blocks of Peacock. Since the removal of either RankMixup or
MaxEnt loss would cause a noticeable drop in calibration performance. Although ACLS indepen-
dently delivers competitive performance, we find it to be the least impactful, since its removal leads
to better calibration in Peacock. Therefore we propose the final version of equal and importance
weighted forms Peacock to be without ACLS. Note that the experiments performed in this abla-
tion study does not include temperature scaling. For e.g., removing RankMixup, would cause the
highest ECE on CIFAR10/CIFAR10-C with 1.9% and 10.1% respectively. The lack of MaxEnt loss
constraints delivers the worst result on CIFAR100/CIFAR100-C with 8.4% and 15.3%.
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(a) CIFAR10 (b) CIFAR100
Algorithm (ID Performance) ECE NLL KSE ECE NLL KSE
Peacock w/o MaxE 1.2±0.1 271.8±2.9 1.1±0.1 8.4±0.1 316.8±1.7 8.4±0.1
Peacock w/o AdaFocal 1.7±0.1 289.5±4.2 1.8±0.1 6.1±0.7 314.8±1.0 6.1±0.7
Peacock w/o RankMixup 1.9±0.2 294.8±3.2 2.0±0.2 6.1±0.3 316.6±0.9 6.2±0.3
Peacock w/o CPC 1.6±0.2 284.6±6.3 1.9±0.2 6.0±0.7 317.8±1.9 6.0±0.7
Peacock w/o Dual 1.5±0.1 278.2±2.9 1.7±0.1 6.5±0.2 308.6±0.9 6.5±0.2
Peacock w/o ACLS 0.6±0.1 240.9±0.4 0.9±0.1 6.5±0.2 306.3±0.9 6.8±0.2

(a) CIFAR10-C (b) CIFAR100-C
Algorithm (OOD Performance) ECE NLL KSE ECE NLL KSE
Peacock w/o MaxE 7.6±0.4 270.4±2.9 7.2±0.4 15.3±0.1 360.0±0.5 14.9±0.1
Peacock w/o AdaFocal 8.6±0.4 286.0±1.3 8.3±0.4 12.4±0.6 355.9±1.3 12.2±0.6
Peacock w/o RankMixup 10.1±0.4 296.8±2.8 9.9±0.5 12.7±0.4 358.4±0.4 12.4±0.4
Peacock w/o CPC 8.7±0.4 285.0±1.8 8.3±0.3 12.4±0.7 359.9±1.7 12.3±0.7
Peacock w/o Dual 8.0±0.1 278.7±0.8 7.7±0.1 12.5±0.2 353.2±1.1 12.3±0.2
Peacock w/o ACLS 6.5±0.2 245.6±0.4 6.3±0.1 11.6±0.3 358.3±0.5 11.7±0.5

Table 10: Component analysis of Peacock reveals the best performance when all algorithms except
ACLS are combined.

E LIMITATIONS

Component Permutations In the case of Peacock, we featured a total of seven baselines which
gives a total of 27 − 1 permutations. While the primary focus of our paper is looking at whether
different calibration algorithms can be successfully combined, we constrained Peacock to the seven
featured algorithms so as to keep experiments manageable. We note that there are many potential
algorithms in the calibration family that could become promising candidates (see Fig. 2a).

Modularity and Future Components To the best of our ability, we built Peacock based on the
most relevant SOTA calibration components. For each algorithm, we closely referenced the source
code provided by the respective authors. As we believe that Peacock will perform as well/better than
the average of its components, we specifically built Peacock in a modular fashion allowing the easy
integration of future methods.
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F REPRODUCIBILITY CHECKLIST

If needed, we provide the reproducibility checklist of this paper.

This paper:

• Includes a conceptual outline and/or pseudocode description of AI methods introduced
(yes)

• Clearly delineates statements that are opinions, hypothesis, and speculation from objective
facts and results (yes)

• Provides well marked pedagogical references for less-familiare readers to gain background
necessary to replicate the paper (yes)

Does this paper make theoretical contributions? (yes)

If yes, please complete the list below.

• All assumptions and restrictions are stated clearly and formally. (yes)
• All novel claims are stated formally (e.g., in theorem statements). (yes)
• Proofs of all novel claims are included. (yes)
• Proof sketches or intuitions are given for complex and/or novel results. (yes)
• Appropriate citations to theoretical tools used are given. (yes)
• All theoretical claims are demonstrated empirically to hold. (yes)
• All experimental code used to eliminate or disprove claims is included. (yes)

Does this paper rely on one or more datasets? (yes)

If yes, please complete the list below.

• A motivation is given for why the experiments are conducted on the selected datasets (yes)
• All novel datasets introduced in this paper are included in a data appendix. (NA)
• All novel datasets introduced in this paper will be made publicly available upon publication

of the paper with a license that allows free usage for research purposes. (NA)
• All datasets drawn from the existing literature (potentially including authors’ own previ-

ously published work) are accompanied by appropriate citations. (yes)
• All datasets drawn from the existing literature (potentially including authors’ own previ-

ously published work) are publicly available. (yes)
• All datasets that are not publicly available are described in detail, with explanation why

publicly available alternatives are not scientifically satisficing. (NA)

Does this paper include computational experiments? (yes)

If yes, please complete the list below.

• Any code required for pre-processing data is included in the appendix. (yes).
• All source code required for conducting and analyzing the experiments is included in a

code appendix. (yes)
• All source code required for conducting and analyzing the experiments will be made pub-

licly available upon publication of the paper with a license that allows free usage for re-
search purposes. (yes)

• All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from (yes)
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• If an algorithm depends on randomness, then the method used for setting seeds is described
in a way sufficient to allow replication of results. (yes)

• This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks. (yes)

• This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics. (yes)

• This paper states the number of algorithm runs used to compute each reported result. (yes)
• Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,

average; median) to include measures of variation, confidence, or other distributional in-
formation. (yes)

• The significance of any improvement or decrease in performance is judged using appropri-
ate statistical tests (e.g., Wilcoxon signed-rank). (yes)

• This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments. (yes)

• This paper states the number and range of values tried per (hyper-) parameter during devel-
opment of the paper, along with the criterion used for selecting the final parameter setting.
(yes)
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