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A Review of Statistical Concepts1

In this section, we first review several classic statistical concepts, including the hierarchical models,2

random effect model, fixed effect model, and mixed effect model. They are all general concepts in3

statistics and have been integrated with different models, and we may focus on their most related4

forms for ease of exposition. See [11, 42] for more detailed discussions. Next, we discuss their5

connection with our model and baselines mentioned in the main text.6

A.1 Statistical concepts7

Consider a supervised learning problem, where we have N subjects. For each subject i, we have Mi8

measurements, denoted as {Yi,t}Mi
t=1. In a classic example, each subject corresponds to a hospital9

and each measurement corresponds to the outcome of a patient treated in one of these hospitals.10

A random effect model assumes the data of subject i is generated from some distributions fi(·;θi)11

parameterized by θi, and these coefficients are sampled from an upper-level distribution as θi ∼ P .12

The coefficients and the corresponding distribution are hence treated as random variables, which13

enables us to characterize the heterogeneity between subjects. Therefore, this class of models are14

referred to as random effect models.15

In contrast, in a fixed effect model, for each measurement Yi,t, we additionally have some indepen-16

dent variables Xi,t, and they are related through a regression model Yi,t = f(Xi,t;θ) + εit, which17

is parameterized by an unknown parameter θ. Here, εit is the error term. The coefficient θ is fixed18

across subjects, and hence this class of models are referred to as fixed effect models. It is mainly19

used to characterize the common structure across subjects.20

A mixed effect model is a combination of both: it includes both fixed effect terms and random effect21

terms. The random intercept model Yi,j = f(Xi,j ;θ) + δi + εit with δi ∼ P and the random22

coefficient model Yi,j = f(Xi,j ;θ + θi) + εi,t with θi ∼ P are two examples.23

Finally, these three models are all special case of the following hierarchical model (a.k.a. multilevel24

models):25

θi ∼ g(Zi;θ),

Yi,t ∼ f(Xi,t,θi),

where Zi contains some (optional) static features for each task i, the first layer describes the rela-26

tionship between subjects and the second layer describes the relationship between measurements for27

the same subject.28

A.2 Relationship with bandits29

The aforementioned statistical concepts are typically introduced for supervised learning. We can30

naturally extend them to the decision-making setup, and connect them with the bandit problem.31
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We first recall the equivalent definition of the stochastic multi-armed bandit problem that, in the32

tth interaction with task i, the rewards for all arms are generated by Ri,t ∼ N (ri, σ
2I), and after33

taking an action Ai,t, the Ai,t-th entry of Ri,t will be observed as Ri,t.34

The meta bandit assumes that each task instance ri is sampled from some task prior distribution Pr,35

and then the rewards are generated from ri. Therefore, at a high-level, the underlying model can be36

regarded as a random effect model. As a concrete example, we consider the Gaussian bandit case37

in Kveton et al. [22]. Let mean rewards of task i be ri = (ri,1, . . . , ri,K)T . At each time point38

t, the rewards are generated by Ri,t ∼ N (ri, σ
2I). We assume the task instances are sampled by39

ri = θi ∼ N(µ, σ2
0I). It is easy to see this model is a random effect model.40

For contextual MAB, the reward Rt are often related with the context St and the action At by a41

model Rt ∼ f(St, At;θ) + εi,t parameterized by θ. In our multi-task MAB setting, to adapt these42

algorithms, we can similarly assume Ri,t = f(Si,t;θ) + εi,t, where Si,t ≡ Xi for all t. It is43

straightforward to check that these two models are both special cases of the fixed effect model.44

Finally, by setting Zi = xi, θi = ri, Yi,t = Ri,t and Xi,t = Ai,t, it is easy to see our model (1) is45

a hierarchical model, with the other two models as special cases. In particular, the LMM in Section46

4.2 is a mixed effect model.47

B Additional Related Work48

In this section, we compare this paper with additional related works. To begin with, we note that49

there are several terms used in the literature for problems concerned with multiple tasks, which is of-50

ten a source of confusion. Based on [17], meta learning assumes tasks are drawn from a distribution51

and aims to maximize the average performance over this task distribution (meta-objective); transfer52

learning uses data from finished tasks to improve the performance on a new task, and typically fo-53

cuses on the single-task objective, although the viewpoint of meta learning can be applied to achieve54

this goal (as in the sequential setting of our work); multi-task learning aims to jointly learn a few55

tasks, where typically the number of tasks is fixed and the meta-objective is not adopted, although56

the viewpoint of meta learning can be applied in these problems as well (as in the concurrent setting57

of our work). There are often some overlaps between these concepts. In this work, we adopt the task58

distribution viewpoint as well as the meta-objective [17], which are naturally related with our hier-59

archical Bayesian framework, allows us to model heterogeneity, and enables knowledge sharing via60

constructing informative priors. We refer to our problem as multi-task bandits to focus on the fact61

that there are multiple tasks, since our methodology is applicable to the sequential setting (transfer62

learning), the concurrent setting (multi-task learning), and even more complex settings.63

According to the taxonomy developed in [46], multi-task algorithms can be classified into the feature64

learning approach, low-rank approach, task clustering approach, task relation learning approach,65

and decomposition approach. In the bandit literature, [44, 7, 30] consider that one interacts with66

multiple linear bandit tasks concurrently and the coefficient vectors of these tasks either share the67

same low-dimensional space or the same sparsity pattern, and hence belongs to the feature learning68

approach; [23] studies finding the maximum entry of a low-rank matrix in a bandit manner and [20]69

assumes the coefficient matrix of a bilinear bandit problem is low-rank, and hence they belong to70

the low-rank approach; clustering of bandits [12, 26] and latent bandits [15, 16] assume there is a71

perfect clustered structure, and hence they belong to the task clustering approach. In contrast to these72

papers, our work belongs to the relation learning approach, which aims to learn the task relations73

from data by assuming some probabilistic model or applying some penalty function. Our approach74

provides nice interpretability and is flexible with arguably less strict assumptions. In particular, to75

the best of our knowledge, this is the first work that can leverage the task-specific metadata in multi-76

task bandits, which is an important information source that none of the existing methods can utilize.77

Although we focus on MAB in the main text, the idea of utilizing metadata is generally applicable.78

We discuss its extensions to linear bandits and clustering of bandits in Appendix D.4.79

Besides, similar with meta MAB, there are also several works on meta linear bandits. Meta linear80

bandits studies the problem where the coefficients of multiple linear bandit tasks are close [36] or81

are drawn from one prior distribution [3, 38, 6]. Therefore, these works focus on a different problem82

from ours and they also did not model the task relations with metadata. In addition, [31] proposes a83

sequential strategy for meta bandits, but as noted in [18], no efficient algorithm has been proposed.84
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Lastly, we note that there are two papers [9, 21] applying multi-task learning to share information85

across multiple arms of a single task, and hence they have a totally different focus from ours.86

Our bandit problem is certainly related to Reinforcement Learning (RL). In recent years, there is87

a surge of interest in multi-task RL, transfer RL, and meta RL. See [47] and [40] for some recent88

surveys. Among the existing works, [41, 25, 13] consider applying Bayesian hierarchical model89

to multi-task/meta RL. However, none of these works can utilize the metadata, which is an impor-90

tant and ubiquitous information source. In the concurrent work [37], the authors, for the first time,91

consider using metadata in multi-task reinforcement learning to infer the appropriate state represen-92

tation for each task. They consider a finite set of state encoders, design a special-purpose neural93

network, and train the whole pipeline end-to-end. In contrast, we study MAB, allow infinite number94

of task instances, aim to learn the average reward of each task instead of state representation, design95

a unified Bayesian Hierarchical model framework for this problem, and establish theoretical guar-96

antees. Therefore, although both work consider similar types of side information (i.e., metadata),97

the problem and methodology are fundamentally different.98

Finally, we would like to further compare our setup with CMAB, and discuss the limitations of99

adopting CMAB in our problem. In the standard contextual MAB setup, we assume E(Ri,t|Si,t =100

s,Ai,t = a) = g(s, a; γ) for some function g, where Si,t is the context. Therefore, it already allows101

the randomness of Ri,t. In our setup, by regarding the metadata as ”contexts” and neglecting the102

task identities, the relationship is equal to E(Ri,t|xi = x, Ai,t = a) = g(x, a; γ), where we note103

that the expectation is taken over all tasks with metadata x. This implies that for all tasks with the104

same metadata, the decision rule will be always the same, no matter what their action-reward history105

is. Instead, our setup adds another layer to allow variations of ri conditional on xi. In another word,106

we utilize the predictive power of xi but does not assume ri can be fully determined by it.107

C Implementation108

In this section, we discuss efficient ways to implement MTTS, and analyze its computational com-109

plexity. We use I to denote identity matrix, the dimension of which can be inferred from the context.110

C.1 Efficient Implementation for Gaussian bandits with LMM111

At each decision point, the computation will be dominated by the calculation of the matrix inverse112

for (K+σ2I), which suffers from a cubic complexityO(n3) as well-known in the Gaussian process113

literature [35]. To alleviate the computational burden, we utilize the block structure induced by the114

mixed effect model via using the well-known Woodbury matrix identity [32], which is reviewed as115

follows.116

Lemma 1 (Woodbury matrix identity). For any matrix W and any invertible matrices Z, U , and V117

with appropriate dimensions, the following relationship holds:118

(Z +UWV T )−1 = Z−1 −Z−1U(W−1 + V TZ−1U)−1V TZ−1

We start by writting K = ΦΣθΦ
T + J . Without loss of generality, we can rearrange the tuples in119

D so that J becomes a block diagonal matrix as J = diag(J1, . . . ,JN ), where Ji is the submatrix120

for task i. The dimension of Ji equals to #{(Aj , Rj ,xi(j), i(j)) ∈ D : i(j) = i} and it is a pairwise121

kernel matrix induced by the kernel K̃(O,O′) = Σa,a′ . Therefore, we have122

(K + σ2I)−1 = (ΦΣθΦ
T + (J + σ2I))−1

= (J + σ2I)−1
[
I −Φ(Σ−1θ + ΦT (J + σ2I)−1Φ)−1ΦT (J + σ2I)−1

]
,

the computation cost of which will be dominated by (J + σ2I)−1, which yields a block diagonal123

structure and hence the matrix inverse can be more efficiently computed. Suppose we already have124

t0 interactions with each of N tasks. The computational cost is reduced from O(N3t30) to O(Nt30).125

In addition, when Σ is diagonal, we can further apply the Woodbury matrix identity to compute126

(Ji + σ2I)−1.127

Furthermore, to make the computation more efficient, we define Σin = (Σ−1θ + ΦT (J +128

σ2I)−1Φ)−1,JΦ = (J + σ2I)−1Φ, R̃ = (R − Φµθ),JR = (J + σ2I)−1R̃. Next, we de-129
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fine130

JΦ,R = ΦT (J + σ2I)−1R̃

JΦ,Φ = ΦT (J + σ2I)−1Φ

JΦ,M ,i = Mi(J + σ2I)−1Φ

JR,M ,i = Mi(J + σ2I)−1R̃

JM ,i = Mi(J + σ2I)−1MT
i .

For these components, we can efficiently utilize the block structure to only update the corresponding131

part. Finally, we have132

E(ri|D) = Φiµθ + ΦiΣθJΦ,R + JR,M ,i −ΦiΣθJΦ,ΦΣinJΦ,R − JΦ,M ,iΣinJΦ,R,

cov(ri|D) = (ΦiΣθΦ
T
i + Σ)− JM ,i − (ΦiΣθ)JΦ,Φ(ΦiΣθ)T −ΦiΣθJ

T
Φ,M ,i − (ΦiΣθJ

T
Φ,M ,i)

T

+ (ΦiΣθJΦ,Φ + JΦ,M ,i)Σin(ΦiΣθJΦ,Φ + JΦ,M ,i)
T

Alternative implementation. For the θ-centered sampling scheme (e.g., Algorithm 3), note that133

θ|H ∼ N
(
Σ̃(ΦTV −1R+ Σ−1θ µθ), Σ̃

)
,

Σ̃ = (ΦTV −1Φ + Σ−1θ )−1,V = σ2In + J ,

where the dominating step is still to compute V −1, and similar tricks can be applied. As a special134

case, consider Σ = σ2
1I . We rearrange J as diag(J1,1, . . . ,J1,K , . . . ,JN,1, . . . ,JN,K), where135

Ji,a = σ2
111T , and apply similar rearrangement to Φ and R. Hence we have V −1 = (σ2In +136

J)−1 = diag((σ2I +J1,1)−1, . . . , (σ2I +JN,K)−1). According to the Woodbury matrix identity,137

we have (σ2I +Ji,a)−1 = σ−2I −σ−4(σ−21 +ni,aσ
−2)−111T , where ni,a is the count that action138

a is implemented for task i.139

After we sample one θ̃, the prior of ri can then be updated asN (Φiθ̃,Σ). Its posterior then follows140

from the standard normal-normal conjugate relationship.141

C.2 Computationally Efficient Variant of MTTS under General Settings142

In Section 4.1, we discuss how to ease the computation when directly sampling from P(ri|xi) is143

computationally heavy, and present the variant under the sequential setting. We present the variant144

under the general settings in Algorithm 3. Specifically, it requires an updating frequency l as a145

hyper-parameter, and will sample a new θ once we have l new data points. P(θ|H) can be computed146

via various approximate posterior inference tools.147

Algorithm 3: Computationally Efficient Variant of MTTS under General Settings
Input : P(θ), φ, updating frequency l

1 SetH = {} and P(θ|H) = P(θ)
2 for decision point j = 0, . . . , do
3 if mod(j, l) = 0 then
4 Update P(θ|H) (possibly via approximate posterior inference methods, such as

Gibbs sampling or variational inference)
5 Sample one θ̃ from P(θ|H)
6 end
7 Retrieve the task index i
8 Sample a reward vector (r̃i,1, . . . , r̃i,K)T from c ∗ f(ri|xi, θ̃)P(Hi|ri), where c is a

normalization factor.
9 Take action Aj = argmaxa∈[K] r̃i,a

10 Receive reward Rj
11 Update the dataset asH ← H∪ {(Aj , Rj ,xi, i)}
12 end
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C.3 Implementation for Bernoulli bandits with BBLM148

In this section, we discuss our implementation of MTTS for Bernoulli bandits, under the BBLM149

introduced in (4). It follows Algorithm 3.150

Still, the dominating step is to sample from P(θ|H). Fortunately, the model yields a nice hierarchical151

structure, where the first term essentially requires us to fit a Beta-logistic regression, and the second152

term is the likelihood of a simple binomial distribution, with a beta conjugate in our case. Specif-153

ically, note that f(ri|xi,θ) =
∏K
a=1 f

′
Beta(ri,a|φ(xi, a),θ), where f ′Beta(ri,a|φ(xi, a),θ) is the154

density function of Beta
(
logistic(φ(xi, a)Tθ), ψ

)
. Also note that, the likelihood for the Bernoulli155

distribution of task i overHi, as specified by the second equation of (4), is P(Hi|ri) =
∏K
a=1 r

ni,a

i,a ,156

where ni,a is the number of times that action a is selected for task i in Hi. Both parts are compu-157

tationally tractable. In our experiments, we use the MCMC algorithm implemented by the Python158

package PYMC3 [34] to compute the approximate posterior.159

C.4 Computational complexity160

In this section, we analyze the computational complexity for MTTS. The specific complexity de-161

pends on: (i) the reward distribution, (ii) the hierarchical model one chooses, (iii) whether the162

vanilla version or some variant is used, and (iv) the order of interactions. Therefore, we will163

first present a general complexity bound and then discuss examples. For simplicity, we assume164

T1 = · · · = TN = T . Let m(i, t) and m′(i, t) be the number of data points for task i165

alone and that for all tasks, until the t-th interaction with task i. The computation complex-166

ity is clearly dominated by one step: updating and sampling from the posterior. We denote its167

complexity at interaction (i, t) by c
(
m(i, t),m′(i, t)

)
. Then, the total complexity is bounded by168

O(
∑N
i=1

∑T
t=1 c

(
m(i, t),m′(i, t)

)
.169

For Gaussian bandits with LMM, recall that we can update θ incrementally, and according to its170

posterior form (11), each time O(d3) flops are required to sample θ. Besides, O(dK) flops are171

required to compute the prior mean, and O(K2) flops are required to compute the posterior of ri.172

Therefore, with Algorithm 1, the total complexity is bounded by O
(
NT (K2 + d3)

)
. Under the173

sequential setting, with Algorithm 2, it can be reduced to O
(
N(TK2 + d3)

)
.174

For Bernoulli bandits with BBLM, suppose M samples are taken in each round of MCMC sam-175

pling, and c′
(
m(i, t),m′(i, t)

)
flops are needed to sample each, then under Algorithm 3 with l = T ,176

we have that the total complexity is bounded by O(
∑T
t=1Mc′

(
t, tN) + NTdK + NTK

)
=177

O(
∑T
t=1Mc′

(
t, tN) +NTdK

)
under the concurrent setting, and O

(∑N
i=1Mc′

(
0, iT

)
+NdK+178

NTK
)

= O
(∑N

i=1Mc′
(
0, iT

)
+NTK

)
.179

Total amount of compute and the type of resources used. Our experiments are run on an180

c5d.24xlarge instance on the AWS EC2 platform, with 96 cores and 192GB RAM. It takes roughly181

20 minutes to complete a setting in Figure 2a and 3 hours for Figure 2b.182

D Details and Extensions of the Method183

D.1 Mean-precision parameterization of the Beta distribution184

We note that a Beta distribution has different parameterizations. In the most common parameteri-185

zation, a Beta random variable u ∼ Beta(α1, α2) is specified by two shape parameters α1 and α2.186

We have187

µ = E(u) =
α1

α1 + α2
, var(u) = µ(1− µ)ψ/(1 + ψ),

where ψ = 1/(α1 + α2) is the so-called precision parameter. Alternatively, this Beta random188

variable can be fully specified by (µ, ψ). Given (µ, ψ), we have α1 = µ/ψ and α2 = (1 − µ)/ψ.189

Given (µ, var(u)), we have ψ = [µ(1− µ)/var(u)− 1]−1.190

In BBLM, we adopt this mean-precision parameterization, with E(ri,a) = logistic(φT (xi, a)θ)191

and the precision of ri,a equal to ψ, for any i and a.192
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D.2 Extension to Mixed-Effect Gaussian Process for Gaussian Bandits193

In this section, we introduce an extension of the method developed in Section 4.2 to the Gaussian194

process setting. In such a setup, the function f(x) = E(ri|xi = x) is a continuous function sampled195

from a Gaussian process. Specifically, for each action a ∈ [K], we have a specified mean function196

µa : Rp → R and a kernel functionKa : Rp×Rp → R. Let GP(µa,Ka) denote the corresponding197

Gaussian process. We consider the following mixed-effect Gaussian process model:198

fa ∼ GP(µa,Ka),∀a ∈ [K];

δi ∼ N (0,Σ),∀i ∈ [N ];

ri = f(xi) + δi,∀i ∈ [N ],

(1)

where f(x) = (f1(x), . . . , fK(x))T .199

To design the corresponding TS algorithm, we essentially need to derive the corresponding posterior200

for {ri}. We begin by introducing some notations. The model (1) induces a kernel function K, such201

that for any two tuples O = (a, r,x, i) and O′ = (a′, r′,x′, i′), we have202

K(O,O′) =
∑
a

Ka(x,x′)I(a = a′) + Σa,a′I(i = i′).

Let K be an n × n kernel matrix of the pairwise kernel values for tuples in H. Set203

R = (R1, . . . , Rn)T be an n-dimensional vector of the observed rewards and µ =204

(µA1(xi(1)), . . . , µAn(xi(n)))
T . Finally, we use I to denote an identity matrix, the dimension of205

which can be inferred from the context.206

Define a K×n matrixMi, such that the (a, j)-th entry ofMi is Ka(xi,xi(j))I(a = Aj) +ΣAj ,a ∗207

I(i(j) = i), and define a K × K diagonal matrix Ki with the a-th diagonal entry be Ka(xi,xi).208

Let µi = (µ1(xi), . . . , µK(xi))
T . The posterior of ri conditional on the accumulated data follows209

a multivariate normal distribution, with mean and covariance given by:210

E(ri|H) = µi +Mi(K + σ2
1I)−1(R− µ),

cov(ri|H) = (Ki + Σ)−Mi(K + σ2
1I)−1MT

i .
(2)

The posterior will then be used to sample an action according to its probability of being the optimal211

one, in a Thompson sampling manner, as detailed in Algorithm 1.212

D.3 Adaptive hyper-parameter updating with empirical bayes213

Following the literature [22, 1], we assume the variance components as known for the two examples214

in Section 4. In practice, we can apply empirical Bayes to update these hyperparameters adaptively.215

We take the LMM as an example. As discussed in Section 4.2, our model requires four hyperpa-216

rametes: µθ, Σθ, σ, and Σ. Among them, µθ and Σθ, the prior parameters of θ, can be specified217

as any appropriate values according to domain knowledge, and will not affect our algorithm as well218

as its regret bound. For σ and Σ, similar with the approach commonly adopted in the literature on219

Gaussian process [38, 32], they can be learned from the data. Specifically, we can specify them as220

the maximizer of the marginal likelihood with respect to (σ,Σ), marginalized over θ and {δi}i∈[N ].221

The log marginal likelihood can be derived as222

l(σ,Σ|D) = −1

2

[
(R−Φµθ)T (K(Σ) + σ2I)−1(R−Φµθ) + log|K(Σ) + σ2I|+Nlog(2π)

]
,

(3)

whereK(Σ) indicates the dependency ofK on Σ. Note that Σ controls the degree of heterogeneity223

conditional on the metadata. Such an Empirical Bayes [5] approach makes sure our method is224

adaptive to the prediction power of the metadata.225

D.4 Extension to contextual bandits226

In this section, we discuss several possible directions to extend the metadata-based multi-task bandit227

framework to contextual bandits. We consider the following formulation of contextual bandits (the228
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other formulations can be similarly derived). For each task i ∈ [N ], at each decision point t, the229

agent choose an arm Ai,t ∈ Rp, and then receive a stochastic reward Ri,t ∼ f(Ai,t;βi), where230

βi is a length-d vector of unknown parameters associated with task i. Here, Ai,t is a feature vector231

which is a function of the context and the pulled arm. In addition, each task has a p-dimensional232

feature vector xi (i.e., metadata).233

A straightforward extension of the methodology presented in the main text is to consider that βi is234

sampled from some conditional distribution on xi. Specifically, for some conditional distribution235

function g, we consider the following hierarchical model:236

θ ∼ P(θ),

βi ∼ g(xi;θ),

Ri,t ∼ f(Ai,t;βi).

(4)

As a concrete example, we consider the linear Gaussian case. Let Θ = (θ1, . . . ,θd) be a p × d237

coefficeint matrix and Σβ be some covariance matrix, we consider238

θj ∼ N (µθ,Σθ),∀j ∈ [d]

βi ∼ ΘTxi +N (0,Σβ),∀i ∈ [N ]

Ri,t ∼ ATi,tβi +N (0, σ2).

The posterior of Θ can be similarly developed as in the main text using the property of Gaussian239

bilinear model. With a sample Θ̃ from P(Θ|H), we can interact with each task i using a single-task240

TS with N (Θ̃Txi,Σβ) as the prior for βi.241

One possible concern about model (4) is that, when the number of tasks is not large, a simpler model242

might be preferred. In that case, we can consider that βi is a deterministic function of xi.243

θ ∼ P(θ)

βi = g(xi;θ)

Ri,t ∼ f(Ai,t;βi).

In reinforcement learning, this formulation shares similar forms with contextual Markov decision244

process [28, 29]. Now, the linear Gaussian case can be written as245

θj ∼ N (µθ,Σθ),∀j ∈ [d]

Ri,t ∼ ATi,tΘTxi +N (0, σ2).

Such a model can utilize the data from all tasks, while avoiding a naive pooling which assumes the246

coefficient vector of all tasks are the same. Indeed, this is a kind of varying-coefficient models in247

statistics [10]. Low-rank assumption can also be considered in this bilinear problem.248

Finally, as another direction to derive a simpler model, we may consider the idea of clustering of249

bandits [12, 26], by assuming there is a set of M task instances, and each task are drawn indepen-250

dently from them. The metadata contain information about the probability that one task belong to251

each cluster, through a function g.252

θ ∼ P(θ),

βj ∼ P(β),∀j ∈ [M ]

ki ∼ g(xi;θ),∀i ∈ [N ]

βi =
∑
j

I(ki = j)β′k,∀i ∈ [N ]

Ri,t ∼ f(Ai,t;βi),∀i ∈ [N ],∀t ∈ [Ti].

Under appropriate model assumptions, the posterior can be obtained using approximate posterior253

inference tools.254

These three models are all built under our metadata-based multi-task bandit framework, and the255

corresponding multi-task TS algorithms can be similarly developed. The key idea is to leverage the256

metadata to describe the relations between bandit tasks, while allowing heterogeneity. The choice257

between them reflects the bias-variance trade-off.258
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E Additional Experiment Results259

E.1 Robustness to model misspecifications260

To allow efficient information sharing, we make a model assumption that ri|xi,θ ∼261

f(ri|xi,θ),∀i ∈ [N ]. When this model is correctly specified, we have shown superior theoreti-262

cal and numerical performance of MTTS. However, we acknowledge that all models can be mis-263

specifed. Intuitively, the model is used to pool information to provide an informative prior. As long264

as the learned prior is not significantly worse than a manually specified one, the performance would265

be comparable; and when the prior contains more information, we can attain a lower regret.266

We empirically investigate the robustness of MTTS in this section. We focus on the Gaussian bandits267

case under the concurrent setting. Findings under the other settings are largely the same and hence268

omitted. Specifically, instead of generating data according to ri = Φiθ + δi, we consider the data269

generation process ri = (1 − λ)cos(cΦiθ)/c + λΦiθ + δi, where cos applies the cosine function270

to each entry, c is a normalization constant such that the entries of Φiθ are all in [−π/2, π/2], and271

λ ∈ [0, 1] controls the degree of misspecification. When λ = 1, we are considering the LMM; while272

when λ = 0, the metadata provides few information through such a linear form.273

In results reported in Figure 3, we observe that MTTS is fairly robust to model misspecifications.274

When λ = 1/2 or 3/4, that is, when there exists mild or moderate misspecification, MTTS still275

yields much lower regrets than individual-TS and meta-TS. When λ = 1/4, the performance of276

MTTS becomes comparable with individual-TS and meta-TS. Only when λ = 0, that is, the meta-277

data are useless through a linear form, MTTS shows slightly higher regret in the initial period due278

to the additionally introduced variance. As expected, linear-TS and OSFA both severely suffer from279

the bias. Notably, in all cases, MTTS always yields the desired sublinear Bayes regret in T , as ex-280

pected. Therefore, it shows that, even when the model is severely misspecified, the cost would be281

acceptable.282

E.2 Multi-task regrets283

In the main text, we report the Bayes regret of different algorithms. Although the multi-task regrets284

for those figures can also be derived according to its definition, we choose to explicitly report them285

again in this section, in order to make the comparison more clearly.286

Specifically, the multi-task regrets for Gaussian bandits and Bernoulli bandits are presented in Figure287

4 and 5, respectively. In the sequential setting, we can see the multi-task regrets of MTTS converge288

to zero, while meta-TS and individual-TS have a constant regret, and linear-TS as well as OSFA289

suffer from the bias.290

E.3 Trends with experiment hyper-parameters291

In this section, we report additional results under other combinations of (K, d, T,N), to show that292

our conclusions in the main text are representative, and study the trend of the performance of MTTS.293

We focus on the Gaussian bandits case under the concurrent setting. To save computational cost, we294

set the base combination of hyper-parameters as σ2
1 = 0.5, K = 8, d = 15, N = 100, and T = 100,295

and run 50 random seeds for each.296

In Figure 6, we vary the value of K, d, N , σ individually. Overall, MTTS consistently demonstrates297

lower regrets and shows robustness. Our findings can be summarized as follows.298

• As K increases, the learning problem for all algorithm becomes more difficult. MTTS still299

demonstrates better performance, and even when T = 100, its advantage is still fairly clear.300

• As d increases, the learning problem for MTTS becomes more difficult, while it still shows301

much better performance.302

• As σ increases, overall the learning problem for all algorithm becomes more difficult.303

MTTS still demonstrates better performance, and even when T = 100, its advantage is304

still fairly clear.305

• As N increases, MTTS can learn the task distribution more easily and its performance306

converges to that of oracle-TS more quickly.307
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(a) λ = 3/4

(b) λ = 1/2

(c) λ = 1/4

(d) λ = 0

Figure 3: Average Bayes regret for Gaussian bandits with misspecified hierarchical models. A smaller value
of λ implies a more severe misspecification. The regrets of OSFA are an order of magnitude higher and hence
hidden.

F More on the Experiment Details308

In this section, we report additional details of our epperiments and implementations. Recall that we309

use I to denote identity matrix, the dimension of which can be inferred from the context.310

F.1 Hyperparameters311

Since all baselines that we consider are TS-type algorithms, we need to specify (i) the priors and312

(ii) the variance terms which are assumed to be known. For fair comparisons, we apply the law313

of total expectation and the law of total variance to derive these quantities. Roughly speaking, for314

meta-TS, we marginalize out (x, r) conditional on θ; for individual-TS and OSFA, we additionally315

marginalize out θ; For linear-TS or GLM-TS, we use the same prior of θ as MTTS, and marginalize316

ri conditional on xi to set the variance of the stochastic reward variable. When the marginal dis-317

tribution does not belong to a standard distribution family, we use the Gaussian distribution as an318

approximation.319
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Figure 4: Gaussian bandits: the solid lines denote the average multi-task regret with the shared areas indicating
the standard errors. The regrets of OSFA are much higher in some subplots and hence hidden.

Figure 5: Bernoulli bandits: the solid lines denote the average multi-task regret with the shared areas indicating
the standard errors. A larger value of ψ implies a larger variation of ri condition on xi.

Gaussian bandits. According to our data generation model, based on the law of total expectation320

and the law of total variance, it is easy to verify that321

cov
(
ri
∣∣θ,xi) = Σ = σ2

1I

E
(
ri
∣∣θ) = θ1:K ,

cov
(
ri
∣∣θ) = E

(
cov
(
ri|xi

)∣∣θ) + cov
(
E
(
ri|xi

)∣∣θ)

= σ2
1I + ||θ(K+1):d||2I = (σ2

1 + ||θ(K+1):d||2)I,

E
(
ri
)

= 0

cov
(
ri
)

= E
(
cov
(
ri|θ

))
+ cov

(
E
(
ri|θ

))
=
(
σ2
1 + E(||θ(K+1):d||2)

)
I + d−1I

=
(
σ2
1 + E(||θ(K+1):d||2) + d−1

)
I,

where θ1:K is the first K entries of θ, and θ(K+1):d is the remaining entries. Therefore, for OSFA322

and individual-TS, we use N
(
0,
(
σ2
1 + E(||θ(K+1):d||2) + d−1

)
I
)

as the prior; for meta-TS, we323

use N
(
µ, (σ2

1 + ||θ(K+1):d||2)I
)

as the unknown prior, with µ as an unknown parameter , and use324

E
(
ri
∣∣θ) = θ1:K ∼ N (0, d−1I) as the hyper-prior for µ; for linear-TS, we use N (0, d−1I) as the325

prior for the regression coefficients θ and σ2
1 + σ2 as the variance term of the stochastic reward326

variable.327

Bernoulli bandits. According to our data generation model, based on the law of total expectation328

and the law of total variance, recall the discussion on the parameterization of Beta distributions in329

Appendix D.1 it is easy to verify that330

E
(
ri
∣∣θ) = (E(logistic(φ(x1, a)Tθ)|θ), . . . ,E(logistic(φ(xK , a)Tθ)|θ))T

cov
(
ri
∣∣θ) = E

(
cov
(
ri|xi

)∣∣θ) + cov
(
E
(
ri|xi

)∣∣θ)

= diag(cb,1, . . . , cb,K) + diag(c′b,1, . . . , c
′
b,K)

E
(
ri
)

=
1

2
∗ 1

cov
(
ri
)

= E
(
cov
(
ri|θ

))
+ cov

(
E
(
ri|θ

))
,
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Figure 6: Trends of the average Bayes regret for Gaussian bandits with different parameters.

where cb,i = ψ
1+ψEx(logistic(φ(xi, a)Tθ)(1 − logistic(φ(xi, a)Tθ))|θ), and c′b,i =331

varx(logistic(φ(xi, a)Tθ)|θ). We obtain these two quantities as well as E
(
ri
∣∣θ) and cov

(
ri
)

332

via Monte carlo simulation, since there is no explicit form.333

Define ψ(µ, σ2
2) = [µ(1 − µ)/σ2

2 − 1]−1. For OSFA and individual-TS, we use334

Beta
(
1/2, ψ(1/2, cov

(
ri
)
)
)

as the prior for each arm; for meta-TS, following the im-335

plementations in [22], we randomly pick a set of Beta distributions as candidates, with336

Beta
(
E
(
ri
∣∣θ), ψ(E

(
ri
∣∣θ), cov

(
ri|xi

)
)
)

as one of them, and maintain a Categorical distribution337

over them, with the uniform one as the initial prior; Finally, for GLB-TS, we choose the TS algo-338

rithm proposed in [24], and set the exploration parameter α = 1 as in [24].339

F.2 Implementation Details340

Implementation of Meta-TS under the concurrent setting. The original meta-TS proposed in341

[22] can only be applied to the episodic setting and does not fit in the concurrent setting. Based342

on their models, we derived the posterior and adapt meta-TS to the concurrent setting, as follows.343

For Gaussian bandits, meta-TS aims to learn the unknown parameter µm = E(ri), and assumes344

ri ∼ N
(
µm, σ

2
mI
)

for some known σ2
m. See the last subsection for details. Therefore, given a345

datasetH = {(Aj , Rj ,xj , i(j))}, the posterior of µm can be derived as follows. The entries of µm346

are independent. Let R̄i,a denote the mean observed reward for taking action a in task i, and ni,a347

be the count. Then we have R̄i,a ∼ N
(
µm,a, σ

2
1 + σ2/ni,a

)
. Note the prior for µm,a is N (0, d−1).348
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Let σi,a =
√
σ2
1 + σ2/ni,a. We have349

P
[
µm,a|H

]
∼ N

(∑
i R̄i,a/σ

2
i,a∑

i σ
−2
i,a + d

, (
∑
i

σ−2i,a + d)−1
)
,∀a ∈ [K]

Then, at each decision point, we sample one µ̃m, and treat ri ∼ N
(
µ̃m, σ

2
mI
)

as the prior to350

proceed with a standard single-task Gaussian TS algorithm. We similarly modified meta-TS for the351

Bernoulli bandits.352

Implementation of MTTS. For Bernoulli bandits, we use the Python package PyMC3 and adopt353

a popular MCMC algorithm , NUTS [14]. The acceptance rate is set as 0.85, and the number of354

samples per time is set as 2000. For the computationally efficient variant of MTTS, in both Gaussian355

bandits and Bernoulli bandits, we sample a new θ at the end of interactions with a task under the356

sequential setting, and at the end of a round under the concurrent setting.357

G Main Proof358

For ease of notations, without loss of generality, we first consider the sequential setting, and we359

assume the tasks arrive according to their indexes, i.e., the ith task will arrive earlier than the (i+1)th.360

Otherwise, we can always re-index these tasks. Since in our proof, all analysis for the regret in task361

i only uses the data generated by task i itself and the data generated in the alignment periods of task362

1, . . . , i− 1, it is easy to verify that our proof continues to hold in other settings.363

We first clarify some notations. We vertically stack the feature matrix for all tasks to define Φ1:N =364

(Φ1; . . . ; ΦN ), and we can similarly define δ1:N = (δT1 , . . . , δ
T
N )T . At the end of the alignment365

period of task i, we define the following notations: first, we define Φe
1:i = (Φ1; . . . ; Φi), and we366

can similarly define δe1:i and Re
1:i; moreover, we denote V e

1:i = (σ2 + 1)I of dimension iK × iK.367

finally, let He1:i be the history of all alignment periods so far. To simplify the notations, when the368

context is clear, we may drop the subscript 1 : i and superscript e. Recall that we use I to denote369

identity matrix, the dimension of which can be inferred from the context.370

The modified MTTS algorithm is summarized in Algorithm 4, and formally described as follows.371

For any i ∈ [N ], during our first K interactions with task i, we pull the K arms in a round robin.372

After this period, we sample a value rei from the posterior r|He1:i , and then we useN (rei ,Σ) as the373

prior of ri to continue interact with task i as a standard single-task TS algorithm. In another word,374

we run TS(N (rei ,Σ)) with the following T −K interactions. Note that this sampling is equivalent375

to first sample a value θei ∼ θ|He1:i, and then define rei = Φiθ
e
i . Besides, as discussed in (2),376

this procedure is equivalent to only use the data generated in the alignment periods to estimate the377

prior. Finally, we define a modified oracle-TS which also has the alignment period. The main part378

of our proof will focus on derive the regret to the modified oracle-TS, since its regret to the vanilla379

oracle-TS can be easily bounded.380

We begin by stating several lemmas, which will be used in our main proof. The proof of these381

lemmas are deferred to Appendix H. Without loss of generality, throughout the proof, we assume382

Σθ = I , µθ = 0, and Σ = I to simplify the notations. It is easy to check that, under the383

boundedness assumption 3, for general values of these terms, the regret bound still holds.384

We first establish the concentration of θei around θ. It mainly utilizes the property of Bayesian385

LMM.386

Lemma 2 (Concentration of θei ). For any task i ∈ [N ], for any ξ ∈ (0, 1), we have387

P
(
||θei − θ|| ≥ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(
2
√
d+ 2

√
2
√
−logξ

)
+

‖θ‖
(σ2+1)−1

2 ic1K + 1

)
≤ 2ξ + d(

e

2
)−

c1
2C1

i.

Based on Lemma 2, we are now ready to prove that the estimated task-specific prior mean will be388

close to the true prior mean with high probability. For any task i ∈ [N ], let rei = Φiθ
e
i be the389

sampled prior mean. Recall that E(ri|xi) = Φiθ is the true prior mean for a task with metadata xi.390

We have the following result.391

Lemma 3 (Concentration of rei ). For any task i ∈ [N ], we have392

P
(
||rei −Φiθ|| ≥ 2

√
2C2

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−1/2 + C3[ic′1K + 1]−1

)
≤ 2

NT
+ d(

e

2
)−

c1
2C1

i. (5)
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Algorithm 4: The Modified MTTS
Input : P(θ) and known parameters for the hierarchical model

1 SetH = {} and P(θ|H) = P(θ)
2 Set count(i) = 0,∀i ∈ [N ]
3 for each decision point j do
4 Retrieve the task index i
5 if count(i) ¡ K then
6 count(i) = count(i) + 1
7 Take action Aj = count(i) ; // Alignment period

8 else
9 Sample a reward vector (r̃i,1, . . . , r̃i,K)T from c ∗ P(Hi|ri)f(ri|xi, θ̃i), where c is

a normalization factor. ; // TS with prior f(ri|xi, θ̃i)
10 Take action Aj = argmaxa∈[K] r̃i,a
11 end
12 Receive reward Rj
13 Update the dataset asH ← H∪ {(Aj , Rj ,xi, i)}
14 if count(i) = K then
15 Sample one θ̃ from P(θ|H), and denote it as θ̃i ; // Fixed down the prior for

task i

16 end

where c′1 = c1
(σ2+1)−1

2 .393

To derive the multi-task regret of the modified MTTS, we aim to use a ”prior alignment” proof394

technique inspired by [3]. Specifically, one central challenge to the analysis is that, no existing395

method can well characterize the behaviour of a TS algorithm when the input prior is different with396

the true task distribution, even when the difference is negligible [22, 3, 27]. Therefore, even though397

with Lemma 5, we can establish that the learned prior will be more and more close to the ground398

truth as the number of tasks increases, and it is intuitive to believe that the multi-task regret per task399

will decay, it is challenging to formally prove such a regret bound following standard regret analysis400

approaches.401

The key idea of the ”prior alignment” proof technique is that, suppose after some interactions with402

a task i, the posterior of ri for the modified MTTS is equal to the posterior for the modified oracle-403

TS, then their behaviour in the following interactions with this task will be exactly the same (in404

the probabilistic sense), and hence the multi-task regret in the following interactions with this task405

will be exactly zero. Suppose such an event happens with high probability, and this probability406

approaches 1 as i grows, we can then derive a bound for the multi-task regret. This idea forms the407

skeleton of our proof.408

Towards this end, we begin by defining the realized random errors for the modified MTTS in the409

alignment period for the ith task as εei = (εi,1, . . . , εi,K)T , where εi,a is the realized error when we410

pull arm a in the ath interaction with task i. We can similarly define ε∗i for the modified oracle-TS411

algorithm. Note that both algorithms take the same actions in the alignment period, and we also412

have εei ∼ ε∗i ∼ N (0, σ2I). We first note the following lemma, which establishes the difference413

between the posterior with N (rei ,Σ) as the prior and the posterior with N (Φiθ,Σ) as the prior,414

after observingRe
i .415

Lemma 4 (Posterior Difference). For any task i ∈ [N ], let N (r̃ei , Σ̃
e
i ) and N (r̃∗i , Σ̃

∗
i ) be the416

posterior after observingRe
i , with N (rei ,Σ) and N (Φiθ,Σ) as the prior, respectively. We have417

r̃ei − r̃∗i = (Σ−1 + σ−2I)−1
[
Σ−1(rei −Φiθ) + σ−2(εei − ε∗i )

]
;

Σ̃e
i = Σ̃∗i .

A direct implication of this lemma is that, suppose when rei is close to Φiθ, the right-hand side of the418

first equation is equal to 0 with high probability. Then, the multi-task regret of the modified MTTS419

in the following interactions with task i will be exactly 0, since the posterior after the alignment420

period is the same.421
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Given Lemma 4, we are now ready to apply the ”prior alignment” technique to derive a regret bound422

for each task. For every i ∈ [N ], we denote the stochastic cumulative rewards in the last T − K423

interactions starting from a posterior r̃ as Ri(T −K; r̃). Denote the cumulative rewards following424

the optimal action by R∗i (T −K). We denote the Bayes regret of TS(N (r̃ei ,Σ)) in the last T −K425

interactions with task i by426

BRi(T −K; r̃ei ) = E
[
R∗i (T −K)−Ri(T −K; r̃ei )

]
.

We can similarly define BRi(T −K; r̃∗i ). Our proof relies on the following bound, which controls427

the Bayes regret of a TS algorithm in the last T −K interactions starting from a different prior.428

Lemma 5. For any task i ∈ [N ] we have429

Eεei
[
R∗i (T −K)−Ri(T −K; r̃ei )

]
≤ exp

(
σ‖rei −Φiθ‖

√
2log(NT ) +

σ2

2
‖(rei −Φiθ)‖2

)
BRi(T −K; r̃∗i ) +

2C2C3

N

(6)

We are now ready to combine these results and present our main proof.430

Proof of Theorem 1. We first define the event that the estimated task-specific prior mean is close to431

the true one as432

Jr ≡
{
||rei −Φiθ|| ≤ 2

√
2C2

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−1/2 + C3[ic′1K + 1]−1,∀i ∈ [N ]

}
.

For simplicity, we denote c4(i) ≡ 2
√

2C2

√
K
(√
d+
√
log(NT )

)
[ic′1K+1]−1/2+C3[ic′1K+1]−1.433

We note that c4(i) is a shorthand instead of a constant.434

We first focus on bounding the regret when Jr holds. Define435

S =
{
i ∈ [N ] : 2c4(i)

√
log(NT ) ≤ 1/2,

σ

2
c4(i) ≤ 2

√
log(NT )

}
.

We first focus on the case that S is not empty. Define l = min(S). We have l = O(dlog(NT ) +436

log2(NT )) and S = {i ∈ [N ] : i ≥ l}. It also implies σ2

2 c4(i)2 ≤ 2σc4(i)
√
log(NT ) for i ≥ l.437

Therefore, for any i ≥ l, by Lemma 5, we have438

E
[
R∗i (T −K)−Ri(T −K; r̃ei )|r̃ei ,Φi,Jr

]
≤ exp

(
σ‖rei −Φiθ‖

√
2log(NT ) +

σ2

2
‖(rei −Φiθ)‖2

)
BRi(T −K; r̃∗i ) + 2

C2C3

N

≤ exp
(
c4(i)σ

√
2log(NT ) +

σ2

2
c4(i)2

)
BRi(T −K; r̃∗i ) + 2

C2C3

N

≤
(
1 + 8σc4(i)

√
log(NT )

)
BRi(T −K; r̃∗i ) + 2

C2C3

N
,

(7)

where the second inequality follows from the fact that ‖rei −Φiθ‖ ≤ c4(i) conditional on Jr, and439

the last inequality is due to Lemma 6.440

For i < l, similar with Lemma 11 in [3], we note that the Bayes regret for each task can be derived441

from the prior-independent regret bound for Gaussian bandits in the literature (e.g., [4]) as442

E
[
R∗i (T −K)−Ri(T −K; r̃ei )|r̃ei ,Φi,Jr

]
≤ C5

√
(T −K)KlogT , (8)

where C5 is a positive constant.443

When ¬Jr holds, for i ∈ [N ], we define444

Jr,i ≡
{
||rei −Φiθ|| < 2

√
2C2

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−1/2 + C3[ic′1K + 1]−1

}
.
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From Lemma 3, we know P[¬Jr,i] ≤ 2 1
NT + d( e2 )−

c1
2C1

i. Then, by similar arguments with (8), we445

have446

N∑
i=1

E
[(
R∗i (T −K)−Ri(T −K; r̃ei )

)
|r̃ei ,Φi,¬Jr

]
× P[¬Jr]

≤
N∑
i=1

E
[(
R∗i (T −K)−Ri(T −K; r̃ei )

)
|r̃ei ,Φi,¬Jr

]
× P[¬Jr,i]

≤
N∑
i=1

C5

√
(T −K)KlogT × P[¬Jr,i]

≤ C ′5d
√

(T −K)KlogT ,

(9)

where C ′5 is an universal constant.447

Finally, we note the following relationship448

Eεei
(
Ri(T −K; r̃∗i )−Ri(T −K; r̃ei )

)
= Eεei

(
R∗i (T −K)−Ri(T −K; r̃ei )

)
− Eεei

(
R∗i (T −K)−Ri(T −K; r̃∗i )

)
= Eεei

(
R∗i (T −K)−Ri(T −K; r̃ei )|Jr

)
× P[Jr]

+ Eεei
(
R∗i (T −K)−Ri(T −K; r̃ei )|¬Jr

)
× P[¬Jr]−BRi(T −K; r̃∗i )

(10)

Denote the Bayes regret of the modified oracle-TS as BR′(N, {Ti}). Based on (7), (8), and (9), we449

sum (10) from i = 1 to N to yield the regret of the modified MTTS to the modified oracle-TS as450

BR(N, {Ti})−BR′(N, {Ti})

≤
N∑
i=l

[
8σc4(i)

√
log(NT )BRi(T −K; r̃∗i ) + 2

C2C3

N

]
+ C5l

√
(T −K)KlogT + C ′5d

√
(T −K)KlogT

≤
N∑
i=l

C ′4

[√
log(NT )(

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−1/2 + C3[ic′1K + 1]−1)BRi(T −K; r̃∗i )]

+O(1) + C6(l + d)
√

(T −K)KlogT

≤
N∑
i=l

C ′4

[√
log(NT )(

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−1/2 + C3[ic′1K + 1]−1)BRi(T −K; r̃∗i )

]
+O(1)

+ C ′6(dlog(NT ) + log2(NT ))
√

(T −K)KlogT

= O(
√
log(NT )(

√
d+

√
log(NT )

)√
N
√

(T −K)KlogT + (log(NT )d+ log2(NT ))
√

(T −K)KlogT ),

where C ′4, C6, and C ′6 some universal constants, the last inequality is due to l = O(dlog(NT ) +451

log2(NT )), and the last equality is due to BRi(T −K; r̃∗i ) = O(
√

(T −K)KlogT ) according to452

Proposition 2 in [33]. In the last equality, we also utilize the fact that
∑N
i=l 1/

√
i = O(

√
N), and453 ∑N

i=l 1/i = O(log(N)). Recall that, until now, we consider the case that S is not empty. When S454

is empty, we have N = O(log2(NT )), and then we can follow the arguments of (8) to bound the455

regret when Jr holds as O(log2(NT )
√

(T −K)KlogT ), and we can similarly obtain the above456

bound.457

Finally, we bound the regret of the modified oracle-TS to the vanilla oracle-TS. We denote the action458

that the modified oracle-TS takes at the t-th interaction with task i as AÕi,t. This multi-task regret of459
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the modified oracle-TS is then equal to460

Ex,r,ε

T∑
t=1

(ri,AOi,t − ri,AÕi,t) = Ex,r,ε

[( K∑
t=1

ri,AOi,t −
K∑
t=1

r
i,AÕi,t

)
+
( T∑
t=T−K+1

ri,AOi,t −
T∑

t=T−K+1

r
i,AÕi,t

)]
= O(K).

Here, for the first term, We note the regret from K interactions with task i is always bounded by461

Kmax(ri), the expectation of which over the task distribution is bounded by KC2C3. The second462

part is bounded by 0, since the two algorithms share the same prior and the modified oracle-TS463

essentially have K more data points with no confounding variables [45].464

Putting everything together, we conclude with465

MTR(N, {Ti})
= BR(N, {Ti})−BR′(N, {Ti}) +N ×O(K)

= O(
√
log(NT )(

√
d+

√
log(NT )

)√
N
√

(T −K)KlogT + (log(NT )d+ log2(NT ))
√

(T −K)KlogT +NK)

= O(
√
log(NT )(

√
d+

√
log(NT )

)√
N
√
TKlogT + log2(NT )

√
(T −K)KlogT +NK)

= Õ(
√
N
√
dTK +NK).

466

Finally, we remark that, similar to some literature on meta bandits [43, 3], we adopt the task distri-467

bution viewpoint by assuming the tasks (and hence {xi}Ni=1) are i.i.d. and considering Assumption468

1. Following the standard proof approach with adversarial contexts [1, 8, 2] in contextual bandits,469

it would be feasible to relax these assumptions. Specifically, notice that the only place we need470

Assumption 1 is in Lemma 2 and 3, where we apply properties of linear mixed model with i.i.d.471

data to control the estimation error (and sampling error) of the task-specific prior mean Φiθ at rate472

O(
√
d/i) with high probability. Here i is the index of the current task. This result mainly leads to an473

O(
∑N
i=1

√
d/i) = O(

√
Nd) term (Appendix G), the product of which with the single-task Bayes474

regret Õ(
√
TK) leads to the Õ(

√
NdTK) term in our multi-task regret. Without Assumption 1, we475

can bound the estimation error by (approximately) O(||Φi(
∑i−1
j=1 ΦT

j Φj)
−1ΦT

i ||) with high prob-476

ability, the summation of which from i = 1 to n can be bounded similarly as Õ(
√
Nd), following477

similar arguments of Lemma 3 of [8]. The proof technique relies on careful relating the cumulative478

prediction error with the eigenspace of the growing design matrix, and is largely standard in the479

literature (starting from [2]).480

H Proof of Lemmas and Propositions481

H.1 Proof of Lemma 2482

Proof. Throughout the proof, recall the fact that θ is a fixed vector instead of a random vector, and483

we only adopt the Bayesian approach to adapt the TS framework. We first note that, according to484

the results on Bayesian LMM (page 361, [42]), we have the following expression for the posterior485

of θ:486

θ|He1:i ∼ N
(

(ΦTV −1Φ + I)−1ΦTV −1R, (ΦTV −1Φ + I)−1
)
. (11)

Recall that, when the context is clear, we may drop the subscript 1 : i and superscript e. Let487

θ̂ei = (ΦTV −1Φ + I)−1ΦTV −1R be the maximum a posterior estimator of θ, which implies488

θ̂ei −θ|Φ ∼ N
(
−[(σ2+1)−1ΦTΦ+I]−1θ, [(σ2+1)−1ΦTΦ+I]−1−[(σ2+1)−1ΦTΦ+I]−2

)
.

(12)

Concentration of θ̂ei around θ. To derive the concentration of θ̂ei − θ around 0, we analyze489

the concentration of its mean around 0 and the magnitude of its variance separately. We begin by490

defining the event491

JΦ ≡
{
σmin[ΦTΦ] ≥ 1

2
ic1K

}
,
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According to Lemma 7, based on Assumption 1, we have492

P(JΦ) ≥ 1− d(
e

2
)−

c1
2C1

i. (13)

For the mean part of (12), based on the property of matrix operator norm, we can derive493

JΦ =
{
σmin[ΦTΦ] ≥ 1

2
ic1K

}
= {σmin[(σ2 + 1)−1ΦTΦ + I] ≥ (σ2 + 1)−1

2
ic1K + 1}

= {
∥∥[(σ2 + 1)−1ΦTΦ + I]−1

∥∥ ≤ 1
(σ2+1)−1

2 ic1K + 1
}

⊆ {
∥∥[(σ2 + 1)−1ΦTΦ + I]−1(−θ)

∥∥ ≤ ‖θ‖
(σ2+1)−1

2 ic1K + 1
},

where the third equality is due to σmin(A) = ||A−1|| for any invertible matrix A. This relationship494

implies495

E[θ̂ei − θ|JΦ] ≤ ‖θ‖
(σ2+1)−1

2 ic1K + 1
.

For the variance part of (12), define a random vector z ∼ N (0, [(σ2 + 1)−1ΦTΦ + I]−1 − [(σ2 +496

1)−1ΦTΦ + I]−2). According to the tail inequality for the Euclidean norm of Gaussian random497

vectors (see Lemma 8), for any ξ ∈ (0, 1), we have498

P
[
‖z‖ ≤ σz

√
d+ σz

√
2(−logξ)|Φ

]
≥ 1− ξ, (14)

where σz = ‖[(σ2 + 1)−1ΦTΦ + I]−1 − [(σ2 + 1)−1ΦTΦ + I]−2‖1/2. We then focus on control499

σz:500

σz = ‖[(σ2 + 1)−1ΦTΦ + I]−1{I − [(σ2 + 1)−1ΦTΦ + I]−1}‖1/2

≤
{
‖[(σ2 + 1)−1ΦTΦ + I]−1‖ × ‖I − [(σ2 + 1)−1ΦTΦ + I]−1‖

}1/2

≤ ‖[(σ2 + 1)−1ΦTΦ + I]−1‖1/2

where the first inequality follows from the sub-multiplicative property of the matrix operator norm,501

and the second follows from the fact that ‖I − (I +A)−1‖ ≤ 1 for any symmetric matrixA.502

Therefore, conditional on JΦ, we have σz ≤ [ (σ
2+1)−1

2 ic1K + 1]−1/2, which together with (14)503

implies504

P
[
‖z‖ ≤ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(√
d+
√

2
√
−logξ

)
|JΦ

]
≥ 1− ξ.

Note that, based on the triangle inequality, we have ||θ̂ei−θ|| ≤ ||E(θ̂ei |JΦ)−θ||+||θ̂ei−E(θ̂ei |JΦ)||.505

Combining the two parts, we conclude with506

P
(
||θ̂ei − θ|| ≥ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(√
d+
√

2
√
−logξ

)
+

‖θ‖
(σ2+1)−1

2 ic1K + 1
|JΦ

)
≤ ξ.

(15)

Concentration of θei around θ̂ei . Note that507

θei − θ̂ei |Φ ∼ N
(
0, (ΦTV −1Φ + I)−1

)
. (16)

We begin by defining a random vector z ∼ N (0, ((σ2 + 1)−1ΦTΦ + I)−1). By similar arguments508

with that for the variance part in (12), we get509

P
[
‖z‖ ≤ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(√
d+
√

2
√
−logξ

)
|JΦ

]
≥ 1− ξ,
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which implies510

P
[
‖θei − θ̂ei ‖ ≤ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(√
d+
√

2
√
−logξ

)
|JΦ

]
≥ 1− ξ. (17)

Note that, based on the triangle inequality, we have ||θei − θ|| ≤ ||θei − θ̂ei ||+ ||θ̂ei − θ||. Therefore,511

applying an union bound to (15) and (17) yields that512

P
[
‖θei − θ‖ ≤ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(
2
√
d+ 2

√
2
√
−logξ

)
+

‖θ‖
(σ2+1)−1

2 ic1K + 1
|JΦ

]
≥ 1− 2ξ.

This result, together with (13), implies that513

P
(
||θei − θ|| ≥ [

(σ2 + 1)−1

2
ic1K + 1]−1/2

(
2
√
d+ 2

√
2
√
−logξ

)
+

‖θ‖
(σ2+1)−1

2 ic1K + 1

)
≤ 2ξ + d(

e

2
)−

c1
2C1

i.

514

H.2 Proof of Lemma 3515

Proof. The first term needs assumptions516

||rei −Φiθ|| = ||Φiθ
e
i −Φiθ||

≤ ||Φi|| × ||θei − θ||
≤
√
KC2||θei − θ||,

where the last inequality is based on Assumption 2. Recall the results in Lemma 2 that517

P
(
||rei −Φiθ|| ≥

√
KC2

(
[
(σ2 + 1)−1

2
ic1K + 1]−1/2

(
2
√
d+ 2

√
2
√
−logξ

)
+

‖θ‖
(σ2+1)−1

2 ic1K + 1

))
≤ 2ξ + d(

e

2
)−

c1
2C1

i.
(18)

Under Assumption 2, with c′1 = c1
(σ2+1)−1

2 , by setting ξ = 1
NT , we can derive518

P
(
||rei −Φiθ|| ≥ 2

√
2C2

√
K
(√
d+

√
log(NT )

)
[ic′1K + 1]−

1
2 + C3[ic′1K + 1]−1

)
≤ 2

NT
+ d(

e

2
)−

c1
2C1

i. (19)

519

H.3 Proof of Lemma 4520

Proof. The relationship follows from the posterior updating rule for multivariate Gaussian. Specifi-521

cally, we have522

r̃ei = (Σ−1 + σ−2I)−1(Σ−1rei + σ−2Re
i );

Σ̃e
i = (Σ−1 + σ−2I)−1;

r̃∗i = (Σ−1 + σ−2I)−1(Σ−1Φiθ + σ−2R∗i );

Σ̃∗i = (Σ−1 + σ−2I)−1,

which implies523

r̃ei − r̃∗i = (Σ−1 + σ−2I)−1
[
Σ−1(rei −Φiθ) + σ−2(εei − ε∗i )

]
Σ̃e
i = Σ̃∗i .

524
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H.4 Proof of Lemma 5525

Proof. Recall that526

r̃ei − r̃∗i = (Σ−1 + σ−2I)−1
[
Σ−1(rei −Φiθ) + σ−2(εei − ε∗i )

]
,

which implies r̃ei = r̃∗i when ε∗i = εei + σ2Σ−1(rei −Φiθ). We denote527

hi(ε
e
i ) ≡ εei + σ2Σ−1(rei −Φiθ), (20)

which will then allow us to apply a change-of-variable trick. We note this is an one-to-one mapping.528

Besides, due to the round robin nature, we have ε∗i ∼ εei ∼ N (0, σ2I).529

Define Jε,r,i as the event {|(rei −Φiθ)T εei | ≤ σ‖rei −Φiθ‖
√

2log(NT )}. We begin by expressing530

BRi(T −K; r̃ei ) as a function of BRi(T −K; r̃∗i ) via a change of measure.531

Eεei
[
(R∗i (T −K)−Ri(T −K; r̃ei ))

]
=

∫
εei

exp(−‖εei‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

=

∫
εei

exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

=

∫
εei

I[Jε,r,i]
exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

+

∫
εei

I[¬Jε,r,i]
exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i ).

(21)

In what follows, we will control the two parts of (21) separately.532

First part of (21). For the first part of (21), conditional on Jr, we have533 ∫
εei

I[Jε,r,i]
exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

≤ max
{
I[Jε,r,i]exp

(‖hi(εei )‖2 − ‖εei‖2
2σ2

)}∫
εei

I[Jε,r,i]
exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

≤ max
{
I[Jε,r,i]exp

(‖hi(εei )‖2 − ‖εei‖2
2σ2

)}∫
εei

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

= max
{
I[Jε,r,i]exp

(‖hi(εei )‖2 − ‖εei‖2
2σ2

)}
BRi(T −K; r̃∗i ), (22)

where the second inequality follows from the fact that the integrand is non-negative. Recall that,534

without loss of generality, we have assumed Σ = I . To control this term, we use the relationship535

(20) to yield536

max
{
I[Jε,r,i]exp

(‖hi(εei )‖2 − ‖εei‖2
2σ2

)}
= max

{
I[Jε,r,i]exp

(‖εei + σ2(rei −Φiθ)‖2 − ‖εei‖2

2σ2
)
}

= max
{
I[Jε,r,i]exp

(
(εei )

T (rei −Φiθ) +
σ2

2
‖(rei −Φiθ)‖2)

}
≤ exp

(
σ‖rei −Φiθ‖

√
2log(NT ) +

σ2

2
‖(rei −Φiθ)‖2

)
,

where the inequality is due to the definition of Jε,r,i.537
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Second part of (21). For the second part of (21), we can bound it by538 ∫
εei

I[¬Jε,r,i]
exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

≤ E
[
R∗i (T −K)−Ri(T −K; r̃ei ),¬Jε,r,i

]
× P[¬Jε,r,i]. (23)

For the first term of (23), we note the regret from T−K interactions with task i is always bounded by539

(T −K)max(ri), the expectation of which over the task distribution is bounded by (T −K)C2C3.540

For the second term of (23), we recall the tail inequality of Gaussian distributions: for any ran-541

dom variable z ∼ N (0, σ2), we have P[|z| ≥ c‖rei − Φiθ‖
√

2log(NT )] ≤ 2exp(−‖rei −542

Φiθ‖2c2log(NT )/σ2), where c is any constant. Notice that (rei − Φiθ) is independent with εei ,543

which implies that, for any fixed value of rei −Φiθ, it holds that (rei −Φiθ)T εei ∼ N
(
0, σ2‖rei −544

Φiθ‖2
)
. Therefore, by setting c = σ, we have545

P[¬Jε,r,i] = P[|(rei −Φiθ)T εei | ≥ σ‖rei −Φiθ‖
√

2log(NT )]

= P[|(rei −Φiθ)T εei | ≥ σ‖rei −Φiθ‖
√

2log(NT )|rei −Φiθ]

≤ 2exp(−log(NT )) =
2

NT

Putting these two parts together, we obtain a bound for the second term of (21) as546 ∫
εei

I[¬Jε,r,i]
exp(−‖εei‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

exp(−‖hi(εei )‖2/2σ2)

(2πσ2)K/2
(R∗i (T −K)−Ri(T −K; r̃ei )dε

e
i )

≤ 2C2C3

N
. (24)

Finally, combining (22) and (24), we can obtain547

Eεei
[
R∗i (T −K)−Ri(T −K; r̃ei )

]
≤ exp

(
σ‖rei −Φiθ‖

√
2log(NT ) +

σ2

2
‖(rei −Φiθ)‖2

)
BRi(T −K; r̃∗i ) +

2C2C3

N

(25)

548

H.5 Regrets of the baseline TS algorithms549

In this section, we first recap the baseline TS algorithms discussed in Section 5, and then pro-550

vide formal statements about their regret bounds. OSFA applies a single TS
(
Q(ri)

)
algorithm551

to all tasks, where Q(ri) is the marginal distribution of ri, while individual-TS applies a separate552

TS
(
Q(ri)

)
algorithm to each tasks. For meta-TS, under the sequential setting, following [22], we553

apply TS
(
N (µi,Σ)

)
to the i-th task, where µi is sampled from the posterior of E[ri] based on554

accumulated data from the finished i − 1 tasks. Finally, linear-TS assumes ri = Φiθ, requires a555

prior over θ and maintains a posterior over it. We have the following results.556

Proposition 1. Under Assumptions 1−3, whenK < min(N,T ), the multi-task regrets of OSFA and557

linear-TS under the LMM over N tasks with T interactions per task are both bounded by O
(
NT

)
.558

Proposition 2. Under Assumptions 1−3, whenK < min(N,T ), the multi-task regret of individual-559

TS and meta-TS under the LMM over N tasks with T interactions per task are both bounded by560

O
(
N
√
KT

)
.561

These two propositions can be proved as follows.562

Proof of Proposition 1. According to Assumption 2, we note the regret from one interaction with563

task i is always bounded by Kmax(ri), the expectation of which over the task distribution is564

bounded by C2C3. Therefore, the total regrets over N tasks with T interactions per task are both565

bounded by O
(
NT

)
.566
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Proof of Proposition 2. The Bayes regret for each task can be derived from the prior-independent567

regret bound for Gaussian bandits in the literature (e.g., [4]) as O(
√

(T −K)KlogT ). Therefore,568

the regret accumulated over N tasks can be bounded by O(N
√

(T −K)KlogT ).569

We note that, similar with results in [3] and [22], it is non-trivial to obtain lower bounds on the multi-570

task regrets for these baseline TS algorithms, due to the lack of understanding of the behaviour of a571

TS algorithm with mis-specified priors. To our knowledge, the above bounds are the tightest in the572

existing literature. In contrast, with information-sharing and thanks to the prior alignment technique,573

MTTS can be shown to yield a lower regret in rate.574

H.6 Additional technical lemmas575

In this section, we collect several additional technical lemmas. We first recap a mathematical result:576

Lemma 6 (Lemma 20 in [3]). For any number a ∈ [0, 1], it holds that exp(a) ≤ 1 + 2a.577

The following lemma will give a lower bound for the smallest eigenvalue of our design matrix.578

Lemma 7 (Theorem 3.1 in [39]). For a series of independent, positive semidefinite matrices {Ak}579

with dimension d, suppose ||Ak|| ≤ R almost surely, then for any δ ∈ [0, 1), we have580

P
[
σmin(

∑
k

Ak) ≤ (1− δ)µmin
]
≤ d[

e−δ

(1− δ)1−δ
]µmin/R,

where µmin = σmin(
∑
k EAk).581

The following lemma states a tail inequality for the 2-norm of a Gaussian vector.582

Lemma 8 (Based on Lemma A.4 in [19]). For a d-dimensional random vector z ∼ N (0, I) and583

any ξ ∈ (0, 1), we have584

P[||z||2 ≤ d+ 2
√
d(−logξ) + 2(−logξ)] ≥ 1− ξ,

which implies, for any matrixA with appropriate dimensions, we have585

P
[
||Az|| ≤ ||A||(

√
d+

√
2(−logξ)

]
= P

[
||Az|| ≤ ||A||(d+ 2

√
2
√
d(−logξ) + 2(−logξ))1/2

]
≥ P

[
||Az|| ≤ ||A||(d+ 2

√
d(−logξ) + 2(−logξ))1/2

]
≥ 1− ξ.

Notice thatAz ∼ N (0,ATA).586
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