
Organization. These appendices are organized as follows.564

(A) In Appendix A, we prove Theorem 1.565

(B) In Appendix B, we prove Theorem 2.566

(C) In Appendix C, we show that batch partitioning is necessary to satisfy the multi-round567

privacy definition given in (5).568

(D) In Appendix D, we provide the two components of Multi-RoundSecAgg which are Algorithm569

1 and Algorithm 2.570

(E) Appendix G provides additional experiments with various system parameters.571

(F) Appendix E provides additional experiments on the MNIST dataset.572

(G) Appendix F provides additional details and the hyperparameters of the experiments of573

Section 6 and Appendix E.574

(H) In Appendix H, we theoretically show that the random selection strategy discussed in575

Remark 2 that aims to select  available users at each round and the random selection576

strategy that selects the users in i.i.d fashion both have a multi-round privacy ) = 1 with577

high probability. We also empirically demonstrate that the local models can be reconstructed578

accurately when random selection is used.579

(I) Finally, in Appendix I, we consider the convergence rate of the general convex and the580

non-convex cases.581

We list the notations in Table 2.

Table 2: Notations occurred in the paper.

Notations Description

# total number of users
 number of users selected at each iteration
� total number of iterations
� number of local iterations in each user
3 dimension of model

x(C) global model at iteration C, x(C) ∈ R3
x(C)
8

local model of user 8 at iteration C, x(C)
8
∈ R3

X(C) concatenation of the weighted local models at iteration C, X(C) ∈ R#×3
p(C) participation vector at iteration C, p(C) ∈ {0, 1}#
P(C) participation matrix, P(C) ∈ {0, 1}C×#
) multi-round privacy guarantee
� aggregation fairness gap
� average aggregation cardinality
B privacy-preserving family, B ∈ {0, 1}'�%×#
'�% the size of the privacy-preserving family of sets
U (C) set of available users at iteration C
?8 dropout probability of user 8
5
(C)
8

frequency of participation of user 8 before round C

582

A Theoretical Guarantees of Multi-RoundSecAgg: Proof of Theorem 1583

In this appendix, we provide the proof of Theorem 1.584

Proof. 1. First, we prove that Multi-RoundSecAgg ensures a multi-round privacy of ) . We first585

partition the matrix B into ' × ) matrices as B = [B(1) ,B(2) , · · · ,B(# /) ) ] and the aggregated586
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models as X = [X(1)>,X(2)>, · · · ,X(# /) )>]>. We can then express any linear combination of587

the aggregated models X>B>z, where z ∈ R' \ {0}, as follows588

X>B>z =
# /)∑
8=1

X(8)>B(8)>z. (9)

Denote the 9-th column of B(8) by b(8)
9

which is either a zero vector or all ones vector due to589

the batch partitioning structure. That is, b(8)
9
∈ {0, 1}. Hence, B(8)>z ∈ {0, 08 .1} for some590

08 ∈ R \ {0}. Therefore, we have591

X(8)>B(8)>z =


0 B(8)>z = 0,

08
8)∑

9=(8−1)) +1
x 9 otherwise,

(10)

∀8 ∈ [#/)], which shows that Multi-RoundSecAgg achieves a multi-round privacy ) .592

2. Next, we prove that Multi-RoundSecAgg has an aggregation fairness gap � = 0.593

It is clear that the total number of times user 8 is being selected up to time � is the same as that of594

user 9 who lies in the same batch as user 8. This follows since all users in the same batch either595

participate together or they do not participate at all.596

It suffices to show that the expected number of selections of user 8 up to time � is the same as597

that of user 9 , where user 8 and user 9 are in different batches. The main observation is that598

our protocol is symmetric. Indeed, the only randomness in the system are the user availability599

randomness and the set selection randomness when there are multiple user sets satisfying the600

requirements. We note that for any realization of random variables such that the batch of user 8 is601

selected at time C, there is a corresponding realization of random variables such that the batch of602

user 9 is selected at time C and all other selections remain exactly the same. Hence, �8 = �9 for603

any 8 ≠ 9 .604

3. Finally, we characterize the average aggregation cardinality of Multi-RoundSecAgg. The average605

aggregation cardinality can be expressed as follows606

� =  (1 − Pr[No row of B is available])

=  

(
1 − Pr[At least

#

)
−  
)
+ 1 batches are not available]

)
=  

©­«1 −
# /)∑

8=# /) − /) +1

(
#/)
8

)
@8 (1 − @)# /) −8ª®¬ , (11)

where @ is the probability that a certain batch is not available, which is given by @ = 1− (1− ?)) .607

�608

B Convergence Analysis of Multi-RoundSecAgg : Proof of Theorem 2609

The proof of Theorem 2 is divided into two parts. In the first part, we introduce a new sequence to610

represent the local updates in each user with respect to step index while we use the global round611

index C for x(C) in (2). We carefully define the sequence and the step index, and then provide the612

convergence analysis of the sequence. In the second part, we bridge the newly defined sequence and613

x(C) in (2), and provide convergence analysis of x(C) .614

First Part (Convergence analysis of local model updates).615

Let w( 9)
8

be the local model updated by user 8 at the 9-th step. Note that this step index is different616

from the global round index C in (2) as each user updates the local model by carrying out � (≥ 1)617

local SGD steps before sending the results to the server. Let I� be the set of global synchronization618

steps, i.e., I� = {=� |= = 0, 1, 2, . . .}. Importantly, we define the step index 9 such it increases from619

=� to =� + 1 only when the server does not skip the selection, i.e., there are at least  available users620
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at step =� + 1 for = ∈ {0, 1, 2, . . .}. We denote byH=� the set selected by Multi-RoundSecAgg at621

step index =� and from the definition, |H=� | =  for all = ∈ {0, 1, 2, . . .}. Then, the update equation622

can be described as623

v 9+1
8

= w 9

8
− [ 9∇!8

(
w 9

8
, b
9

8

)
, (12)

w 9+1
8

=

{
v 9+1
8

if 9 + 1 ∈ I�
1
 

∑
:∈H 9+1 v 9+1

:
if 9 + 1 ∉ I�

, (13)

where we introduce an additional variable v 9+1
8

to represent the immediate result of one step SGD624

from w 9

8
. We can view w 9+1

8
as the model obtained after aggregation step (when 9 + 1 is a global625

synchronization step). Motivated by [33, 23], we define two virtual sequences626

v 9 =
1
#

#∑
8=1

v 9
8
, (14)

w 9
=

1
#

#∑
8=1

w 9

8
. (15)

We can interpret v 9+1 as the result of single step SGD from w 9 . When 9 ∉ I� , both v 9 and w 9
627

are not accessible. We also define g 9 = 1
#

∑#
8=1 ∇!8

(
w 9

8

)
and g 9 = 1

#

∑#
8=1 ∇!8

(
w 9

8
, b
9

8

)
. Then,628

v 9+1 = w 9 − [ 9g 9 .629

Now, we state our two key lemmas.630

Lemma 1 (Unbiased selection). When 9 + 1 ∈ I� , the following is satisfied,631

EH 9+1 [w
9+1] = v 9+1. (16)

Proof. LetH 9+1 = {81, . . . , 8 }. Then, we have632

EH 9+1 [w
9+1] = 1

 
�H 9+1


∑

:∈H 9+1

v 9+1
:

 =
1
 
�H 9+1

[
 ∑
:=1

v 9+1
8:

]
= �H 9+1 [v

9+1
8:
]

=

#∑
:=1

1
#

v 9+1
:

= v 9+1 (17)

where (17) follows as Pr[8: = 9] = 1
#

for 8 ∈ [#]. This is because the sampling probability of each633

user is identical due to the symmetry in the construction and the fact that all users have the same634

dropout probability. �635

Now, we provide the convergence analysis of the sequence w 9 defined in (15). We have,636

‖w 9+1 −w∗‖2 = ‖w 9+1 − v 9+1 + v 9+1 −w∗‖2

= ‖w 9+1 − v 9+1‖2 + ‖v 9+1 −w∗‖2 + 2
(
w 9+1 − v 9+1

)> (
v 9+1 −w∗

)
. (18)

When the expectation is taken overH 9+1, the last term in (18) becomes zero due to Lemma 1. For637

the second term in (18), we have638

‖v 9+1 −w∗‖2 ≤ (1 − [ 9`)‖w 9 −w∗‖2 + U([ 9 )2, (19)

where U = 1
#

∑#
8=1 f

2
8
+ 6dΓ + 8(� − 1)2�2 and (19) directly follows from Lemma 1, 2, 3 of [23].639

The first term in (18) becomes zero if 9 + 1 ∈ I� , and if 9 + 1 ∉ I� , from Lemma 5 of [23], it is640

bounded by641

EH 9+1 ‖w
9+1 − v 9+1‖2 ≤ V([ 9 )2, (20)

where V = 4(#− )�2�2

 (#−1) . By combining (18) to (20), we have642

E‖w 9+1 −w∗‖2 ≤ (1 − [ 9`)‖w 9 −w∗‖2 + (U + V) ([ 9 )2. (21)
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Then by utilizing the similar induction in [23], we can show that643

E‖w 9+1 −w∗‖2 ≤ 1
W + C − 1

(
4(U + V)
`2 + WE‖w0 −w∗‖2

)
, (22)

where W = max
{

8d
`
, �

}
. By combining (22) with d-smoothness of the global loss function in (1), we644

have645

E[! (w� )] − !∗ ≤ d

W + � − 1

(
2(U + V)
`2 + W

2
E‖w0 − x∗‖2

)
. (23)

Second Part (Convergence analysis of global model).646

Now, we bridge the sequence w) and x(C) in (2) to provide the convergence analysis of x(C) . Since647

we define the step index 9 such that 9 increases from =� to =� + 1 only when the server does not648

skip the selection, we have649

E[! (x(� ) )] = E[! (w(��ϕ) )] (24)
where ϕ is the probability that there are at least  available users at a certain synchronization step, and650

ϕ = �
 

due to the fact that � =  · Pr[at least one row of B is available] =  ϕ. By combining (23)651

and (24), we have that,652

E[! (x(� ) )] − !∗ ≤ d

W + �
 
�� − 1

(
2(U + V)
`2 + W

2
E‖x(0) − x∗‖2

)
, (25)

which completes the proof.653

C Necessity of Batch Partitioning (BP)654

In this appendix, we show that batch partitioning is necessary to satisfy the multi-round privacy655

guarantee of Equation (5) and our strategy is optimal in the sense that no other strategy can have656

more distinct user selection sets than our strategy.657

Proof. Consider any scheme which selects sets from an ' × # matrix V = [v1, · · · , v# ]>. Denote658

the linear coefficients multiplying them by I8 , 8 ∈ [']. Then, the 8-th element of V>z is given by659

{V>z}8 =
∑

9∈supp(v8)
I8 . (26)

We now claim that we can cluster the entries using equivalence of linear functions to groups, where660

each group must have a size of at least ) except for the group corresponding to the zero function. To661

show this, we choose each I8
i.i.d.∼ * [0, 1], and the key observation is that if two entries have different662

linear functions then their final value after this assignment would be different with probability one.663

Since the scheme satisfies a multi-round privacy ) , this implies that for each non-zero linear function664

of the form of Equation (26), there must be at least ) of them. If we group the entries according to665

the equivalence of linear functions, we get at most #/) groups (ignoring the group of constant zero).666

Then, we show that the total number of possible sets ' is upper-bounded by
(# /)
 /)

)
. We observe that667

the total number of non-zero groups we can choose for each vector is at most  /) due to the size of668

each group, so the total number of distinct vectors satisfying the weight requirement is at most669

' ≤ 'max
def
=

(
�

�

)
, (27)

where � ≤ #/) is the total number of groups corresponding to the non-zero linear functions, and670

� ≤  /) is the total number of groups we may select in each round. Next, we have671

'max =

(
�

�

)
(8)
≤

(
#/)
�

)
(88)
≤

(
#/)
 /)

)
= 'BP, (28)
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where (8) follows since
(�
�

)
is monotonically increasing w.r.t �, and (88) follows as

(�
�

)
is672

monotonically increasing w.r.t � if � ≤ �/2. �673

D The Two Components of Multi-RoundSecAgg : Algorithms 1 and 2674

Algorithm 1 Batch Partitioning Privacy-preserving Family Generation
Input: Number of users # , row weight  and the desired multi-round privacy guarantee ) .
Output: Privacy-preserving Family B ∈ {0, 1}'BP×# , where 'BP =

(# /)
 /)

)
Initialization: B = 0'BP×# .

1: Partition index sets {1, 2, . . . , #} into #
)

sets, G1, . . . ,G#
)

, where |G8 | = ) for all 8 ∈ [ #
)
].

2: Generate all possible sets each of which is union of  
)

sets out of #
)

sets (G1, . . . ,G#
)

) without
replacement. Denote the generated sets by L1, . . . ,L'BP .

3: for 8 = 1, 2, . . . , 'BP do
4: for 9 = 1, 2, . . . , # do
5: if 9 ∈ L8 then {b8} 9 = 1

675

Algorithm 2 Available Batch Selection

Input: A family of sets B, set of available usersU (C) , the frequency of participation vector f (C−1) ,
and the selection mode _. ⊲ _ = 0 when ?8 = ?,∀8 ∈ [#] and 1 otherwise
Output: A participation vector p(C) .
Initialization: B(C) = [ ], ℓ (C−1)

min B arg min8∈U (C ) 5
(C−1)
8

.
1: for 8 = 1, 2, . . . , 'BP do
2: if supp(bi) ⊆ U (C) then B(C) = [B(t)>, b8]>.
3: if B(C) = [ ] then
4: b(C)

A (C) = 0.
5: else if _ = 0 then ⊲ Uniform selection
6: Select a row from B(C) , b(C)

A (C) , uniformly at random.
7: else ⊲ Fairness-aware selection
8: Select a row from B(C) , b(C)

A (C) , uniformly at random from the rows that include ℓ (C−1)
min .

9: p(C) = b(C)
A (C) .

10: Update f (C) = f (C−1) + p(C)

E Additional Experiments: MNIST dataset676

MNIST. To further investigate the performance of Multi-RoundSecAgg, we implement a simple677

CNN [24] with two 5 × 5 convolution layers, a fully connected layer with ReLU activation, and a678

final Softmax output layer. This standard model has 1,663,370 parameters and is sufficient for our679

needs, as our goal is to evaluate various schemes, not to achieve the best accuracy. We study the two680

settings for partitioning the MNIST dataset across the users.681

• IID Setting. In this setting, the 60000 training samples are shuffled and partitioned uniformly682

across the # = 120 users, where each user receives 500 samples.683

• Non-IID Setting. In this setting, we first sort the dataset by the digit labels, partition the sorted684

dataset into 120 shards of size 500, and assign each of the 120 users one shard. This is similar to685

the pathological non-IID partitioning setup proposed in [24], where our partition is an extreme686

case as each user has only one digit label while each user in [24] has two.687
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(a) IID data distribution. (b) Non-IID data distribution.

Figure 7: Training rounds versus test accuracy of CNN in [24] on the MNIST with # = 120 and  = 12.

CIFAR-10 We also consider both IID and Non-IID distribution, and implement LeNet [22] for both688

setting. While the state-of-the-art models [19, 34] achieve 99% accuracy, LeNet is sufficient for our689

needs, as our goal is to evaluate various schemes, not to achieve the best accuracy.690

• IID Setting. In this setting, the 50000 training samples are shuffled and partitioned uniformly691

across the # = 120 users, where each user receives 417 or 416 samples.692

• Non-IID dataset. In this setting, we utilize the data-sharing strategy of [41], where the 50000693

training samples are divided into a globally shared dataset G and private dataset D. We set694

|G| = 200 and |D| = 49800. Then, we sort D by the labels, partition it into 120 shards of size 415,695

and assign each of the 120 users one shard. Each user has 200 samples of globally shared data and696

415 samples of private dataset with one label.697

(a) IID data distribution. (b) Non-IID data distribution.

Figure 8: Training rounds versus test accuracy of LeNet in [22] on the CIFAR-10 with # = 120 and  = 12.

We measure the test accuracy of the six schemes on the MNIST and CIFAR-10 dataset with the two698

distribution settings, the IID and the Non-IID. Our results are demonstrated in Figure 7 and Figure 8.699

We make the following key observations, which are similar to the observations on the CIFAR-100700

dataset.701

• In the IID setting, the Multi-RoundSecAgg schemes show comparable test accuracy to the random702

selection and random weighted selection schemes while the Multi-RoundSecAgg schemes703

provide better multi-round privacy guarantee ) .704

• In the non-IID setting, the Multi-RoundSecAgg schemes outperform the random selection705

scheme while showing comparable test accuracy to the weighted random selection scheme. This706

is because Multi-RoundSecAgg schemes have better aggregation fairness gaps as demonstrated707

in Figure 4(b), which results in better test accuracy in the non-IID setting.708

• In both IID and non-IID settings, the user partitioning scheme has the worst test accuracy as its709

average aggregation cardinality is much smaller than the other schemes.710
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Table 3: Test accuracy of VGG11 in [29] on the CIFAR-100 dataset with # = 120 and  = 12.

Scheme IID Setting Non-IID Setting

Random selection 49.15% 44.32%
Weighted random selection 50.06% 47.11%

User partition 25.73% 22.32%
Multi-RoundSecAgg, T=6 42.89% 39.57%
Multi-RoundSecAgg, T=4 49.43% 46.99%
Multi-RoundSecAgg, T=3 50.22% 47.06%

Table 4: Test accuracy of LeNet in [22] on the CIFAR-10 dataset with # = 120 and  = 12.

Scheme IID Setting Non-IID Setting

Random selection 64.64% 45.20%
Weighted random selection 65.06% 47.89%

User partition 55.70% 37.74%
Multi-RoundSecAgg, T=6 65.01% 46.35%
Multi-RoundSecAgg, T=4 64.95% 47.00%
Multi-RoundSecAgg, T=3 64.80% 47.21%

Table 5: Test accuracy of the CNN in [24] on the MNIST dataset with # = 120 and  = 12.

Scheme IID Setting Non-IID Setting

Random selection 98.21% 85.79%
Weighted random selection 98.10% 94.04%

User partition 93.94% 75.26%
Multi-RoundSecAgg, T=6 97.72% 89.88%
Multi-RoundSecAgg, T=4 98.11% 92.51%
Multi-RoundSecAgg, T=3 98.15% 94.16%

F Experiment Details711

In this section, we provide more details about the experiments of Section 6 and Appendix E.712

We summarize the test accuracy of CIFAR-100, CIFAR-10, and MNIST dataset in Table 3, Table 4713

and Table 5, respectively. For all datasets, we run experiments five times with different random seeds714

and present the average value of the test accuracy in Table 4 and Table 5.715

Hyperparameters and computing resources. For a fair comparison between 6 schemes, we find the716

best learning rate from {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. Given the choice of the best717

learning rate [, [ is decayed to 0.4[ every 400 and 800 rounds to train the LeNet on the CIFAR-10718

dataset or train VGG11 on the CIFAR-100 dataset while [ is not decayed in the CNN on the MNIST719

dataset. To train the LeNet on the CIFAR-10 dataset or train VGG11 on the CIFAR-100 dataset, we720

use the mini-batch size of 50 and � = 1 local epoch for both IID and Non-IID settings. To train721

the CNN on the MNIST dataset, we use the mini-batch size of 100 and � = 1 local epoch for both722

IID and Non-IID settings. All experiments are conducted with users equipped with 3.4 GHz 4 cores723

i-7 Intel CPU and NVIDIA Geforce 1080, and the users communicate amongst each other through724

Ethernet to transfer the model parameters.725

G Additional Experiments: Ablation Study726

In this Appendix, we further investigate the performance of Multi-RoundSecAggwith various settings727

of the system design parameters, the number of total users(#), the number of selected users per728

round ( ), and target multi-round privacy guarantee()). We use the same dropout model as Section 6,729

i.e., considering heterogeneous environments where users have different dropout probability among730
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{0.1, 0.2, 0.3, 0.4, 0.5}. We implement LeNet [22] for image classification for CIFAR-10 with IID731

distribution.732

(a) (#,  ) = (240, 12) (b) (#,  ) = (120, 24)
Figure 9: Training rounds versus test accuracy of LeNet [22] on the CIFAR-10 with various system parameters
(#,  ,)).

Figure 9(a) and Figure 9(b) show the performance comparison with (#,  ) = (240, 12) and733

(#,  ) = (120, 24), respectively. Similar to Section 6 and Appendix E, we can observe that734

Multi-RoundSecAgg schemes show comparable test accuracy to the random and weighted random735

selection schemes while the Multi-RoundSecAgg provide better multi-round privacy guarantee ) ,736

and the user partitioning scheme has the worst test accuracy as its average aggregation cardinality737

is much smaller than the other schemes. In particular, when (#,  ) = (120, 24), the user partition738

scheme fails to train the model as the probability that all partitions are not available at each round739

becomes almost one.740

H Multi-round Privacy Analysis of the Conventional Random User741

Selection Strategies742

In this appendix, we first theoretically study the multi-round privacy of two random user selection743

strategies, and show that they have a very weak multi-round privacy of ) = 1 with high probability744

(for the case where ?8 = ?,∀8 ∈ [#]). Furthermore, we also provide additional experiments showing745

that the server can reconstruct the local updates of all users with high accuracy when a random746

selection strategy is used. In the theoretical analysis, to simplify the problem, we assume that the747

model of the users have converged and don’t change from one round to the next. However, in the748

experiments, we empirically evaluate the error in approximating the individual models of the users749

(via least-squares error estimation), and show that the server can approximate individual updates with750

very small error.751

H.1 Theoretical Analysis of the Random Selection Strategies752

We start by our theoretical results, where we consider the following two random selection schemes.753

1.  -uniform Random Selection. In this scheme, at round C,  users are selected uniformly at754

random from the set of available usersU (C) if |U (C) | ≥  . Otherwise, the server skips this round.755

2. I.I.D Random Selection. In this scheme, at round C, each user is selected with probability756
 

# (1−?) independently from the other available users, where  < # (1 − ?). Hence, the expected757

number of selected users at each round is  user.758

For both schemes, we show that the server can reconstruct all individual models after # rounds in759

the worst-case scenario (assuming that the models do not change over # rounds). Specifically, we760

show that the participation matrices in both schemes have full rank with high probability after #761

rounds. This, in turn, implies that the server can reconstruct all local models after # rounds with high762

probability in both schemes. We provide our results formally next in Theorem 3.763

Theorem 3. (Random selection schemes have a multi-round privacy guarantee ) = 1).764
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1. Consider the  -uniform random selection scheme, where min( , # −  ) ≥ 2# . In this scheme,765

the server can reconstruct all individual models of the # users after # rounds with probability at766

least767

1 − 24−2
′# , (29)

for some constant 2′ > 0 that depends on 2.768

2. Consider the i.i.d random selection scheme, where the users are selected according to769

Bern(  
# (1−?) ) distribution and let C =  /# . In this scheme, the server can reconstruct the770

individual models of the # users after # rounds with probability at least771

1 − 2# (1 − C)# − (1 + ># (1))# (# − 1) (C2 + (1 − C)2)# , (30)

which converges to 1 exponentially fast if C ∈ (0, 1/2) is a fixed constant.772

Proof. We first note that if the participation matrix has full rank after # rounds, then the server773

can reconstruct the model of each individual user. Hence, we analyze the probability of the # × #774

participation matrix being full rank. We now consider each scheme separately.775

1. In the  -uniform random selection scheme, the probability that the participation matrix after #776

rounds P(# ) has full rank is lower-bounded as follows [36], when min( , # −  ) ≥ 2# ,777

Pr[P(# ) has full rank] ≥ 1 − 24−2
′# ,

for some constant 2′ > 0 that depends on 2. Hence, it follows that the server can reconstruct all778

individual models with probability at least 1 − 24−2′# .779

2. In the i.i.d random selection scheme, the probability that the participation matrix after # rounds780

P(# ) has full rank is lower-bounded as follows [14]781

Pr[P(# ) has full rank] ≥ 1 − 2# (1 − C)# − (1 + ># (1))# (# − 1) (C2 + (1 − C)2)# ,

which converges to 1 exponentially fast if C =  /# ∈ (0, 1/2) is a fixed constant. Hence, it782

follows that the probability the server can reconstruct all individual models is lower-bounded by783

the same probability.784

�785

Remark 12. Our experimental results in Section 6 also show that the multi-round privacy guarantee786

of the  -uniform random selection scheme goes to 1 after almost # rounds as shown in Fig. 4(a).787

H.2 Experimental Results788

We now empirically evaluate the error in approximating the individual gradients of the users (via789

least-squares error estimation), and show that the server can approximate individual gradients of all790

users with a very small error when  -uniform random selection is used. To do so, we implement a791

reconstruction algorithm utilizing the least-squares method, and measure the !2 distance between the792

true gradients and reconstructed gradients. We consider a FL setting with # = 40 users, where the793

server aims to choose  = 8 users at every round, to train the LeNet in [22] on the CIFAR-10 dataset794

with Non-IID setting, which is the same as the setting in Appendix E.795

Let X (C)
8

be the gradient of user 8 at round C, i.e., X (C)
8
= x(C)

8
− x(C) , and X (C) be the global update at796

round C, i.e., X (C) = x(C+1)−x(C) = �(C)
>
individualp(C) where �(C)individual =

[
F1X

(C)
1 , . . . , F# X

(C)
#

]>
∈ R#×3 .797

After a sufficiently large number of rounds C0, the global model at the server converges and does not798

change much across the rounds, which results in that local updates also do not change much across799

the rounds. Then, we have800

�(C0;C1)
global = P(C0;C1)�(C0)individual + Z, (31)

where �(C0;C1)
global denotes the concatenate of the global updates from round C0 to round C1 − 1, i.e.,801

�(C0;C1)
global =

[
X (C0) , . . . X (C1−1) ]> ∈ R(C1−C0)×3 for C1 > C0, P(C0;C1) ∈ {0, 1} (C1−C0)×# is the participation802
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(a)  (= 8)-uniform random selection () = 1).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Reconstruction error

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

(b) Multi-RoundSecAgg () = 2).

Figure 10: Histogram of the reconstruction error defined in (33) when the  (= 8)-uniform random selection
or Multi-RoundSecAgg () = 2) scheme is used to train the LeNet on the CIFAR-10 dataset. The average
reconstruction errors of  (= 8)-uniform random selection and Multi-RoundSecAgg () = 2) are 6.715 × 10−3

and 0.7829, respectively, which implies that the server can reconstruct all local updates when  (= 8)-uniform
random selection is used while the server cannot reconstruct the local updates when Multi-RoundSecAgg () = 2)
is used.

Figure 11: Comparison of the reconstructed images using the model inversion attack [12] with different value
of multi-round privacy guarantee ) (left) and measurement of similarity between the reconstructed images and
the original images, where PSNR = ∞ and MSE = 0 for two identical images (right).

matrix from round C0 to round C1 − 1, and Z denotes the perturbation (or noise) incurred by the local803

updates across the rounds.804

The server can then estimate �(C0)individual by utilizing the least-squares method as follows805

�̂(C0)individual =

(
P(C0;C1)>P(C0;C1)

)−1
P(C0;C1)>�(C0;C1)

global , (32)

and we measure the reconstruction error as follows806

4
(C0)
8

=
‖X (C0)
8
− X̂ (C0)

8
‖22

‖X (C0)
8
‖22

, (33)

where X̂ (C0)
8

denotes the reconstructed gradient of user 8, which corresponds to 8-th row of �̂(C0)individual807

in (32). On the other hand, in Multi-RoundSecAgg with multi-round privacy guarantee ) = 2, the808

server cannot estimate the individual gradients by utilizing (32) because P(C0;C1) is not full rank hence809

the inverse of P(C0;C1)>P(C0;C1) does not exist. The best that the server can do is to estimate
∑
8∈G 9 X

(C0)
8

,810

where G 9 is the index set of the users in the 9-th batch. The server can then estimate X (C0)
8

by dividing811

the estimate of
∑
8∈G 9 X

(C0)
8

by ) , where 8 ∈ G 9 .812

Figure 10(a) and Figure 10(b) show the histogram of the reconstruction error of the individual813

gradients when the  -uniform random selection scheme and Multi-RoundSecAgg () = 2) scheme are814

used, respectively. We set C0 = 1460 and C1 = 1500 in this experiment. We observe that the  -uniform815
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random selection scheme has much smaller average reconstruction error 1
#

∑#
8=1 4

(C0)
8

= 6.715 × 10−3816

than the average reconstruction error of Multi-RoundSecAgg () = 2), which implies that the server817

can reconstruct all local gradients as the  -uniform random selection scheme has a multi-round818

privacy guarantee ) = 1.819

Finally, the server can reconstruct the training images by applying model inversion attack [12] to820

the reconstructed gradient X̂ (C0)
8

. Figure 11 the reconstructed images of random selection scheme821

() = 1) and Multi-RoundSecAgg () = 2, 4). We measure the reconstruction performance using822

peak signal-to-noise ratio (PSNR) and mean square error (MSE). Large PSNR and small MSE823

indicate more similarity between the reconstructed and original images, and hence we can observe824

that random selection scheme () = 1) leaks much more information about the original image than825

Multi-RoundSecAgg () = 2, 4).826

I General Convex and Non-Convex Convergence Rates827

In this appendix, we discuss extending the convergence proof of [18] to our setting. Since we closely828

follow [18], we mainly here focus on the differences. The main difference between the two settings829

is that the number of participating users in [18] is fixed as |S (C) | =  across all rounds as dropouts830

are not considered, whereas it may change in our case between the rounds based on the availability831

of the users. Specifically, the server in our case aims to choose  users at each round. If this is not832

possible due to the dropouts, the server skips this round. That is, |S (C) | ∈ {0,  } and E[|S (C) |] = �,833

where we recall that � is the average aggregation cardinality that depends on the desired multi-round834

privacy guarantee ) .835

Next, we recall the setting and the assumptions of [18]. In [18], the problem is formalized as836

minimizing a global loss function as follows837

min
x
! (x) s.t. ! (x) = 1

#

#∑
8=1

!8 (x), (34)

where ! is bounded from below by !∗, the loss function of user 8 !8 is d-smooth and 68 (x) =838

∇!8 (x, Z8) is an unbiased stochastic gradient of !8 with variance bounded by f2. Furthermore,839

following the assumptions of [18], we consider the following assumptions.840

Assumption 1. (�, �)-Bounded Gradient Dissimilarity (BGD). There exists constants � ≥ 0 and841

� ≥ 1 such that842

1
#

#∑
8=1
‖∇!8 (x)‖2 ≤ �2 + �2‖∇!8 (x)‖2,∀x, (35)

and when {!8} are convex, this assumption can be relaxed as843

1
#

#∑
8=1
‖∇!8 (x)‖2 ≤ �2 + 2d�2 (! (x) − !∗),∀x. (36)

Assumption 2. X-Bounded Hessian Dissimilarity (BHD).844

‖∇2!8 (x) − ∇2! (x)‖ ≤ X,∀x, (37)

and !8 is X-weakly.845

Assumption 3. !8is `-convex for ` ≥ 0 and satisfies846

〈∇!8 (x), y − x〉 ≤ −
(
!8 (x) − !8 (y) +

`

2
‖x − y‖2

)
, for any 8, x, y, (38)

where ` can be 0 (general convex case).847

Assumption 4. 68 (x) = ∇!8 (x; Z8) is an unbiased stochastic gradient of !8 with bounded variance.848

That is, we have849

E [‖68 (x) − ∇!8 (x)‖] ≤ f2, for any 8, x. (39)

Assumption 5. {!8} are d-smooth and satisfy850

‖∇!8 (x) − ∇!8 (x)‖ ≤ d‖x − y‖, for any 8, x, y. (40)
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It is also worth noting that when {!8} are convex and x∗ this assumption implies that851

1
2d#

#∑
8=1
‖∇!8 (x) − !8 (x∗)‖ ≤ ! (x) − !∗, (41)

and when !8 is twice differentiable this assumption implies that ‖∇2!8 (x)‖ ≤ d for any x.852

We now recall the global and the local updates of the setting considered in [18]. x(C) is the global853

model after round C and x(C)
8,4

is the local model of user 8 in round C and local step 4. In round C,854

the server selects a subset of users S (C) . Each user then copies the global model x(C)
8,0 = x(C−1) and855

performs � local update steps as follows856

x(C)
8,4
B x(C)

8,4−1 − [;68 (x
(C)
8,4−1), (42)

where [; is the local step size. The users then send their updates and the server updates the global857

model as follows858

x(C) B x(C−1) +
[6

 

∑
8∈S
(x(C)
8,�
− x(C−1) ), (43)

where [6 is the global step size. Finally, the output is given by859

x(� ) = x(C−1) with probability
\C∑
g \g

for C ∈ {1, · · · , � + 1} (44)

for some weights {\C }, where � is the total number of rounds. Next, we restate the convergence860

Theorem of [18].861

Theorem. Suppose that {!8} satisfy Assumptions 1, 4 and 5. Then for each of the following cases862

there exists weights {\C } and local step sizes [; such that for any global step size [6 ≥ 1, we have863

• Strongly convex. If {!8} satisfy Assumption 3 for ` > 0, [; ≤ 1
8(1+�2)d�[6

, � ≥ 8(1+�2)d
`

,864

then865

E
[
! (x� )

]
− ! (x∗) ≤ Õ

(
"2

`�� 
+ d�

2

`2�2 + `�
2 exp

(
− `

16(1 + �2)d
�

))
. (45)

• General convex. If {!8} satisfy Assumption 3 for ` = 0, [; ≤ 1
8(1+�2)d�[6

, � ≥ 1, then866

E
[
! (x� )

]
− ! (x∗) ≤ O

(
"�
√
�� 

+ �
4/3 (d�2)1/3

(� + 1)2/3
+ �

2d�2

�

)
. (46)

• Non-convex. If {!8} satisfy Assumption 1 and [; ≤ 1
8(1+�2)d�[6

, then867

E
[
‖∇! (x� )‖2

]
≤ O

(
d"
√
�

√
�� 

+ �
2/3 (d�2)1/3

(� + 1)2/3
+ �

2d�

�

)
. (47)

where "2 = f2 (1 +  /[2
6) + � (1 −  /#)�2, � = ‖x0 − x∗‖ and � = ! (x0) − !∗.868

As we discussed, the main difference between our setting and the setting of [18] is that the number of869

selected users in our case in each round is a random variable |S (C) | ∈ {0,  } with mean equal to the870

average aggregation cardinality �. We now show the effect of this difference on the key lemma of871

[18]. We first recall this key lemma from [18] and then derive a simple corollary that extends this872

lemma to our setting.873

Lemma. (Separating Mean and Variance)[Lemma 4 in [18]]. Let {E1,E2, · · · ,EF } be random874

vectors in R3 , which may not be independent. We consider the following two cases.875

• When E[E8] = ' 8 and E[‖E8 − ' 8 ‖2] ≤ f2, then we have876

E[‖
F∑
8=1

E8 ‖2] ≤ ‖
F∑
8=1

' 8 ‖2 + F2f2. (48)
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• When E[E8 |E8−1, · · · ,E1] = ' 8 and E[‖E8 − ' 8 ‖2] ≤ f2, then we have877

E[‖
F∑
8=1

E8 ‖2] ≤ 2‖
F∑
8=1

' 8 ‖2 + 2Ff2. (49)

In this key lemma, F is constant as the setting [18] assumes the number of participating users is fixed878

as  in every round. That is, this lemma is applied with F =  . In our case, however, the number of879

participating users is a random variable. Hence, we consider this case in the following corollary.880

Corollary 3.1. Let {E1,E2, · · · ,E, } be random vectors in R3 , which may not be independent and881

, ∈ {0, F} is a random variable that is independent of �8 and E[,] = `, . We consider the882

following two cases.883

• When E[E8] = ' 8 and E[‖E8 − ' 8 ‖2] ≤ f2, then we have884

E[‖
,∑
8=1

E8 ‖2] ≤
`,

F
‖
F∑
8=1

' 8 ‖2 + F`,f2. (50)

• When E[E8 |E8−1, · · · ,E1] = ' 8 and E[‖E8 − ' 8 ‖2] ≤ f2, then we have885

E[‖
,∑
8=1

E8 ‖2] ≤ 2
`,

F
‖
F∑
8=1

' 8 ‖2 + 2`,f2. (51)

This is the main difference between our setting and the setting considered in [18] and the rest of the886

proof follows similarly. Similar to Theorem 2, we can see that the average aggregation cardinality �887

controls the convergence rate and hence there is a trade-off between the multi-round privacy ) and888

the convergence rate.889
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