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A MORE ANALYSIS

A.1 LIMITATIONS AND FUTURE DIRECTIONS

A systematic way to study the language enhancement process is needed. In our experiments, we
found language enhancement to be an effective way for enlarging synthetic data diversity. In this
paper, we adopt an off-the-shelf word-to-sentence language model for this job, but this may bring
certain risks and generate a high volume of noisy data. Therefore, effective constraints should be
considered for language enhancement, which we leave as future work.

Larger synthetic data sizes for zero/few-shot tasks should be studied. We only generate synthetic data
of median size for zero/few-shot tasks due to our limited computational resources; we encourage
future works to further explore whether increasing data diversity and data amount could benefit
these data-scarce tasks.

Co-training down-stream predictors with generative models. In this paper, we propose a pre-trained
off-line image generator to construct our synthetic training set. It would be interesting to investigate
how to generate in-domain images by tuning the image generator together with the lateral model for
down-stream tasks. This could potentially be useful for domain generalization.

Increasing scales for synthetic data and model capability for pre-training settings. We observe
improved performance when the data amount and diversity (label space) increase. However, due
to our limited computational resource, we cannot further scale up the investigation, which may
take months to train one model. We hope our promising results could inspire future research to
explore enlarged scales for synthetic data and model size (larger model capability should be better
at benefiting from a larger amount of data) for pre-training settings.

A.2 ANALYSIS OF DIFFERENCES OF PERFORMANCE BOOST ON DIFFERENT DATASETS IN
ZERO-SHOT SETTINGS

The main reason is related to GLIDE’s training data distribution. The training data distribution of
the text-to-image generation model GLIDE would exhibit bias and produce different domain gaps
with different datasets. While we do not have direct access to GLIDE’s training data, we may use
synthesized images from GLIDE to explore. However, how to measure data and its relation to the
performance for different tasks in a quantitative manner is still an open problem to our best knowl-
edge as different task may have different levels of difficulties and data will impact the performance
in different manners. An empirical thought is related to the synthesized image quality (e.g., syn-
thesized images for DTD dataset is relatively noisy as shown in Figure A.5, where we only achieve
0.96% gains), domain gaps (synthesized images are usually object-centric and exhibit large domain
difference with scene-level dataset SUN397, where only 1.56% boost achieved), and task difficulties
(e.g., ImageNet is of high difficulty where only 0.45% gains are obtained).

For further improving the results, we suggest that it would be interesting to investigate how to gener-
ate in-domain images by tuning the image generator together with the lateral model for downstream
tasks. This could potentially better reducing domain gap to the downstream task.

∗ Part of the work is done during an internship at ByteDance. Email: ruifeihe@eee.hku.hk
† Corresponding authors: songbai.site@gmail.com, xjqi@eee.hku.hk

1

mailto:ruifeihe@eee.hku.hk
mailto:songbai.site@gmail.com
mailto:xjqi@eee.hku.hk


Published as a conference paper at ICLR 2023

57

58

59

60

61

62

63

64

65

66

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

ImageNet

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP
82

84

86

88

90

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

Pets

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP

86

88

90

92

94

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

Caltech101

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP
55

58

61

64

67

70

73

76

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

Car

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

Aircraft

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP
42

47

52

57

62

67

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

DTD

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

EuroSAT

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP
57

59

61

63

65

67

69

71

73

0 2 4 6 8 10 12 14 16

Sc
or

e 
(%

)

Number of Real labeled examples per class

SUN397

CT w. Syn

CT w. init

Tip Adapter

Coop

Zero-shot CLIP

Figure A.1: Main results for Few-shot tasks on all 8 datasets.

B MORE EXPERIMENTS

B.1 MAIN RESULTS ON FEW-SHOT TASKS

Due to the limit of pages and space, we provide the results for few-shot tasks of all 8 datasets in
Figure A.1. We observe similar results on various datasets that synthetic data could boost few-shot
learning performance and achieve a new state-of-the-art performance.
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B.2 REAL-WORLD DATA WITH DOMAIN SHIFT

In order to understand why synthetic data may harm pre-trained image encoder, we experiment
with real-world data with domain shifts. Specifically, we conduct experiments on pre-trained CLIP
model and study two scenarios (Classifier tuning only, and end-to-end finetune) for the downstream
ImageNet classification task. These experiments on conducted on three data sources: 1) in-domain
real data: ImageNet data is used for training; 2) real-world data with domain shifts: ImageNet-
Sketch data which has the same label space with ImageNet but exhibits a domain shift towards
sketch are used for training; and 3) our synthetic data: synthetic data from GLIDE are used for
training. The results are shown in the Table A.1. It can be clearly observed that real-world data
with domain shifts behave similarly as synthetic data (i.e. end-to-end tuning cause slight harm to the
pre-trained encoder) while the performance of in-domain data will benefit from end-to-end tuning.
This suggests that domain gap is the main reason for harming the pre-trained image encoder.

We argue that synthetic data might have a better chance to overcome domain shifts in comparison
with real-world data since we can customize and keep the label space of the synthetic data in line
with the down-stream dataset. First, synthetic data can be made to tailor to a specific label space
that the downstream task requires and reduce category shifts, which yet might be very challenging
for real-world data. Second, a small amount of real-data can be leveraged to guide the data synthesis
process to further alleviate domain shifts (namely Real Guidance in our few-shot settings), which
also worth future in-depth explorations.

Train data ImageNet ImageNet-Sketch Synthetic data
Classifier tuning 70.09 60.50 60.78

End-to-end finetune 76.17 60.34 60.35

Table A.1: Classifier tuning v.s. End-to-end finetune on different types of data. Zero-shot perfor-
mance: 60.33.

B.3 STUDY OF SYNTHETIC IMAGE NUMBER IN ZERO/FEW-SHOT SETTING

Here, we provide the study for the number of synthetic images in the zero-shot and few-shot settings.
Firstly, for zero-shot settings, we experiment with 1000/2000/4000 images per class on Cifar10
dataset. As shown in Table A.2, we found 2000 to be a sufficient number while further increasing
the number to 4000 only provide limited gains. Second, for few-shot settings, we study upon the
settings of Eurosat dataset with 16 shot real images, and vary the number of synthesized images for
each class from 400 to 1600. As shown in Table A.3, we found 800 synthetic images for each class
to be a good choice between performance and cost.

For both settings, increasing the amount of training data further beyond a certain amount will not
bring significant performance gain. The reasons can be attributed to the diversity and quality of
data. We found that as the increase of the training data amount, the diversity of the data might not
be scaled in a similar manner. Many redundant and similar samples will appear with the increase of
data amount. Effective approaches to increase data diversity and quality will help further improve
model performance. For the few-shot setting, the performance reach a high value after using a small
amount of synthetic data (400-shot). This is because the existence of real-data provide a strong
guidance for training the classifier. And, the positive impacts of synthetic data are reduced where a
small amount of synthetic data are sufficient to learn a good classifier.

syn shot 0 1000 2000 4000
Acc 70.31 79.21 80.06 80.08

Table A.2: Study of synthetic image number in the zero-shot setting on CIFAR-10 dataset.

syn shot 0 400 800 1600
Acc 85.83 88.28 88.47 88.49

Table A.3: Study of synthetic image number in the few-shot setting on EuroSAT dataset with 16
shot real images.
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B.4 CLAIFICATION OF ZERO-SHOT CLASSIFICATION PERFORMANCE DIFFERENCE

For all results, we use the official released CLIP model1. For our original paper, we conduct exper-
iments using simple prompts “a photo of a [CLASS]” or ”a photo of a [CLASS], a type of [dataset
type]” (for fine-grained tasks) to better evaluate the performance gains from the data itself by ex-
cluding the influence of tuned prompt methods. However, in the original CLIP paper, they use
specifically designed prompt ensembles for each dataset. This is the main reason that our baseline
is lower than that of the original paper.

We also provide the results of using CLIP paper’s prompts for 13 datasets (only these 13 datasets
out of 17 have reported results from CLIP’s paper) in Table A.4. After using the same prompts
as the CLIP’s paper, the averaged performance on 13 datasets increased from 56.14% to 56.33%,
closer to the 57.03% of the CLIP’s reported results. There are still slight performance differences
after using the same prompts, which we suspect to be a small reproduction problem of CLIP since
we could match the reported zero-shot results from CoOp (Zhou et al., 2022) and Tip-adapter (Gao
et al., 2021). We observe that on some datasets we achieve higher results than CLIP reported results
(i.e., CIFAR-100, ImageNet, SUN397, Birdsnap, Flower, Pets) and on others we achieve lower
results (i.e., CIFAR-10, Caltech101, Aircraft, Cars, Food, DTD, EuroSAT). The averaged zero-shot
performance is similar (56.33% v.s 57.03%) and the performance boost from synthetic data of two
different types of prompt is also similar (averaged performance boost on 13 datasets: 3.85% v.s
4.17%). We argue the slight performance differences do not affect the exploration of synthetic data.

CLIP-RN50∗ CLIP-RN50 CLIP-RN50 CLIP-RN50† CLIP-RN50†+SYN
CIFAR-10 75.6 70.31 80.06 (+9.75) 71.59 80.23 (+8.64)
CIFAR-100 41.6 35.35 45.69 (+10.34) 41.94 48.70 (+6.76)
Caltech101 82.1 86.09 87.74 (+1.65) 79.99 82.34 (+2.35)
ImageNet 59.60 60.33 60.78 (+0.45) 60.33 60.78 (+0.45)
SUN397 59.60 58.51 60.07 (+1.56) 60.23 60.47 (+0.24)
Aircraft 19.3 17.34 21.94 (+4.60) 17.07 21.78 (+4.71)
Birdsnap 32.6 34.33 38.05 (+3.72) 34.33 38.05 (+3.72)

Cars 55.80 55.63 56.93 (+1.30) 55.70 57.65 (+1.95)
Flower 65.90 66.08 67.05 (+0.97) 66.08 67.05 (+0.97)
Food 81.10 80.34 80.35 (+0.01) 80.34 80.35 (+0.01)
Pets 85.40 85.80 86.81 (+1.01) 85.80 86.81 (+1.01)
DTD 41.7 42.23 43.19 (+0.96) 41.31 42.21 (+0.90)

EuroSAT 41.1 37.51 55.37 (+17.86) 37.52 55.35 (+17.83)
Average 57.03 56.14 60.31 (+4.17) 56.33 60.10 (+3.85)

Table A.4: CLIP-RN50∗: original CLIP paper results. CLIP-RN50: our results using simple prompt.
CLIP-RN50†: our results using the same prompt ensemble as CLIP.
B.5 FID AND CLASSIFICATION ACCURACY WITH A PRE-TRAINED CLASSIFIER FOR

SYNTHETIC DATA MEASUREMENT.

Frechet Inception Distance (FID) is a metric that calculates the distance between feature vectors from
real and generated images, and lower scores have been shown to correlate well with higher-quality
images. Here, we provide the FID scores and classification accuracy with a pre-trained CLIP ViT-
B/16 model for measuring diversity and quality of synthesized images. We study with the Eurosat
dataset. For the FID score, we do not have access to GLIDE training data, and thus we calculate FID
between the downstream task ground-truth data and synthetic data generated by different strategies.
As shown in Table A.5, LE could largely reduce FID and provide large diversity while hurting class
fidelity. After combing with CF, FID further reduces and we also achieve a higher class fidelity. For
few shot settngs, RG could largely reduce FID and yield the best class fidelity.

syn data z: B z: LE z: LE+CF f: RF f: RG
FID 84.84 81.15 90.85 79.02 37.18
Acc 44.27 35.84 48.03 46.95 48.76

Table A.5: FID and classification accuracy with CLIP-ViT-B/16. “z” for zero-shot and “f” for few-
shot.

1https://github.com/openai/CLIP
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successful cases

failure cases

class: airplane class: bird class: cat

(a) an airplane goes down a
runway and is about to land

(b) a bird is flying around
a pond

(c) a black and white cat
next to a red pillow

(d) a bald eagle flying in the
cockpit of airplane

(e) a bird and trees in a field (f) a fox and cat go over the map

Figure A.2: Examples of synthesized images from Language Enhancement strategy.

B.6 EXAMPLES OF SYNTHESIZED IMAGES FROM LANGUAGE ENHANCEMENT STRATEGY

Here, we provide successful and failure examples of synthesized images from language enhance-
ment strategy. As shown in Figure A.2 (a) ∼ (c), language enhancement could introduce more
diversity into the language prompts and lead to more diversified synthesized images for each class,
such as introducing “runway” in (a), “pond” in (b), and “red pillow” in (c). However, we also ob-
serve failure cases after the language enhancement process. As we can see in Figure A.2 (d) ∼ (f),
after introducing some other items into the language prompts, the focus of the generated images
may move to other objects rather than the target class. In some extreme failure cases we show here,
the generated images may even not contain the desired class object.

B.7 VISUALIZATION: SYNTHETIC DATA IN ZERO-SHOT SETTINGS

We provide the visual illustration of ground-truth real data and synthesized images by different
strategies for the zero-shot settings, i.e. basic (B), language enhancement (LE), and language en-
hancement and CLIP-based filtering (LE+CF). Here, we take the “Highway or road” class in Eu-
roSAT dataset as an example. As shown in Figure A.3, we could see that LE could help increase the
diversity but may introduce noisy samples, but LE+CF could further select images with higher class
fidelity and yields synthetic data with reduced domain gaps.

B.8 VISUALIZATION: SYNTHETIC DATA IN FEW-SHOT SETTINGS

We provide the visual illustration of synthesized images by different strategies for the few-shot
settings, i.e. basic (B), real filtering (RF), and real guidance (RG) as well as real images of the same
class for comparison. Here, we take the “forest” class in EuroSAT dataset as an example. As shown
in Figure A.4, both RF and RG strategies produce images with reduced domain gap from the real
images of the target domain. Further, RG significantly approaches the real images better than RF,
demonstrating the effectiveness of the proposed RG method.

B.9 VISUALIZATION: SYNTHETIC DATA FOR DIFFERENT DATASETS

Here, we provide synthesized images for different datasets (i.e., CIFAR10, Caltech101, Cars,
ImageNet-Sketch, DTD) in Figure A.5. All images are randomly chosen rather than human-picked.
Each row consists of images of the same class. We observe that for most datasets, synthesized im-
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Real images

Synthetic images: B

Synthetic images: LE

Synthetic images: LE+CF

Figure A.3: Visualization of different strategies of synthetic data in zero-shot settings.

Real images

Synthetic images: B

Synthetic images: RF

Synthetic images: RG

Figure A.4: Visualization of different strategies of synthetic data in few-shot settings.
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ages from the GLIDE model are of high quality, but there also exist cases that many unsatisfactory
examples are generated, such as the DTD datasets.

We state that this is a limitation of the current text-image generation model that it may produce
images of low quality for certain tasks, which mainly due to the domain gap between the training
data of the generation model and the task. However, with the study of future text-image generation
models, the quality of synthesized images is potentially growing higher constantly. Besides, the
relatively lower quality images could be used for pre-training tasks for better improving performance
of different down-stream tasks.

C ADDITIONAL DETAILS

C.1 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising diffusion probabilistic model (DDPM) learns the data distribution through introducing
a series of latent variables and matching the joint distribution. Formally, given a sample from the
data distribution x0 ∼ q(x0), a forward process q (x1:T | x0) =

∏T
t=1 q (xt | xt−1) progressively

perturbs the data with Gaussian kernels q (xt | xt−1) := N
(√

1− βtxt−1, βtI
)
, producing increas-

ingly noisy latent variables x1,x2, ...,xT . Notably, xt can be directly sampled from x0 thanks to
the closed form:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(1)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. In general, the forward process variances βt are fixed and
increased linearly from β1 = 10−4 to βT = 0.02. Besides, T should be large (e.g., 1000) enough to
ensure q (xT | x0) ≈ N (0, I). Diffusion model aims to model the joint distribution q (x0:T ) which
naturally involves a tractable sampling path for the marginal distribution q (x0).

Specifically, the candidate distribution is formulated as a Markov chain with parameterized transition
kernels:

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (2)

The training is thus achieved by optimizing a variational bound of negative log likelihood:

Eq(x0) [− log pθ (x0)] ≤ Eq(x0:T )

[
− log

pθ (x0:T )

q (x1:T | x0)

]
=: L (3)

The loss term L can be rewritten as:

Eq[DKL (q (xT | x0) ∥p (xT ))︸ ︷︷ ︸
LT

+
∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

]

(4)

In practice, the core optimization terms are Lt−1(t > 1) that can be analytically calculated since
both two terms compared in the KL divergence are Gaussians, i.e.,:

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
, pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))

(5)
where µ̃t (xt,x0) :=

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t :=

1−ᾱt−1

1−ᾱt
βt. Ho et al. (2020) fix

Σθ (xt, t) = σ2
t I during training, where σ2

t is set to be βt or β̃t. Through reparameterization trick
(Kingma & Welling (2013)) and empirical simplification (Ho et al. (2020)), the final training term
is performed as follows:

Lsimple (θ) := Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] (6)

where ϵ ∼ N (0, I) and t is uniformly sampled between 1 and T .

After training, started from an initial noise map xT ∼ p(xT ) = N (0, I), new images can be then
generated via iteratively sampling from pθ (xt−1 | xt) using the following equation:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz, where z ∼ N (0, I) (7)
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Cifar10

Cars

Caltech101

ImageNet-Sketch

DTD

Figure A.5: Visualization of different synthetic datasets.
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C.2 TEXT-TO-IMAGE GENERATION

The text-to-image diffusion model extends the basic unconditional diffusion model by changing the
target distribution q(x0) into a conditional one q(x0 | c), where c is a natural language description.
The derivation of the training terms and sampling procedure are similar to Sec. C.1, except that
a conditioning signal c is included. Besides, following the improved DDPM (Nichol & Dhariwal
(2021)), Σθ is also estimated in GLIDE (Nichol et al. (2021)).

Especially, GLIDE employs a coarse-to-fine two-stage generation framework (Nichol & Dhariwal
(2021); Saharia et al. (2022)) with two guidance techniques for balancing mode coverage and sample
fidelity, namely classifier guidance (Dhariwal & Nichol (2021)) and classifier-free guidance (Ho &
Salimans (2022)). Classifier guidance mainly relies on an extra trained noise CLIP model to provide
feedback at intermediate sampling steps. Classifier-free guidance, on the other hand, randomly drops
the text prompt with a fixed probability p during the training, which can be viewed as a joint training
of an unconditional model ϵθ (xt | ∅) (i.e., ϵθ (xt)) and a conditional model ϵθ (xt | c). At each
sampling step, the model’s output is actually performed using an extrapolation as follows:

ϵ̂θ (xt | c) = ϵθ (xt | ∅) + s · (ϵθ (xt | c)− ϵθ (xt | ∅)) (8)

where s is a guidance scale that can trade off sampling quality and diversity. In our work, we use
classifier-free guidance with default setting s = 3 for all experiments since it achieves better results
than CLIP guidance. To speed up the sampling process, DDIM (Song et al. (2020)) is utilized which
allows the model to produce high-quality images within few seconds. We follow the default settings
in GLIDE and set T = 100 in the coarse stage and T = 27 in the upsampler stage.

C.3 REAL GUIDANCE (RG) STRATEGY

We elaborate how we use few-shot in-domain real images to guide the generation process for few-
shot settings. In a normal text-to-image generation process, a pure noisy image xT ∼ N (0, I)
would be sampled first as the initialization of the reverse path. Then, the pretrained GLIDE model
iteratively predicts a less noisy image xt−1 (t = T, T − 1, ..., 1) using the given text prompt c and
the noisy latent image xt as inputs. In our case, we add noise to a reference image xref

0 such that
the noise level corresponds to a certain time-step t⋆:

xref
t⋆ =

√
ᾱt⋆x

ref
0 +

√
1− ᾱt⋆ϵ (9)

Then, rather than sampling from time-step T , we initialize the noisy latent variable as xref
t⋆ and

begin our denoising process from time-step t⋆, as illustrated in Algorithm 1. Note that the GLIDE
model adopts a coarse-to-fine two-stage generation framework and involves classifier-free guidance.
However, we omit them in Algorithm 1 for simplicity since our image-guidance strategy only mod-
ifies the start point and leaves the other settings unchanged. In this way, the generated images can
share similar in-domain properties, and thus helping to close the domain gap. While small t⋆ could
synthesis images which are more similar to the reference image, it results in low diversity, which
harms the classifier’s learning. In the case of a large t⋆, xref

t⋆ retains too little information from xref
0 ,

causing the generated image to deviate from the domain. In our experiments, we conduct different
trade-offs considering different few-shot settings. Empirically, we set t⋆ as 15, 20, 35, 40, and 50
for shot 16, 8, 4, 2, and 1, respectively.

Algorithm 1 Real Guidance (RG) Strategy
Input: Reference image xref

0 , text prompt c and GLIDE model (µθ,Σθ).
Output: Generated image x0

1: # Noisy variable initialization
2: Select a time-step t⋆ ∼ 1, 2, 3, ..., T and random noise ϵ ∼ N (0, I)

3: Obtain initial noisy image xt⋆ := xref
t⋆

according to Eq. 9
4: # Random Sampling (could be replaced by DDIM for speed-up)
5: for s from t⋆ to 1 do
6: µ,Σ← µθ (xs, s, c) ,Σθ (xs, s, c)
7: xs−1 ← sample fromN (µ,Σ)
8: end for
9: return x0

9
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C.4 SOFT-TARGET CROSS-ENTROPY LOSS

Example code for soft-target cross-entropy loss is shown below.

def soft_target_cross_entropy(logits, target, labels, T=2):
# T: temperature for soft targets.
loss_func_CE = torch.nn.CrossEntropyLoss()
CE = loss_func_CE(logits, labels)
soft_targets = torch.softmax(target/T, dim=1)
SCE = torch.sum(-soft_labels * F.log_softmax(x, dim=-1), dim=-1)
loss = 0.5 * CE + 0.5 * SCE
return loss

C.5 IMPLEMENTATION DETAILS

C.5.1 ZERO-SHOT SETTING

For text-to-image generation process, we adopt the default hyperparameters from the official GLIDE
text-to-image code. The input text of the basic strategy is “a photo of a [CLASS]”, and the input text
of language enhancement strategy is “a photo of a [SENTENCE]”. For language enhancement, we
adopt an off-the-shelf word-to-sentence T5 model pre-trained on “Colossal Clean Crawled Corpus”
dataset (Raffel et al., 2020) and finetuned on CommonGen dataset (Lin et al., 2019). We generate
2000 synthetic images for each class in B and LE, and use a threshold of 1/N in CF where N is the
number of classes. For LE, we generate 200 sentences for each class name.

For training on synthetic data for zero-shot recognition, we use AdamW (Loshchilov & Hutter,
2017) optimizer and an initial learning rate of 0.002 that is decayed by the cosine annealing rule.
We train for 30 epochs, and use weight decay of 0.1 and batch size of 512. For image preprocessing,
we resize the image’s short side to 224 while keeping the original aspect ratio.

For datasets in the zero-shot settings, we follow previous works (Zhou et al., 2022; Gao et al., 2021)
that use 11 datasets, and we excludes UCF101 since GLIDE exclude generating ‘person’ related
content for privacy issues. Besides, we add another 7 popular datasets for more comprehensive
evaluation. We do not conduct on all CLIP’s 27 datasets since our computing resources are limited,
and we believe our 17 datasets are already enough to study the effectiveness of synthetic data for
zero-shot settings.

C.5.2 FEW-SHOT SETTING

For text-to-image generation process in few-shot settings, our basic strategy and Real filtering strat-
egy both apply the same process as in the zero-shot settings; and for Real guidance strategy, the
generation process is illustrated in Sec. C.3. For synthetic image number, we generate 800 images
per class for RG method to approximately match the number of images in B and RF.

For training methods in the few-shot settings, we provide the implementation details of phase-wise
training and mix training. For phase-wise training, we utilize synthetic data and real data in two
different phases, and the order of using synthetic data and real data also yields two variants. For
syn→real, we first tune the classifier on synthetic data for 30 epochs, and then tune on real data for
30 epochs; and change the order for real→syn. For mix training, in each training iteration, we get
a batch of real data input into the model and obtain the loss value of real part data, and also get a
batch of synthetic data input into the model and get a loss value of synthetic part data, and then add
two loss values as the final loss to do back propagation.

For training in the few-shot settings, we again use AdamW optimizer, weight decay of 0.1 and
the cosine annealing rule. We use batch size of 32 for few-shot real images and 512 for synthetic
images. For phase-wise training, we train for 30 epochs for each stage and use an initial learning
rate of 0.002. For mix training, we train for 30 epochs and use an initial learning rate of 0.001,
where the loss value from real data and synthetic data are added with a 1:1 ratio in each iteration.
For image preprocessing, we adopt the same strategy as zero-shot settings.
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C.5.3 PRE-TRAINING SETTING

For pre-training settings, we adopt the LE strategy in zero-shot settings for generating massive
amount of diversified synthetic pre-training data. For downstream-aware settings, we generate syn-
thetic data by language prompts constructed from CIFAR-100 label space through the word-to-
sentence model, and we generate synthetic data of 1.2M, 2.4M, 3.6M. For downstream-agnostic
settings, we generate from a generic label space of ImageNet-1K or ImageNet-2K, and data amount
of 1.2M, 2.4M, 4M.

For training details of downstream-aware synthetic pre-training on CIFAR-100 label space, we use
AdamW optimizer, weight decay of 0.9, batch size of 512, training epochs of 90, and the cosine
annealing rule for adjusting learning rate. For the initial learning rate, we use 1e-4 when pre-training
from random initialization, and 1e-5 when pre-training from ImageNet pre-trained weights. For data
augmentation, we adopt random cropping, resizing, and random horizontal flip. For transfering on
CIFAR-100 dataset, we train for 200 epochs and use a SGD optimizer with an initial learning rate
of 0.003, which is multiplied by 0.2 at 60, 120, 160 epochs. We use batch size of 128 and weight
decay of 5e-4.

For downstream-agnostic synthetic supervised pre-training with ResNet50 backbone, we train for
90 epochs and use a SGD optimizer with an initial learning rate of 0.2 for training from random
initialization and 0.001 for training from ImageNet pre-trained weights. We multiply the initial
learning rate by 0.1 every 30 epochs. We use batch size of 512 and weight decay of 1e-4. For data
augmentation, we also adopt random cropping, resizing, and random horizontal flip.

For downstream-agnostic synthetic supervised pre-training with DeiT-S backbone, we follow the
training scripts for ImageNet pre-training and CIFAR-100 transfer learning in the official DeiT
codebase2 but only replace the pre-training data with our synthetic dataset. We do not change any
hyper-parameters.

For downstream-agnostic synthetic self-supervised pre-training, i.e. Moco v2, we follow the hyper-
parameters of the original implementation of the paper when training from random initialization.
When initialized from ImageNet pre-trained weights, we use a small initial learning rate of 0.003
and keep other hyperparameters the same.

For transfer evaluation of object detection on PASCAL VOC 2012, we use the Faster R-CNN (Ren
et al., 2015) detector and backbones are initialized by the pre-trained weights. All the setups follow
the evaluation protocols in Moco (He et al., 2020).
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