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A APPENDIX

A.1 ABLATION STUDIES

To evaluate the effectiveness of each component of our method, we conducted the following ablation
study on the Kodak24 dataset for synthetic noise, and on the PolyU dataset for real-world noise.

Effect of the test time adaptation. In this section, we design experiments to evaluate the perfor-
mance enhancement of our proposed test-time adaptation method on a pre-trained Gaussian denoiser
across different noise distributions. Additionally, our Noise2Noise-based approach, which does not
require pre-training, can also be applied as a single-image denoising method, for which we con-
duct separate experiments. We utilize a straightforward CNN architecture, comprising five layers
with 64 channels of 3 × 3 convolutions, each followed by a leaky ReLU activation layer. In the
final layer, we use a 1 × 1 convolution. We use ℓ2 loss and Adam Optimizer to train the network
for 3,000 iterations. The learning rate is initialized to 0.001 and will decay by a factor of 2 when
it reaches 1500, 2000, and 2500 iterations. Table 1 presents the performance comparisons among
the pre-trained Gaussian denoiser, the single-image denoising method without pre-training, and the
pre-trained Gaussian denoiser with test-time adaptation across various noise distributions. These
three methods are denoted as Pre-trained Model, Without Pre-train, and Pre-train + Adaptation, re-
spectively. To further benchmark the effectiveness of our proposed single-image denoising method
without pre-training, we also include results from other data-free deep learning-based methods in
the table. By comparing rows 3, 4, 5, and 7, it is evident that our proposed single-image denois-
ing method without pre-training generally outperforms existing single-image denoising approaches
in most cases. Furthermore, a comparison between rows 6 and 8 demonstrates that fine-tuning
the pre-trained Gaussian denoiser with our proposed test-time adaptation framework significantly
boosts denoising performance for both in-distribution and out-of-distribution noise, showcasing the
robustness of our method for constructing Noise2Noise training data. Lastly, rows 7 and 8 further
confirm that the deep denoising priors embedded in the pre-trained Gaussian denoiser are beneficial
for single-image denoising tasks. Overall, our proposed method, which combines pre-training with
test-time adaptation, not only achieves the best overall denoising performance but also runs signif-
icantly faster than existing single-image denoising methods. It only takes 1 second (0.48 seconds
of which is spent on building the pixel bank), while the second-fastest method, ZS-N2N, requires 9
seconds.

Table 1: Average PSNR scores for Gaussian and Poisson denoising on Kodak24, and real-world
denoising on PolyU. The best and second results are in bold and underlined.

Method Gaussian Poisson Real-world Time (s)
σ=10 σ=25 σ=50 λ=50 λ=25 λ=10

DIP 32.28 27.38 23.95 27.51 25.84 23.81 34.75 59
S2S 29.54 28.39 26.22 28.89 28.31 27.29 35.97 1839

ZS-N2N 33.69 29.07 24.81 29.45 27.49 24.92 35.17 9
Pre-trained model 32.66 29.70 20.94 29.62 24.82 19.94 36.10 -
Without pre-train 33.41 29.65 26.63 29.77 28.15 25.59 36.12 19

Pre-train+Adaptation 34.63 30.75 27.11 30.51 28.89 26.64 36.71 1

Effect of window size W . To explore the impact of window size on the proposed method, we report
the algorithm’s performance under different values of M ∈ 24, 32, 40, 48. Table 2 shows the effect
of window size on denoising performance. As illustrated in the table, whether for synthetic or real-
world noise, the effect of different window sizes on the algorithm’s performance is minimal as long
as the window size is sufficiently large. To balance performance and computational complexity, we
choose W = 32.

Table 2: Denoising PSNR of ablation studies about window size W .
Window Size 24 32 40 48

PSNR (σ = 25) 30.81 30.84 30.84 30.84
PSNR (σ = 50) 27.00 27.05 27.12 27.05
PSNR (λ = 25) 28.68 28.71 28.71 28.73

PSNR (real world) 36.70 36.71 36.71 36.71
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Effect of patch size k. To evaluate the impact of different patch sizes on the proposed method, we
report the algorithm’s performance under different values of k ∈ 5, 7, 9. Table 3 shows the perfor-
mance of the algorithm for each value of k. From the table, it can be observed that the performance
significantly improves when increasing k from 5 to 7, while further increasing k results in marginal
performance gains. This is because smaller image blocks may lead to poor block similarity due to
noise interference, whereas larger image blocks make it harder to find potentially similar blocks.
Considering the trade-off between performance and computational complexity (k = 7, 0.48s vs.
k = 9, 0.88s), we set k = 7 for all cases in this paper.

Table 3: Denoising PSNR of ablation studies about patch size k.
Patch Size 5 7 9

PSNR (σ = 25) 30.46 30.75 30.78
PSNR (σ = 50) 26.13 27.11 27.18
PSNR (λ = 25) 28.32 28.89 28.93

PSNR (real world) 36.55 36.71 36.74

Effect of the number of non-local patches M . To evaluate the impact of different non-local
patches on the proposed method, we report the algorithm’s performance under different values of
M ∈ 12, 16, 20. Table 4 illustrates the correlation between network performance and M . It can be
observed that the algorithm performs best when M = 16. Therefore, we choose M = 16 in this
paper.

Table 4: Denoising PSNR of ablation studies about non-local patches M .
Non-local Patch 12 16 20
PSNR (σ = 25) 30.74 30.75 30.73
PSNR (σ = 50) 26.08 27.11 27.07
PSNR (λ = 25) 28.86 28.89 28.88

PSNR (real world) 36.69 36.71 36.71

Effect of the number of similar pixels p. Table 5 illustrates the correlation between network per-
formance and the number of similar pixels, p. It can be observed that as p increases, the denoising
performance of the network initially improves but then declines. This phenomenon can be attributed
to the fact that increasing p enhances the network’s learning and generalization capabilities by ex-
panding the training sample pool. On the other hand, excessively high p values reduce the similarity
between pixels, leading to a decrease in the similarity of clean content in pseudo-samples used for
fine-tuning, which negatively impacts network performance. Based on these observations, we select
p = 20 in our study.

Table 5: Denoising PSNR of ablation studies about similar pixels p.
Similar Pixel 2 4 6 8 10 15 20 25 30

PSNR (σ = 25) 28.21 29.74 30.26 30.43 30.56 30.63 30.75 30.75 30.65
PSNR (σ = 50) 22.26 24.78 25.84 26.35 26.69 27.05 27.11 27.11 26.82
PSNR (λ = 25) 25.30 27.34 28.19 28.49 28.76 28.86 28.89 28.87 28.55

PSNR (real world) 36.78 36.79 36.79 36.79 36.78 36.75 36.71 36.67 36.62

Effect of Adaptation Iterations for Each Image. In this section, we investigate the impact of
different adaptive iterations on each image. As shown in Table 6, we compare the TTA performance
of our method using different iteration counts for each image. The test time includes the time to
construct the pixel bank. When the number of iterations is small, the TTA Denoising model is unable
to effectively learn how to remove noise from the images. Conversely, when the iteration count
is too high, the performance improvements of TTA Denoising diminish. Additionally, for lower
noise levels, the TTA Denoising model converges more quickly, while for higher noise levels (e.g.,
σ = 50, λ = 10), the network requires more iterations to achieve better performance. Therefore, for
higher noise levels (e.g., σ = 50, λ = 10), we set the iteration count to 100, whereas for other cases,
we set it to 10.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 6: Average PSNR scores for Gaussian and Poisson denoising on Kodak24 and real-world
noise on PloyU. The best results are in bold.

Iterations Gaussian Poisson Real-world Time (s)
σ=10 σ=25 σ=50 λ=50 λ=25 λ=10

0 32.66 29.70 20.94 29.62 24.82 19.94 36.10 0.00
1 33.41 30.50 22.80 30.42 26.51 22.01 36.29 0.50
2 34.21 30.86 24.59 30.81 27.62 23.85 36.39 0.51
5 34.78 30.82 25.71 30.75 28.56 25.21 36.50 0.55

10 34.75 30.75 26.39 30.51 28.89 25.82 36.71 0.62
20 34.47 30.43 26.65 30.39 28.85 26.10 36.88 0.74
50 34.13 30.35 26.94 30.35 28.98 26.49 36.90 1.12

100 33.82 30.27 27.11 30.26 28.99 26.64 36.88 1.79

S2S (32.80)

S2S (29.61)

S2S (29.50)

GT Noisy (28.11) DIP(30.18) ZS-N2N (32.57) Ours (36.08)

GT Noisy (20.32) DIP(27.82) ZS-N2N (28.80) Ours (31.38)

GT Noisy (14.80) DIP(27.15) ZS-N2N (25.41) Ours (28.72)

Figure 1: Gaussian denoising on Kodak24 images. The numbers in parentheses are PSNR scores
(dB). Upper row: σ = 10, middle row: σ = 25, lower row; σ = 50.

A.2 MORE VISUALIZATION RESULTS

In this part, we show more visualization comparison results of different denoising methods on test
images of the Kodak24, MacMaster18, and KVASIR20 datasets. Figures 1, 4, 2, 3, 5, and 6 show
the denoising performance of different comparison methods. From these figures, it can be seen that
while the S2S method achieves higher PSNR scores in some denoised images, it often produces
overly smooth images. On the other hand, ZS-N2N performs poorly at higher noise levels, with the
denoised images still containing a significant amount of noise. Visually, the images denoised by our
method appear more pleasant.
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Noisy(15.91) DIP(26.29) S2S(28.28) ZS-N2N(26.40) Ours(27.83)GT

Noisy(17.93) DIP(24.67) S2S(26.88) ZS-N2N(25.79) Ours(27.24)GT

Noisy(20.79) DIP(32.92) S2S(34.02) ZS-N2N(32.22) Ours(34.17)GT

Figure 2: Poisson denoising on Kodak24 images. The numbers in parentheses are PSNR scores
(dB). Upper row: λ = 50, middle row: λ = 25, lower row; λ = 10.

Noisy(15.93) DIP(27.44) S2S(30.29) ZS-N2N(23.74) Ours(29.97)GT

Noisy(21.79) DIP(33.90) S2S(33.44) ZS-N2N(30.63) Ours(34.91)GT

Noisy(28.83) DIP(29.81) S2S(34.02) ZS-N2N(34.95) Ours(36.38)GT

Figure 3: Gaussian denoising on MacMaster18 images. The numbers in parentheses are PSNR
scores (dB). Upper row: σ = 10, middle row: σ = 25, lower row; σ = 50.
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S2S (25.43)GT Noisy (11.52) DIP(22.21) ZS-N2N (24.24) Ours (24.96)

S2S (29.32)GT Noisy (16.04) DIP(26.53) ZS-N2N (26.49) Ours (27.70)

S2S (33.04)GT Noisy (24.92) DIP(28.06) ZS-N2N (33.18) Ours (33.92)

Figure 4: Poisson denoising on McMaster18 images. The numbers in parentheses are PSNR scores
(dB). Upper row: λ = 50, middle row: λ = 25, lower row; λ = 10.

GT Noisy (28.18) DIP (36.87) Self2Self (37.61) ZS-N2N (36.61) Ours (38.12)

GT Noisy (20.28) DIP (31.51) Self2Self (33.72) ZS-N2N (31.47) Ours (33.92)

GT Noisy (14.84) DIP (25.34) Self2Self (30.88) ZS-N2N (27.73) Ours (29.72)

Figure 5: Gaussian denoising on KVASIR20 images. The numbers in parentheses are PSNR scores
(dB). Upper row: σ = 10, middle row: σ = 25, lower row; σ = 50.
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S2S (33.72)GT Noisy (31.90) DIP(33.14) ZS-N2N (31.99) Ours (34.63)

S2S (38.73)GT Noisy (33.33) DIP(42.99) ZS-N2N (35.01) Ours (43.93)MASH (39.41)

MASH (28.67)

Figure 6: Visual comparison of our method against other competing methods on samples from the
real-world datasets. Top: SIDD dataset. Bottom: PolyU dataset. The numbers in parentheses are
PSNR scores (dB).
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