
Supplementary: Reinforcement Learning Enhanced
Explainer for Graph Neural Networks

Caihua Shan1, Yifei Shen2, Yao Zhang3, Xiang Li4, Dongsheng Li1
1Microsoft Research Asia

{caihua.shan,dongsheng.li}@microsoft.com
2The Hong Kong University of Science and Technology

yshenaw@connect.ust.hk
3Fudan University

yaozhang@fudan.edu.cn
4East China Normal University
xiangli@dase.ecnu.edu.cn

A. Explanation algorithms

We show the pseudocode of our RG-Explainer for node classification and graph classification in
Alg. 1 and 2, respectively.

A1. Node Classification

Given an input graph G = (V, E) and its features X , a trained GNN model f and node instances I,
the goal is to train our graph generator G and find the explanatory subgraph for node instances.

We first extract the computation graph G(i) for each node vi ∈ I (line 4). The reason is that the
prediction of a node instance is decided by its L-hop neighborhoods because of the message passing
scheme. L is the number of GNN layers in the trained model f . Here L is 3. The goal of pre-training
is to let G know how to generate a subgraph from a node sequentially (line 5-7). Therefore, we
random sample some valid layer-wise generation sequences D(i) for G(i) as pre-training samples.
These sequences D(i) are also truncated with random lengths to let G generate the subgraph with
different sizes.

In each training epoch, we generate S(i) for each node vi ∈ I by G (line 10-19). We compute the
prediction loss and regularizations as (negative) rewards for the set of current explanatory subgraphs
{S(i)} and update the parameters in G (line 20-21). In the inference phase, we infer the explanatory
subgraph S(i)

final for node instances with trained graph generator G (line 23-24).

A2. Graph Classification

We show our RG-Explainer for graph classification in Alg. 2. The algorithm is similar to the one
explaining node classifications, except that we train our seed locator to detect the most influential
node in a graph instance. Given a set of graph instances G(n) ∈ I and a trained GNN model f , the
goal is to obtain the seed locator L, graph generator G and the explanatory subgraph S(n)

final.

We first pretrain L. The final graph representations zgn and node representations zvi,n can be
computed by the trained GNN model f(·) (line 4). They are the input of L. We then build the
pre-training data D by obtaining the computation graph of each node in the graph instance, and
computing its corresponding reward (line 5-6). We use D to let L learn which kind of seed nodes
have the highest reward. Given L, we pretrain G similar to what we do for node classifications (line
10-13).

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Algorithm 1 Training algorithm for explaining node classification
1: Input: The input graphG = (V, E), node features X , node instances I, and a trained GNN model f(·).
2: Output: Our graph generator G and explanatory subgraphs for nodes in I.

3: # Pre-train
4: G(i) ← the computation graph for node vi ∈ I.
5: D(i) ← a sampled valid layer-wise sequence to generateG(i) truncated with random length.
6: Pre-train G on {D(i)} by optimizing the list-wise MLE.
7: Pre-train G on {D(i)} by optimizing the set-wise MLE.

8: # Training phase
9: for each training epoch do
10: for each node vi ∈ I do
11: Initialize S(i)

0 = {vi}.
12: for each timestamp t = {1...T} do
13: X′

t ← augmented node features in Eq. 1.
14: H̄L

t ← node representation propagated by APPNP and transformed by MLP in Eq. 2 and Eq. 3.
15: Update S(i)

t by adding a node vt based on Eq. 4.
16: Check the stopping criteria by Eq. 10.
17: end for
18: S(i) ← current generated explanatory subgraph by G for node vi ∈ I.
19: end for
20: L({S(i)}vi∈I)← computed prediction loss and regularizations as reward with Eq. 7.
21: Update parameters {Θ1,Θ2, θ3, θ4} in G with policy gradient by Eq. 8 and Eq.9.
22: end for

23: # Inference phase
24: S(i)

final ← generated explanatory subgraph by G for node vi ∈ I.

Algorithm 2 Training algorithm for explaining graph classification
1: Input: Graph instancesG(n) ∈ I, and a trained GNN model f(·).
2: Output: Our seed locator L, graph generator G and explanatory subgraphs for graphs in I.

3: # Pre-train L
4: zgn/zvi,n ← the graph/node representation produced by f(G(n)).

5: for each sampled graphG(n) ∈ I do
6: D = [Cvi

,−L(Cvi
)]← the training pair of computation graph of node vi ∈ G(n) and its reward.

7: Pre-train parameters in L onD.
8: end for
9: # Pre-train G
10: G̃(n) ← the computation graph of selected node L(G(n)) for graphG(n) ∈ I.
11: D(n) ← a sampled valid layer-wise sequence to generate G̃(n) truncated with random length.
12: Pre-train G on {D(n)} by optimizing the list-wise MLE.
13: Pre-train G on {D(n)} by optimizing the set-wise MLE.

14: # Training phase
15: for each training epoch do
16: # Coordinate train G
17: for each graphG(n) ∈ I do
18: Initialize S(n)

0 = {L(G(n))}.
19: S(n) ← current generated explanatory subgraph by G step by step.
20: end for
21: L({S(n)})← computed prediction loss and regularizations as reward with Eq. 11.
22: Update parameters {Θ1,Θ2, θ3, θ4} in G with policy gradient by Eq. 8 and Eq. 9.
23: # Coordinate train L
24: for each sampled graphG(n) ∈ I do
25: D = [G(vi),−L(G(vi))]← the training pair of generated graph of node vi ∈ G(n) and its reward.
26: Update parameters in L onD.
27: end for
28: end for

29: # Inference phase
30: S(n)

final ← generated explanatory subgraph by G(L(G(n))) for graphG(n) ∈ I.

In each training epoch, we coordinately train L and G. Given a fixed L, the steps to train G are the
same as Alg. 1 (line 17-22). Given a fixed G, we sample graph instances, and then build training data
by generating the subgraph and computing the reward from each node in sampled graph instance.
Based on these training samples, we update the parameters in L. In the inference phase, we infer the
explanatory subgraph S(n)

final for graphs instances with trained seed locator L and graph generator G
(line 29-34).

2



B. Implementation Details

All experiments are conducted on a Linux machine with an NVIDIA Tesla P100 GPU with 10.2
CUDA. RG-Explainer is implemented with Python 3.7 and Pytorch 1.8.0. The hyper-parameters in
RG-Explainer are listed in the following table. We also releases the code in the supplementary.

Table 1: Hyper-parameters in RG-Explainer
Hyper-parameters Value

Number of pre-training epochs for list-wise MLE 10
Number of pre-training epochs for set-wise MLE 25
Sample ratio of graph instance to pre-train L 1.0
Batch size to pre-train G 32
Batch size to train G 128
Number of layers of APPNP in G 3
α in APPNP in G 0.85
Hidden dimension in G 64
Architecture of MLP in L 64-8-1
Learning rate 1e-2
Optimizer Adam
Number of rollouts 5
Number of hops 3
Maximum size of generated sequences 20
Training epochs (node tasks) Searched from {30, 50}
Training epochs (graph tasks) 10
Sample ratio of graph instance to train L 0.2
Coefficient of size loss 0.01
Coefficient of similarity loss (node tasks) 1.0
Coefficient of similarity loss (graph tasks) 0.01
Coefficient of radius penalty Searched from {0.1, 0.01, 0.0}

C. Potential Negative Societal Impacts

Our RG-explainer increases the transparency of GNN models, i.e., we know the reason for GNN
predictions. It may put GNN models at a high risk of being attacked. Some algorithms for graph
attacks could utilize our method to obtain the most influential subgraph and perturb this subgraph. It is
a serious alert to technology companies who maintain the platforms and operate various applications
based on GNN algorithms. However, we believe that the graph defense approaches are also beneficial
from our method to protect the most influential subgraph and make the predictions robust.

D. Inductive Setting

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

A
U

C
 S

c
o
re

Ratio of Training Instances

BA-Shapes

RG-Explainer (Inductive)
RG-Explainer (Transductive)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

A
U

C
 S

c
o
re

Ratio of Training Instances

BA-Community

RG-Explainer (Inductive)
RG-Explainer (Transductive)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

A
U

C
 S

c
o
re

Ratio of Training Instances

Tree-Cycles

RG-Explainer (Inductive)
RG-Explainer (Transductive)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

A
U

C
 S

c
o
re

Ratio of Training Instances

Tree-Grid

RG-Explainer (Inductive)
RG-Explainer (Transductive)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

A
U

C
 S

c
o
re

Ratio of Training Instances

MUTAG

RG-Explainer (Inductive)
RG-Explainer (Transductive)

Figure 1: RG-Explainer in the inductive setting.

In this part, we show the performance of RG-explainer in the inductive setting. Specifically, we vary
the training set sizes from {10%, 30%, 50%, 70%, 90%} and take the remaining instances for testing.
With the increase of training samples, the AUC scores are steadily rising (e.g., BA-Community,
Tree-Grid and MUTAG). For BA-Shapes and Tree-Cycles, they already have enough training samples
when the ratio is 10%. Thus, their performances fall in a certain interval.

3



E. Convergence Analysis

Figure 2: Convergence Analysis

In Figure 2, we experimentally observe that RG-Explainer could converge on all the datasets, where
the x-axis represents the training epoch and the y-axis indicates the negative loss value (reward).

F. Ablation Study

Table 2: Ablation Study
Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

w/o size loss 0.958 0.871 0.851 0.880 0.592 0.820
w/o similarity loss 0.965 0.832 0.730 0.763 0.608 0.856
w/o radius penalty 0.991 0.885 0.821 0.927 0.566 0.861

w/o pre-training strategy 0.986 0.707 0.5 0.5 0.547 0.683

In this section, we first analyze the effect of regularization terms. We set the coefficient of a
regularization term as 0 to remove its effect. The result is shown in Table 2. Generally speaking, the
effects of size loss and similarity loss are more important. For example, the AUC scores of BA-Shapes
and MUTAG decrease by 3% and 6% without the size loss. The AUC scores of BA-Community and
Tree-Grid decline by 9% and 18% without the similarity loss. Because size loss and radius penalty
work together to control the size of generated explanatory subgraph, the impact of removing the
radius penalty is small.

We further study the importance of our proposed pre-training strategy. The results are shown in
the bottom line of the table. For the easy case (BA-Shapes), RG-Explainer can learn the accurate
explanatory graph. However, for other datasets, the performance of RG-Explainer degenerates
significantly. This shows the importance of the pre-training step.

4


