One-bit Deep Hashing: Towards Resource-Efficient Hashing
Model with Binary Neural Network

ABSTRACT

Deep Hashing (DH) has emerged as an indispensable technique
for fast image search in recent years. However, using full-precision
Convolutional Neural Networks (CNN) in DH makes it challeng-
ing to deploy on devices with limited resources. To deploy DH on
resource-limited devices, the Binary Neural Network (BNN) offers
a solution that significantly reduces computations and parameters
compared to CNN. Unfortunately, applying BNN directly to DH
will lead to huge performance degradation. To tackle this problem,
we first conducted extensive experiments and discovered that the
center-based method provides a fundamental guarantee for BNN-
DH performance. Subsequently, we delved deeper into the impact of
BNNs on center-based methods and revealed two key insights. First,
we find reducing the distance between hash codes and hash centers
is challenging for BNN-DH compared to CNN-based DH. This can
be attributed to the limited representation capability of BNN. Sec-
ond, the evolution of hash code aggregation undergoes two stages
in BNN-DH, which is different from CNN-based DH. Thus, we need
to take into account the changing trends in code aggregation at
different stages. Based on these findings, we designed a strong and
general method called One-bit Deep Hashing (ODH). First, ODH in-
corporates a semantic self-adaptive hash center module to address
the problem of hash codes inadequately converging to their hash
centers. Then, it employs a novel two-stage training method to
consider the evolution of hash code aggregation. Finally, extensive
experiments on two datasets demonstrate that ODH can achieve
significant superiority over other BNN-DH models. The code for
ODH is available at https://anonymous.4open.science/r/OSH-1730.

CCS CONCEPTS

« Information systems — Learning to rank; Similarity measures.

KEYWORDS

deep hashing; binary neural network; image retrieval

1 INTRODUCTION

Hashing has played a crucial role in image retrieval in the mul-
timedia community, which aims to return the most relevant im-
ages from the database according to a given image query [19].
This approach represents images as binary vectors, also known
as hash codes. Driven by the storage and search efficiency offered

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM’24, October 28—November 01, 2024, Melbourne, Australia

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

CNN: EEE 08 [BNN(ReaciNet) 8 CNN(ResNel)
m 0.5(0.1(-0.4| MM ‘ MUL 06
® |-0.1(0.3(0.2| =
09(0.7[08 m e Mu om 8
N ADD o
® 04
Binarize} <é
EIEIRE
, — v - nnnn 0.2
. [o]2] § xnor
O-1|1]|1]=
T BlE - DCH DTSH CSQ MDSH ours

POPCOUNT

(b) MAP@500 in CIFAR100 for
various CNN-DH and BNN-DSH

(a) The convolution operation in CNN and BNN
Figure 1: (a) The convolution operation procedure in CNN and
BNN. Compared to CNN, BNN offers more efficient operation
and storage. (b) The mAP@500 performance on the CIFAR100
dataset when deep hashing models adopt CNN or BNN as the
backbone.

by hash codes, hashing is an active research topic in image re-
trieval [2, 3, 6, 8, 10, 15, 16, 27, 29-33, 40, 44]. In recent years, deep
Convolutional Neural Networks (CNN) have shown remarkable
performance in learning a mapping from images to hash codes for
hashing, known as Deep Hashing (DH). However, the noteworthy
performance achieved by CNN-based Deep Hashing (CNN-DH)
often entails a trade-off in terms of larger model size and increased
computational complexity [41, 42]. It hinders the application of DH
on resource-limited devices. For example, many handheld devices
and small drones lack the necessary GPUs and sufficient memory to
accommodate computationally intensive CNN models. Therefore,
it is crucial to reduce the computational and memory requirements
of DH largely while preserving its performance.

Towards this goal, Binary Neural Networks (BNNs) have emerged
as a promising approach for compressing neural networks [25, 39].
As depicted in Figure 1 (a), BNNs aim to reduce storage and com-
putation costs by binarizing both weights and activations. This
characteristic enables BNNs to achieve a memory compression ra-
tio of 32X and computational reductions of up to 58 on specialized
processors [24]. BNNs’ inherent compatibility with DH manifests
through the XNOR and POPCOUNT operations employed in BNN
convolutions align harmoniously with the Hamming distance calcu-
lation on hash codes. Besides, in recent years, the advanced BNNs
[34, 35] have rapidly narrowed the performance gap with CNN in
various tasks [21, 22, 36]. Recognizing the immense value of BNNs
in facilitating the deployment of DH on resource-limited devices,
the quest for an effective BNN-based DH (BNN-DH) holds excellent
practical significance.

Unfortunately, when we replace the original CNN backbone
with a BNN backbone in DH, we observe a significant performance
degradation as illustrated in Figure 1 (b). This observation indi-
cates that the current DH is not particularly well-suited for a BNN
backbone. To tackle this problem, we initially conduct preliminary
experiments, which reveal that center-based deep hashing methods

https://doi.org/XXXXXXX.XXXXXXX

MM’24, October 28—-November 01, 2024, Melbourne, Australia

[6, 29, 30, 40] offer an essential foundation for the performance
of BNN-DH. To further explore the bottlenecks that impact the
performance of BNN-DH in center-based methods, we conduct two
analyses from different perspectives: the optimization perspective
and the hash code distribution perspective. (i) From the optimiza-
tion perspective, center-based methods aim to bring the hash codes
closer to their hash centers [40]. Thus, we conduct a distance anal-
ysis as shown in Figure 2, which reveals that drawing the hash
codes closer to their hash centers becomes increasingly challeng-
ing in BNN-DH compared to CNN-DH. This phenomenon can be
attributed to the limited representation capability of BNN, thereby
impeding the attainment of optimization efficacy comparable to
that of CNN-DH. (ii) From the hash code distribution perspective,
center-based methods aim to force hash codes of similar images to
aggregation. To explore this aspect, we conduct a hash code aggre-
gation analysis. As depicted in Figure 3, the CNN-DH focuses on
enhancing code aggregation. However, in BNN-DH, the evolution
comprises two stages: space exploration and code aggregation. Dur-
ing the space exploration stage, hash codes with the same category
tend to diverge from one another. In the subsequent code aggre-
gation stage, hash codes with the same category start to approach
one another laboriously. Therefore, it is necessary to consider the
distinctive characteristics of code aggregation within the BNN-DH
training process to avoid sub-optimal results.

Motivated by these analyses, we have developed a strong and gen-
eral model called One-bit Deep Hashing (ODH) to tackle the afore-
mentioned problems. First, we introduce a semantic self-adaptive
hash center module to overcome the issue of hash codes not ade-
quately approaching the their hash centers. It directly incorporates
semantic information of categories during the hash center learning
process, which makes the hash centers dynamically adjusted based
on the current distribution of hash codes in the Hamming space.
Second, we introduce a two-stage training method to align with the
changing characteristics of code aggregation in BNN-DH. During
the space exploration phase, we utilize dynamic hash centers as a
global similarity metric and use a loss function to push the hash
code close to its hash center but distanced from other hash centers.
In the subsequent code aggregation stage, we include an additional
aggregation extrapolation objective to enhance hash code aggrega-
tion. In summary, the paper makes three main contributions:

e We propose a novel model, One-bit Deep Hashing (ODH),
which combines Binary Neural Networks (BNNs) and deep
hashing (DH) into a unified framework. Our work is timely as
CNN backbones’ computational and memory requirements
pose challenges for deploying DH on resource-limited de-
vices. By leveraging BNNs, we enable DH to overcome this
dilemma.

e Recognizing that BNN-DH exhibits distinct properties com-
pared to its CNN-DH, we conducted some analyses to ex-
plore the inherent problems. Based on the insights gained
from these analyses, we introduce a semantic self-adaptive
hash center module and employ a two-stage training method.
These techniques effectively bridge the gap between BNNs
and CNNs in the context of deep hashing.

e We perform comprehensive experiments on two widely used
datasets to evaluate the performance of ODH against other

baseline methods. The results demonstrate the superiority
of ODH and establish it as a robust foundational model for
future binarized deep hashing research, with implications
for both academia and industry.

2 RELATED WORK
2.1 Deep Hashing

Deep Hashing (DH) has gained increasing importance in large-scale
image retrieval tasks. It aims to convert images into hash codes
using a deep neural network as the backbone and can be broadly
categorized into supervised and unsupervised [19]. In this paper, we
focus on supervised deep hashing techniques, which can be further
subcategorized into pairwise methods, ranking-based methods, and
center-based methods.

Pair-wise methods [3, 15, 27, 32, 33, 44] have been extensively
studied and involve using pairwise similarities between data pairs
as learning targets. The objective is to ensure that similar pairs
of images have similar hash codes while dissimilar pairs have dis-
similar hash codes. Additionally, various researchers have adopted
ranking-based similarity preserving loss terms [2, 8, 16, 31]. For
instance, triplet loss [16, 31] and list-wise loss [2, 8] are commonly
used to maintain data ordering. However, our preliminary experi-
ments find that pairwise and ranking-based methods make it hard
to achieve satisfactory results across various BNN backbones.

Center-based methods [6, 10, 29, 30, 40] stem from the point-
wise method [19], which has gained popularity recently. These
methods first generate hash centers for each category. Then, they
force hash codes outputted from the network to approach their
hash centers. For example, CSQ [40] generates hash centers using
the Hadamard matrix and Bernoulli sampling, and then it applies
a central similarity objective to push hash codes approach hash
centers. Subsequent works [6, 10, 29, 30] have expanded upon CSQ
by elaborating on the objective functions [6, 10] or methodologies
for generating hash centers [29, 30]. These methods generate fixed
hash centers for image retrieval tasks, and hash codes can be easily
close to the hash center when using full-precision CNN as shown in
Figure 2, thus achieving excellent performance. However, our pre-
liminary experiments show that when using BNN as the backbone,
hash codes make it difficult to approach the hash center. Therefore,
we consider making the hash centers movable to approach hash
codes. One relevant work that could be referenced towards this
goal is [12], yet it overlooks the semantic information of categories.
Recent advancements in cross-modal hashing [5, 28, 38] propose
the implicit integration of label semantic information into hash
centers. Drawing inspiration from these works, we employ label
vectors, albeit solely as indices for categories, and directly incorpo-
rate the semantic information of these categories to derive more
precise hash centers.

2.2 Binary Neural Network

The Binary Neural Network (BNN) is considered the most efficient
quantized network for resource-limited devices, as it quantizes full-
precision weights and activations to binary values [25, 39]. Given
a CNN, we simply denote its r-th layer real-valued weights as W"
and the inputs as A”. Then, BNN binarizes each weight w" € W"
and each activation a” € A" to binary value {—1,+1}. The basic

One-bit Deep Hashing: Towards Resource-Efficient Hashing Model with Binary Neural Network

binarization can be achieved by the sign function as follows:

+1, ifx" >0
—1, otherwise,

Q(x") = sign(x") = { 1
where Q(+) denotes the quantization function. Then, efficient bit-
wise XNOR and POPCOUNT operations can be used to conduct
binarized convolution © as follows:

O(A") ® Q(W") = POPCOUNT(XNOR(Q(A"), 0(W"))). (2)

To enhance BNN performance, several notable efforts have been
made. XnorNet [24] improves convolution efficiency by binarizing
the weights and inputs of convolution kernels. Bi2Real [20] rescales
feature maps based on input before binarized operations and in-
corporates a gating module similar to SE-Net [11]. ReActNet [17]
replaces conventional PReLU and sign functions with RPReLU and
RSign, respectively, using a learnable threshold to improve BNN
performance. Rbonn [35] introduces a recurrent bilinear optimiza-
tion to address the asynchronous convergence problem in BNNs.
However, many of these methods suffer from weight oscillation
caused by the non-parametric scaling factor. Rebnn [34] mitigates
frequent oscillation to enhance BNN training.

Recently, two methods [41, 42] have explored the combination
of BNN and DH for image retrieval. REDH [42] proposes regular-
izations on the binarization functions of weights and activations.
BNNH [41] constructs a binarized network architecture to generate
binary outputs directly and introduces an activation-aware loss to
guide the update of activations in intermediate layers. However,
these methods design specialized modifications or constraints in
BNN architectures, occasionally constraining their applicability to
other innovative BNNs. Our work aims to develop a deep hashing
model that can be generalized to various types of BNNs.

3 PRELIMINARIES
3.1 Deep Hashing

Consider a database X = {x1, ..., xN' } comprising N images. Deep
Hashing (DH) targets to learn a hash function f : x; — h; that maps
each image x; € X to alow-dimensional binary vector h; € {—1,1}?,
also known as hash code, where b denotes the length of hash code.
The hash function f usually utilizes a convolutional neural network
(CNN) as the feature extractor. This mapping aims to preserve the
pairwise similarities between the images x; and x; in the Hamming
space, characterized by the Hamming distance Dy (h;, k) for hash
codes h; and hj. The Hamming distance between two hash codes
is defined as the number of differing bits between the codes:

N
Dpr(hi,hj) =)" 1y, = POPCOUNT(h; XNOR hyj), (3)
k=1
where the summation can be computed efficiently due to the XNOR
and POPCOUNT instruction that counts the number of bits set to
one within a machine word [7].

3.2 Center-based Method

Center-based methods [6, 10, 29, 30, 40] have achieved remarkable
performance in recent years. They consist of two phases. Taking
the CSQ [40] as an example, in the first phase, hash centers C =

MM’24, October 28—-November 01, 2024, Melbourne, Australia

train set
test set

train set
test set

%
20k
Tokes®

&

ReactNet

(a) CSQ with various bit length

(b) CSQ with various BNNs

Figure 2: The Code Center Distance (CCD) analysis on the IM-
AGENET100 dataset. A lower CCD indicates a closer distance
between the hash codes and their hash centers. (a) CSQ em-
ploys ResNet50 or XnorNet as the backbone. (b) CSQ employs
IR-Net, ReactNet, or Rebnn as the backbone. This analysis
reveals that BNN-DH is struggling to achieve the same level
of optimization as that of CNN-DH.

{eitiZcie {-1, 1} are generated. They are defined as follows:

1« b
52 Dreie)) 2 . @
i#j

where m is the number of hash centers (typically equivalent to
the number of categories) and P is the number of combinations
of different ¢; and c; in C. Hash centers represent a distributed
learning target for different categories of images. CSQ [40] proposes
two methods to generate hash centers, including sampling from a
hadamard matrix or a bernoulli distribution. In other center-based
methods [29, 30], various settings and methods may be proposed to
generate hash centers. In the second phase, CSQ employs a binary
cross-entropy loss to drive the hash code h; toward its hash center
¢;. While other center-based methods [10, 30] may employ different
objectives, their primary goal remains consistent.

3.3 Preliminary Analysis

We first conduct a preliminary experiment as shown in Table 1 and
reveal that center-based methods are more suitable to integrate
with BNNs. To further explore the impact of BNNs on center-based
methods, we conduct two analyses from the optimization and hash
code distribution perspectives.

From the optimization perspective, center-based methods are
to encourage the hash codes to approach their hash centers. To
evaluate the distance between hash codes and their hash centers,
we introduce the Codes Center Distance (CCD) metric defined as
follows:

N
_ 1 oA
cep = ;DH(hl, ¢, (5)

A lower value of CCD indicates a closer distance between the hash
codes and their hash centers. Figure 2 (a) illustrates the evolution
of CCD over the training steps when the highly regarded model
CSQ [40] employs ResNet50 [9] or XnorNet [24] as backbones, with
bit length b = {64, 32}. The results demonstrate that when CSQ

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Space Exploration Code Aggregation

12
SHC+XnorNet

— SHC+ReactNet
— CSQ+Rebnn
CSQ+XNOR

T ResNet (train)
| — ResNet (test)

] XnorNet (train)
[} — XnorNet (test)

101

1 g

CAG
o

Wiy
J .
2 U L ,,MW N
o 20,000 20000° 20,000 40,000
step step

(a) CSQ with CNN or BNN backbone (b) Various DH-BNN

Figure 3: The Code AGgregation (CAG) analysis results on the
IMAGENET100 dataset. A lower CAG implies a greater dis-
tance among hash codes with the same category. (a) CSQ em-
ploys ResNet50 or XnorNet as the backbone with bit length
b = 64. (b) CSQ and SHC with various BNNs, the curve is
about the train set.

utilizes ResNet50 as the backbone, the hash codes rapidly converge
toward their hash centers. In contrast, when XnorNet is used as the
backbone, the hash codes initially approach the hash centers at a
slower pace and later struggle to achieve closer alignment with the
hash centers. Figure 2 (b) showcases the CCD results when CSQ
employs other BNN backbones, including IR-Net [23], ReactNet
[17], and Rebnn [34], which further substantiates this phenomenon.
These findings highlight the limited representation capability of
BNNs compared to CNNs [18], making it challenging to optimize
the hash codes to reside in an ideal space.

From the hash code distribution perspective, center-based meth-
ods aim to ensure that hash codes of similar images are close to each
other while dissimilar images are far apart. In fact, the optimization
objective of center-based methods is precisely tailored to achieve
this purpose. Considering that the hash centers can separate dis-
similar hash codes, we analyze the aggregation of hash codes with
the same category. We introduce the Codes AGgregation (CAG)
metric defined as follows:

CAG =~ i L > Dr(hi,). (6)
m

1
I=1 |H | hiEHl

Here, H! represents the set of hash codes with category label I, and
K = ﬁ 2ieqt hi is the centroid of H!. A lower value of CAG

indicates a closer distance between hash codes of similar images.
Figure 3 (a) depicts the evolution of CAG during the training steps
when CSQ employs ResNet50 or XnorNet as backbones. When CSQ
employs ResNet50 as its backbone, the hash codes with the same
category progressively aggregate as the training step progresses.
However, when CSQ utilizes XnorNet as its backbone, the CAG
curve initially shows an increase followed by a limited decline. This
phenomenon is further validated by various BNN-DH as shown
in Figure 3 (b). We refer to the initial increase stage as the space
exploration stage because it appears that BNNs initially explore
the Hamming space. The subsequent decline stage is referred to
as the code aggregation stage as the code attempts to aggregate
together. Note that while a desired distribution of hash codes implies
alower CAG, alower CAG does not necessarily guarantee a desired

distribution of hash codes. For instance, in an extreme scenario
where all images share the same hash code, the CAG would be 0,
but the search result is invalid. A similar situation can occur at the
beginning of the space exploration stage. Therefore, it is advisable
to consider the characteristics of the BNN-DH training process
and selectively incorporate regularization methods to enhance the
aggregation of hash codes with the same category.

4 THE PROPOSED ODH

In this section, we present a description of our proposed One-bit
Deep Hashing (ODH) as depicted in Figure 4 to solve the above two
problems. It consists of two main parts: a semantic self-adaptive
hash center module and a two-stage training method.

4.1 Semantic Self-adaptive Hash Center Module

In our first analysis presented in Section 3.3, we find that hash
codes generated by BNN-DH exhibit difficulties in attaining a close
alignment with the hash centers. To tackle this problem, we propose
a solution by transforming the hash center from a static pattern to
a dynamic and adaptable mode, which simultaneously optimizes
the hash codes to approach the hash center and the hash center to
approach the hash codes.

As depicted in Figure 4 (a), we utilize the category label y; €
{0,1}™ as input and aim to derive the hash center] € {~1, 1}%.
A straightforward approach involves inputting the label y; into a
neural network, such as a Multilayer Perceptron (MLP), to obtain
the hash center ¢]. However, this approach disregards the semantic
information in the categories, leading to suboptimal results. Hence,
we introduce a category feature matrix W = [wy, wa, ..., wp] €
RM™%Crm 1o incorporate the semantic information of the categories,
where Cy, is the dimension of w;.

Taking inspiration from the previous work [29, 43], we devise a
classifier task with the cross-entropy loss L., as follows:

1 N m
Lets = =7 D D, it log(din). %)

i=1 [=1
where §; is the output of a CNN model (in our implementation, we
utilize ResNet50, but other CNN models are also applicable) and
Yi1, Ui is the I-th value of y;, §j; respectively. Then we can leverage
the weights of the last fully connected layer in the classifier model
as the category feature matrix W as shown in the upper part of
Figure 4 (a). Next, we perform a matrix multiplication between the
one-hot encoded label y; = {0, 1}™ and the category matrix W, like
a lookup process. This yields the category feature w] = y;W corre-
sponding to the label y;. Then, we employ a two-layer MLP with
a sigmoid activation function o(-) to map the category feature w;
to a representation p; € (0,1)?. The hash center is then generated
by sampling from the multivariate Bernoulli distribution, resulting
in ¢} = Bernoulli(p;). By employing the reparameterization trick

[26], the entire process can be formulated as follows:

¢; = sign(o(MLP(y;W")) = p), ®)

where p1 denotes a sample drawn from the uniform distribution
U (0, 1). The gradient can be approximately estimated by applying
the Straight-Through Estimator (STE) [1]. This approach enables
the module to learn the binary output in an end-to-end fashion.

One-bit Deep Hashing: Towards Resource-Efficient Hashing Model with Binary Neural Network

4= | CNN | 4um

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Dynamic hash centers

Di
(o ~ Ber(p;
SHE

(a) Semantic self-adaptive hash center module

(b) Two-stage training method

Figure 4: Workflow of ODH. (a) The semantic self-adaptive hash center module. It generates hash centers with the category
information. (b) The two-stage training method. (left) In the space exploration stage, ODH directly uses hash center loss L. to
force hash codes to approach hash centers. (right) In the code aggregation stage, ODH additionally utilizes a novel extrapolation
aggregation objective L, to enhance the aggregation of hash codes with the same category.

4.2 Two-stage Training Method

Once we obtain the hash centers C’ = {ci, c;, c;V}, we can use
them as the target to learn the hash model. However, based on
the analysis in Section 3.3, BNN-DH usually exhibits two special
stages: the space exploration stage and the code aggregation stage.
To align with the changing characteristics of hash code aggregation
in BNN-DH, we introduce a two-stage training method.

4.2.1 Space Exploration Stage. As shown in Figure 3 (a), during the
space exploration stage, the CAG of BNN-DH gradually increases.
This observation indicates that BNN-DH does not initially enhance
the aggregation of hash codes with the same category. Based on
this characteristic, as shown in the left of Figure 4 (b), we directly
employ a BNN backbone with a tanh(-) function in the final layer to
acquire the hash codes h; (In the inference stage, we replace tanh(-)
to sign(-) function to get binary output). Then, we propose a hash
center loss Ly, to force the hash code h; to approach its hash center
c; while being far away from the hash centers of other categories.
This can be achieved by maximizing the posterior probability of
the ground-truth class using cross-entropy loss:

exp(¢p(hi, c;)/7)

N
1
Lpe=-—) log . ©9)
‘N Zl: 22, exp($(hi,cp)/7)
T
Here, ¢(aj,az) = % represents the cosine similarity be-

tween a; and az. The notation 7 denotes a temperature hyper-
parameter. Note that this optimization objective Ly, can also pro-
mote a maximum distance between hash centers with weights
/;/T(]{/;z . N(I,k) is dependent on the number of samples per cate-
gory present in the dataset. See Appendix A for details.

4.2.2 Code Aggregation Stage. During the code aggregation stage,
in addition to employing the aforementioned center loss Ly, to
encourage hash codes to approach their hash centers, we propose

an extrapolation aggregation objective to enhance the aggregation
among hash codes with the same category. The basic idea is to bring
hash codes closer together within the same category in a training

batch B = {xi}lfll, where |B| is the batch size. However, focusing
solely on the images in the training set may reduce the model’s
generalization capabilities. Another consideration is the importance
of ensuring that images within the same category in a batch serve as
hard samples for each other, thereby further promoting hash code
aggregation. To achieve these goals, we propose an extrapolation
aggregation objective L,sd. As shown in the right part of Figure 4
(b), we first utilize the data augmentation [12] to generate two views
B; = {xll}lﬂ and By = {xlz}lﬂ for each image x; € B. Note that it
is possible to extend this to more views, but this is not our primary
focus. Assume Bpeqy = B1 U By is the total images within a batch.
Hpew is the corresponding hash code set. Then, considering the
fact that increasing the variance between samples can facilitate the
creation of hard samples [45], we propose a feature extrapolation
method within the same category. Specifically, let H,llew represent
the set of hash codes in Hp.y that belong to category I. We compute
the centroid vectors S = {s;}{_,, where 5; = ﬁ ZhiEHiew h;
represents the centroid vector for each categorynieﬁV Hpew. Here, r
indicates the number of S and |H.,, | denotes number of H., .
As illustrated in Figure 5, for a hash code h; € HL,,,, we adopt
weighted addition to generate a new one as follows:

®(hi) = M + (1 = A)s). (10)

In this context, we select A from a uniform distribution as A ~
U(0,1) + 1, where the addition of 1 ensures a range of (1, 2). This
adjustment guarantees that h;s; < h;sj, thereby increasing the

variance of hash codes in H.,, , as depicted in Figure 5 (b). Then,

new:>

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Figure 5: The process of extrapolation used in the code ag-
gregation stage. It aims to increase the variance among hash
codes with the same category.

the extrapolation aggregation objective is as follows:

-
Lasa = Do Du(®(h), (h))). (11)
I=1 h;,h;eHL,,,
The objective Eq. 11 not only effectively harnesses the information
from other images sharing the same category within a batch but
also amplifies the variance of hash codes, leading to enhancement
in code aggregation.

We transform the training method from the space exploration
stage to the code aggregation stage after T training epochs. We
set T as a hyper-parameter in our implementation, leaving the
automated transition for future research. Moreover, in scenarios
where the batch size B is smaller than the number of categories m,
some categories may have only one image in each training batch.
To tackle this problem, we utilize a stratified sampling technique,
which first samples some categories and then samples instances
within these categories.

4.3 Training Procedure

Note that the dynamic hash centers are generated concurrently
with the model’s training. During the space exploration phase, we
employ classification loss L.j; and hash center loss Ly, as targets
for training our model as follows:

L =Ly + MLgs. (12)

After T epochs, we enter the code aggregation stage and introduce

the extrapolation aggregation loss Ly, resulting in the final loss
equation:

L =Lpe +MLegs + A2Lgsa, (13)

where A; and A, are the hyper-parameters.

5 EXPERIMENTS
5.1 Experiment Settings

5.1.1 Dataset. We conduct extensive experiments on 11 deep hash-
ing models based on two widely used image retrieval datasets.
CIFAR100 [14] consists of 60,000 images from 100 classes. We ran-
domly selected 50 images per class as the query set and 100 images
per class as the training set and used all remaining images except
queries as the database. IMAGENET100 is a subset of IMAGENET
[4] with 100 classes. Following the settings from [40], we selected

100 categories and used all the images of these categories in the
training set as the database and the images in the validation set
as the queries. Furthermore, we randomly selected 13,000 as the
training images from the database.

5.1.2 Baselines and Training Details. We considered the following
deep hashing models as baselines from their learning objectives.
Pair-wise methods include: DBDH [44], DCH [3], DFH [15], and
DSHSD [32]. Ranking-based methods include: DTSH [31], TALR
[8], and DTQ [16]. Center-based methods include: CSQ [40], DPN
[6], SHC [29], and MDSH [30]. Besides, we considered the following
binary neural networks as the backbones of deep hashing models:
XnorNet [24], Bi2Real [20], IR-Net [23], ReactNet [17], Recu [37],
Rbonn [35], and Rebnn [34].

We employed PyTorch to implement these models and conducted
experiments on two Intel Xeon Gold 5218 CPUs and one NVIDIA
Tesla V100. The batch size was set to 64, and we utilized the Adam
optimizer [13] along with a grid search to select the learning rate
from the set {1071,1072,1073,107%,107°}. Our model utilized the
Adam optimizer for optimization, with a learning rate of 10™%. The
hyperparameters 11, A2, and ¢ were set to 0.0001, 0.001, and 0.2
respectively. The value of T was set to 100 for both datasets.

5.2 Performance on BNN-DH

In this experiment, we first used the mean Average Precision at the
top K (mAP@K) as the evaluation metric to compare various deep
hashing models utilizing different BNN backbones on CIFAR100
and IMAGENET100 datasets. Specifically, we adopted mAP@500
for IMAGENET100 and mAP@1000 for CIFAR100 while setting the
code length b = 64. We also provide the result when these deep
hashing models adopt full-precision backbone ResNet50.

Table 1 presents an overview of the results, revealing the fol-
lowing observations: (i) Our proposed ODH outperforms other
baseline models significantly in various BNN backbones. Specifi-
cally, ODH surpasses the second-best result by 37.4% and 21.1% on
the CIFAR100 and IMAGENET100 datasets, respectively, averaged
across these BNN backbones. This indicates that ODH is a strong
and general model. (ii) Overall, the center-based methods, such as
CSQ, DPN, SHC, and MDSH, outperform the pair-wise methods and
ranking-based methods in terms of performance. Some ranking-
based methods and pair-wise methods, such as DFH and TALR,
struggle to produce effective results. This suggests that the center-
based objective is crucial when applying BNN to deep hashing
models. We have a hypothesis to explain this phenomenon: BNNs
have a smaller function space compared to CNNs, making it chal-
lenging to consider complex objectives. For instance, pair-wise and
ranking-based methods need to consider at least O(N?) complex
relationships, where N is the number of images. The center-based
method only needs to consider relationships ranging from O(N)
to O(NM), where M is the number of hash centers much smaller
than N. Therefore, when using BNN as a backbone, the center-
based method can achieve better and more stable results. (iii) ODH
does not emerge as the foremost performer when utilizing the full-
precision backbone ResNet because its design is based on analysis
conducted with the BNN backbone. Furthermore, when using BNN

One-bit Deep Hashing: Towards Resource-Efficient Hashing Model with Binary Neural Network

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Data BNN Pair-wise Models Ranking-based Models Center-based Models
DBDH DCH DFH DSHSD | DTSH TALR DTQ | CSQ DPN SHC MDSH | ODH
ResNet 0.407 0.567 0.449 0.575 0.526 0.452 0.514 | 0.646 0.643 0.638 0.628 0.607
XnorNet 0.025 0.048 0.038 0.082 0.051 0.021 0.039 | 0.289 0.155 0.111 0.198 | 0.422%
=4 Bi2Real 0.037 0.188 0.019 0.147 0.151 0.056 0.158 | 0.218 0.250 0.317 0.145 | 0.421"
& IR-Net 0.208 0.179 0.029 0.201 0.188 0.063 0.204 | 0.310 0.276 0.166 0.127 | 0.448"
é ReactNet | 0.115 0.267 0.017 0.211 0.292 0.091 0.235 | 0.335 0.296 0.328 0.301 0.471*
o ReCu 0.078 0.251 0.017 0.245 0.199 0.035 0.241 | 0.264 0.226 0.340 0.369 | 0.416"
Rbonn 0.046 0.273 0.024 0.231 0.228 0.025 0.274 | 0.345 0.253 0.335 0.334 | 0.485"
Rebnn 0.017 0.306 0.036 0.267 0.331 0.029 0.269 | 0.355 0.312 0.340 0.226 | 0.480"
ResNet 0.533 0.859 0.562 0.856 0.784 0.591 0.797 | 0.877 0.870 0.894 0.895 0.861
= XnorNet 0.021 0.028 0.036 0.034 0.038 0.013 0.042 | 0.299 0.306 0.313 0.303 | 0.401"
= Bi2Real 0.025 0.188 0.019 0.128 0.133 0.026 0.174 | 0.349 0330 0.324 0.265 | 0.361"
Li] IR-Net 0.112 0.197 0.030 0.241 0.191 0.042 0.235 | 0.330 0.349 0.329 0.303 | 0.455"
Eg'] ReactNet | 0.069 0.326 0.019 0.262 0.286 0.044 0.289 | 0.362 0.390 0.423 0.377 | 0.501"
g ReCu 0.091 0.230 0.019 0.286 0.203 0.031 0.216 | 0.209 0.243 0.257 0.249 | 0.314"
= Rbonn 0.036 0.316 0.027 0.153 0.268 0.127 0.247 | 0.418 0.432 0.419 0.399 | 0.508"
Rebnn 0.019 0.303 0.033 0.113 0.240 0.049 0.238 | 0.386 0.404 0.374 0.381 0.515*

Table 1: The mAP@K comparison results on IMAGENET100 and CIFAR100 when using different hashing models and BNN
backbones. Code length b = 64. The best result in each column is marked in bold. The second-best result in each column is
underlined. * represents statistically significant improvements over the best baseline with p < 0.05 using a two-tailed paired

t-test. This notation is also used in Table 2.

0.6

e ~+ ODH —— ~ ODH
= MDSH B MDSH
c 04l N - CsQ _ 04 N - CSQ
S AN DCH S % DCH
2 »H\\ N - DSHSD | & \ -= DSHSD
£ o2 \ N, DTSH | & 024 \ DTSH
2 \-\ N
- ~ AN
—) T - It
"L&"'—-—-—-—u—.:;‘:—r—, e = = = =
0 T - 0 ; o=
0 05 1.0 0 05 1.0
Recall Recall

(a) IMAGENET100 (b) CIFAR100

Figure 6: The Precision-Recall curve comparison on two
datasets for five representative baselines.

mMAP@1000
[T A
‘
:
mMAP@500
- D e o
OC@e@eno
FT2PE

16 32 64

(a) IMAGENET100 (b) CIFAR100

Figure 7: The mAP@K comparison when set different code
lengths b € {16,32,64}.

as the backbone, the hardware utilized significantly influences prac-
tical computation costs. Consequently, we refer to [18] and offer a
theoretical efficiency analysis in Appendix B.

Besides, we conducted more comprehensive comparisons be-
tween ODH and the baselines to evaluate their performance from

various aspects. Specifically, in subsequent experiments, we selected
DCH, DSHSD, DTSH, CSQ, and MDSH as baseline, which achieved
good performance in the previous experiment. ReactNet was used
as the backbone. First, we calculated the Precision-Recall curves
for comparison. Figure 6 illustrates the results of these models on
the IMAGENET100 and CIFAR100 datasets when the bit length
b = 64. It is evident that ODH consistently attains superior results
compared to all other baselines, particularly when the recall is rela-
tively lower. As the recall gradually increases, the precision of ODH
slowly diminishes, whereas some baselines witness a rapid decline
in precision. These observations further emphasize the effective-
ness of ODH. Second, we compared their performance at different
bit lengths. In addition to the baseline models selected for the pre-
vious experiments, we also included BNNH [41] for performance
comparison!. As illustrated in Figure 7, our ODH model outper-
forms other baselines under the same bit length. Besides, we can
find that BNNH does not consistently achieve better performance
compared to other baselines, especially in the CIFAR100 dataset.
This highlights the importance of designing BNN-agnostic deep
hashing, which can adopt a powerful BNN backbone like ReactNet.

5.3 Model Analysis

In this experiment, we conduct a comprehensive analysis of ODH
from multiple perspectives, including (i) Ablation study, (ii) Param-
eter analysis, and (iii) CCD and CAG analysis.

5.3.1 Ablation Study. To investigate the impact of different com-
ponents in ODH, we devised several variants, namely (i) ODH w/o
S: ODH without utilizing the semantic self-adaptive hash center
module, employing a fixed hash center similar to CSQ [40]. (ii)
ODH w/o E: ODH without extrapolation aggregation objective in

'We use the modified BNN-VGG16 architecture as described in their paper

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Table 2: The mAP@K results for different ODH variants on
two datasets and set code length b € {16,32, 64}.

Model IMAGENET100 CIFAR100

16bit 32bit 64bit 16bit 32bit 64bit

ODHw/oS | 0.301 0.335 0.357 0.324 0.331 0.353

ODHw/oE | 0.324 0.351 0.364 0.336 0.344 0.365

ODHw/oT | 0.345 0.371 0.384 0.361 0.376 0.407
ODH 0.368* 0.389* 0.401* | 0.381" 0.401" 0.4227

0. 0. o

10° 0% 10° 10?107 10° 10 10 102 107 50 100 150 200 250

(a) Impact of A4 (b) Impact of A, (c) Impact of T

Figure 8: The mAP@K performance when hyper-parameter
A1, A2, and T set different values. Red line denotes IMA-
GENET100 dataset. Blue line denotes CIFAR100 dataset.

the code aggregation stage. (iii) ODH w/o T: ODH directly skips
the space exploration stage. We set the code length b = 64 and
employ XnorNet [24] as the backbone. The results are presented
in Table 2, where we can derive the following conclusions. First,
through the comparison of ODH with ODH w/o S, we observe a
notable decline in performance. This signifies the effectiveness of
the semantic self-adaptive hash center module. Second, we note
that ODH outperforms ODH w/o E, indicating that adopting the
extrapolation aggregation objective yields better results than di-
rect training. Furthermore, comparing ODH with ODH w/o T can
demonstrate that the two-stage training approach necessary.

5.3.2 Parameter Analysis. To examine the impact of the key hyper-
parameters of ODH on performance, we evaluated the mAP@K
when ODH applies different A1, A, and T. First, the parameters
A1 and A3 in Eq. (13) can be used to adjust the weighting of L ¢
and L,.4. We set their values from {1071,1072,1073,1074,107%}
to explore different combinations. Besides, We set the bit length
b = 64 and utilized the XnorNet as the backbone. Figure 8 depicts the
results, where we can find that ODH is not sensitive to the settings
of these two parameters. Second, the parameter T controls the
timing of transitioning from the space exploration stage to the code
aggregation stage. Thus we set T = {0, 50, 100, 150, 200, 250}. As
depicted in Figure 8 (c), we can observe that T is not very sensitive
to the results when it is in the middle range. However, when T is
set too large, it may obviously impact the results.

5.3.3 CCD and CAG analysis. Codes Center Distance (CCD) and
Codes AGgregation (CAG) are two important metrics we introduced
in Section 3.3. We chose the top 10 minimum CCD and CAG values
that have occurred during the training process. Then, we calculated
their mean as the final result (we used the test set to calculate CCD
and CAG). The heatmap displayed in Figure 9 presents the results
for CCD. Across various BNN backbones, it is evident that ODH

XnorNet Bi2Real ReactNet Rbonn Rebnn

XnorNet Bi2RealReactNet Rbonn Rebnn

(a) IMAGENET100 (b) CIFAR100

Figure 9: The Code Center Distance (CCD) analysis. Darker
colors indicate lower CCD values, indicating that the hash
codes are closer to their hash centers.

csQ 6.5 CSQ 75
7.0
6.0

DPH DPH 65
6.0

SHC 53 sHe
55
MDSH MDSH 5.0
4.5 4.5

ODH ODH

XnorNet Bi2Real ReactNet Rbonn Rebnn XnorNet Bi2Real ReactNet Rbonn Rebnn

(a) IMAGENET100 (b) CIFAR100

Figure 10: The Code AGgregation (CAG) analysis. Darker
colors indicate lower CAG values, indicating a closer distance
between hash codes of similar images.

achieves lower CCD values compared to other deep hashing models.
The consistently smaller CCD values indicate that our approach
is better suited for center-based learning objectives. This can be
attributed to the utilization of the semantic self-adaptive hash center
module, which not only encourages hash codes to approach hash
centers but also ensures that hash centers move closer to the hash
codes. Figure 10 displays the results for CAG. ODH achieves a
lower CAG compared to most deep hashing models, indicating its
effectiveness in enhancing the aggregation of hash codes with the
same category.

6 CONCLUSION

In this paper, we delved into the practical challenge of implement-
ing deep hashing models on devices with limited resources. We
merged binary neural networks with deep hashing models to ad-
dress this issue. Through comprehensive analyses, we proposed a
novel approach called One-bit Deep Hashing (ODH), which incor-
porates a semantic self-adaptive hash center module and a novel
two-stage training method. We conducted extensive experiments
on two datasets to evaluate the performance of ODH. The results
demonstrate the superiority of ODH and establish it as a founda-
tional framework for future research in binarized deep hashing
models.

One-bit Deep Hashing: Towards Resource-Efficient Hashing Model with Binary Neural Network

REFERENCES

(1]

(2]

(1]

[12

[13]

[14

[15]

[17]

[18]

[19]

[21]

[22

[23]

[24]

[25

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. 2019. Hashing with
mutual information. IEEE transactions on pattern analysis and machine intelligence
41, 10 (2019), 2424-2437.

Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. 2018. Deep cauchy
hashing for hamming space retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1229-1237.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

Khoa D Doan, Shulong Tan, Weijie Zhao, and Ping Li. 2023. Asymmetric Hash-
ing for Fast Ranking via Neural Network Measures. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 697-707.

Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. 2020. Deep
Polarized Network for Supervised Learning of Accurate Binary Hashing Codes..
In IJCAL 825-831.

Christian Hansen, Casper Hansen, Jakob Grue Simonsen, Stephen Alstrup, and
Christina Lioma. 2021. Unsupervised multi-index semantic hashing. In Proceed-
ings of the Web Conference 2021. 2879-2889.

Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff. 2018. Hashing as
tie-aware learning to rank. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4023-4032.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and
Tao Xiang. 2021. One loss for all: Deep hashing with a single cosine similarity
based learning objective. Advances in Neural Information Processing Systems 34
(2021), 24286-24298

Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132-7141.
Young Kyun Jang, Geonmo Gu, Byungsoo Ko, Isaac Kang, and Nam Ik Cho. 2022.
Deep hash distillation for image retrieval. In European Conference on Computer
Vision. Springer, 354-371.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Y Li, W Pei, Yufei Zha, and JC van Gemert. 2020. Push for quantization: Deep
fisher hashing. In 30th British Machine Vision Conference, BMVC 2019.

Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. 2018.
Deep triplet quantization. In Proceedings of the 26th ACM international conference
on Multimedia. 755-763.

Zechun Liu, Zhigiang Shen, Marios Savvides, and Kwang-Ting Cheng. 2020.
Reactnet: Towards precise binary neural network with generalized activation
functions. In Computer Vision—ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XIV 16. Springer, 143-159.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting
Cheng. 2018. Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV). 722-737.

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang
Huang, and Xian-Sheng Hua. 2023. A survey on deep hashing methods. ACM
Transactions on Knowledge Discovery from Data 17, 1 (2023), 1-50.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. 2019. Train-
ing binary neural networks with real-to-binary convolutions. In International
Conference on Learning Representations.

Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi,
Xianglong Liu, and Hao Su. 2020. BiPointNet: Binary Neural Network for Point
Clouds. In International Conference on Learning Representations.

Haotong Qin, Yifu Ding, Mingyuan Zhang, YAN Qinghua, Aishan Liu, Qingging
Dang, Ziwei Liu, and Xianglong Liu. 2021. BiBERT: Accurate Fully Binarized
BERT. In International Conference on Learning Representations.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei
Yu, and Jingkuan Song. 2020. Forward and backward information retention for
accurate binary neural networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2250-2259.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525-542.

Ratshih Sayed, Haytham Azmi, Heba Shawkey, AH Khalil, and Mohamed Refky.
2023. A systematic literature review on binary neural networks. IEEE Access
(2023).

[26

[27

[28

[30

[31

[32

[34

[35

[36

[37

[39

[40

[41

[43

[44

[45

]

MM’24, October 28—-November 01, 2024, Melbourne, Australia

Dinghan Shen, Qinliang Su, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang,
Ricardo Henao, and Lawrence Carin. 2018. NASH: Toward End-to-End Neural
Architecture for Generative Semantic Hashing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
2041-2050.

Fumin Shen, Xin Gao, Li Liu, Yang Yang, and Heng Tao Shen. 2017. Deep asym-
metric pairwise hashing. In Proceedings of the 25th ACM international conference
on Multimedia. 1522-1530.

Rong-Cheng Tu, Xian-Ling Mao, Rong-Xin Tu, Binbin Bian, Chengfei Cai, Wei
Wei, Heyan Huang, et al. 2022. Deep cross-modal proxy hashing. IEEE Transac-
tions on Knowledge and Data Engineering (2022).

Liangdao Wang, Yan Pan, Hanjiang Lai, and Jian Yin. 2022. Image Retrieval with
Well-Separated Semantic Hash Centers. In Proceedings of the Asian Conference on
Computer Vision. 978-994.

Liangdao Wang, Yan Pan, Cong Liu, Hanjiang Lai, Jian Yin, and Ye Liu. 2023. Deep
Hashing With Minimal-Distance-Separated Hash Centers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23455-23464.
Xiaofang Wang, Yi Shi, and Kris M Kitani. 2017. Deep supervised hashing with
triplet labels. In Computer Vision-ACCV 2016: 13th Asian Conference on Computer
Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part I 13.
Springer, 70-84.

Lei Wu, Hefei Ling, Ping Li, Jiazhong Chen, Yang Fang, and Fuhao Zhou. 2019.
Deep supervised hashing based on stable distribution. IEEE Access 7 (2019),
36489-36499.

Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. 2014. Super-
vised hashing for image retrieval via image representation learning. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 28.

Sheng Xu, Yanjing Li, Teli Ma, Mingbao Lin, Hao Dong, Baochang Zhang, Peng
Gao, and Jinhu Lu. 2023. Resilient binary neural network. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 10620-10628.

Sheng Xu, Yanjing Li, Tiancheng Wang, Teli Ma, Baochang Zhang, Peng Gao,
Yu Qiao, Jinhu Lii, and Guodong Guo. 2022. Recurrent bilinear optimization for
binary neural networks. In European Conference on Computer Vision. Springer,
19-35.

Sheng Xu, Junhe Zhao, Jinhu Lu, Baochang Zhang, Shumin Han, and David
Doermann. 2021. Layer-wise searching for 1-bit detectors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5682-5691.
Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong
Tian, and Rongrong Ji. 2021. Recu: Reviving the dead weights in binary neural
networks. In Proceedings of the IEEE/CVF international conference on computer
vision. 5198-5208.

Erkun Yang, Dongren Yao, Tongliang Liu, and Cheng Deng. 2022. Mutual quanti-
zation for cross-modal search with noisy labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7551-7560.

Chunyu Yuan and Sos S Agaian. 2023. A comprehensive review of binary neural
network. Artificial Intelligence Review (2023), 1-65.

Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and
Jiashi Feng. 2020. Central similarity quantization for efficient image and video
retrieval. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 3083-3092.

Wangqian Zhang, Dayan Wu, Yu Zhou, Bo Li, Weiping Wang, and Dan Meng. 2021.
Binary neural network hashing for image retrieval. In Proceedings of the 44th
international ACM SIGIR conference on research and development in information
retrieval. 1318-1327.

Feng Zheng, Cheng Deng, and Heng Huang. 2019. Binarized Neural Networks
for Resource-Efficient Hashing with Minimizing Quantization Loss.. In IJCAL
1032-1040.

Xiawu Zheng, Rongrong Ji, Xiaoshuai Sun, Baochang Zhang, Yongjian Wu, and
Feiyue Huang. 2019. Towards optimal fine grained retrieval via decorrelated
centralized loss with normalize-scale layer. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 33. 9291-9298.

Xiangtao Zheng, Yichao Zhang, and Xiaogiang Lu. 2020. Deep balanced discrete
hashing for image retrieval. Neurocomputing 403 (2020), 224-236.

Rui Zhu, Bingchen Zhao, Jingen Liu, Zhenglong Sun, and Chang Wen Chen.
2021. Improving contrastive learning by visualizing feature transformation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 10306~
10315.

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Deep Hashing
	2.2 Binary Neural Network

	3 PRELIMINARIES
	3.1 Deep Hashing
	3.2 Center-based Method
	3.3 Preliminary Analysis

	4 The proposed ODH
	4.1 Semantic Self-adaptive Hash Center Module
	4.2 Two-stage Training Method
	4.3 Training Procedure

	5 Experiments
	5.1 Experiment Settings
	5.2 Performance on BNN-DH
	5.3 Model Analysis

	6 Conclusion
	References

