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1 Benchmark Details

The TASKOGRAPHY benchmark comprises 20 robot task planning domains over 3D scene graphs
(3DSGs). In the main paper, we detailed the Rearrangement(k), Courier(n,k), Lifted Rearrange-
ment(k), and Lifted Courier(n, k) task definitions following the recently proposed Rearrangement
challenge [1]. Table. 1 lists the set of lifted objects in each planning domain. In all problems, we
have one instance of an agent, but several ground objects corresponding to the other categories.

1.1 TASKOGRAPHY domain construction: Parsing Gibson 3DSGs

We parse the 3DSGs created over Gibson [2, 3] mapping scene entities to objects and structural
relations to predicates over objects. We retain key connectivity constraints that govern traversable
paths between locations in the same place, places in the same room, and between rooms. Because
room connectivity data not is provided in the original database, we estimate it by computing a min-
imal spanning tree over rooms in the 3DSGs with edge weights reflecting the Euclidean distance
between room centroids. For larger scenes, we impose a single connection between rooms in differ-
ent floors (e.g., one set of stairs). Several additional properties are used to express the state of agent
and interactable objects, and to associate each of them to a particular location in the 3DSG.

Table 1: Evaluated 3DSG planning domains in TASKOGRAPHY and object types present in each. Domains are
further partitioned into tiny and medium splits akin to the 3DSGs provided over Gibson [2, 3]. Scene entities
are instantiated as a particular object type according to their semantic class.

n k Agent Room Place Location Receptacle Item Bagslot Receptacle Class Item Class
Rearr(k) - {1, 2, 5, 10} 3 3 3 3 3 3 7 7 7
Cour(n, k) {3, 5, 7, 10} {5, 10} 3 3 3 3 3 3 3 7 7
Lifted Rearr(k) - {5} 3 3 3 3 3 3 7 3 3
Lifted Cour(n, k) {5} {5} 3 3 3 3 3 3 3 3 3

An assignment of values to all possible properties over objects defines a symbolic state in the plan-
ning problem; hence, actions taken by the robot in TASKOGRAPHY alter the symbolic state of the
3DSG. We observe a significant variation in the size of the state space between different types of
domains as a result of the varying subsets of object and predicate types used to express their respec-
tive tasks (see Table. 2). For instance, the Rearrangement(k) task represents the lowest complexity
domain on TASKOGRAPHY and is thereby defined by the smallest subset of object types, predicates,
and actions available to the robot. In contrast, the Lifted Courier(n, k) extends the Rearrangement(k)
task definition with bagslots enabling stow and retrieve operators, as well as receptacle classes and
item classes to express lifted class relations in the 3DSG at particular state.
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We leverage task samplers built into TASKOGRAPHY-API for generating large-scale and diverse
datasets of planning problems over 3DSGs. In a two step process the task samplers automatically
parse 3DSGs into plannable symbolic representations (i.e., embedding the agent forms the initial
state I) before composing goal literals over randomly sampled scene entities. For grounded prob-
lems, goals are conjunctions of inReceptacle literals expressed over randomly sampled item and
receptacle target ground instances. For lifted problems, goal are conjunctions of classRelation liter-
als expressed over randomly sampled item and receptacle target class relations.

Table 2: Structural relations of 3DSGs and the state of the robot and interactable objects (i.e., items and recep-
tacles) are captured with an assignment of values to all possible predicates over objects. The most challenging
Lifted Courier(n, k) is the only domain to incorporate all relations, while other domain types in TASKOGRAPHY
require only a subset of the properties and relations.
Object (:types) Agent Room Place Location Receptacle Item Bagslot Receptacle Class Item Class
Agent holdsAny inRoom inPlace atLoc - holdsItem - - -
Room inRoom connected placeInRoom + roomCenter - - - - - -
Place inPlace placeInRoom + roomCenter - locInPlace + placeCenter - - - - -
Location atLoc - locInPlace + placeCenter - recepAtLoc itemAtLoc - - -
Receptacle - - - recepAtLoc recepOpened inRecep - recepClass -
Item holdsItem - - itemAtLoc inRecep small + medium + large inSlot - itemClass
Bagslot - - - - - inSlot slotHoldsAny - -
Receptacle Class - - - - recepClass - - - classRelation
Item Class - - - - - itemClass - classRelation -

1.2 Domain specifications

To provide further clarity on the four task categories (Rearrangement(k), Courier(n,k), Lifted Re-
arrangement(k), and Lifted Courier(n, k)) from which our 3DSG planning domains are con-
structed, we herein outline hypothetical problem instances involving but a fraction of the objects,
attributes, and relations available in TASKOGRAPHY. Let the environment consist of v rooms
connected by e undirected traversability constraints; e.g., connected(roomA, roomB). The spatial
hierarchy of 3DSGs [2, 4] is induced by the appropriate application of structural relations (see
Table. 2) to a discrete set of places in each room, and locations in each place; e.g.,
placeInRoom(placeD, roomC), locInPlace(locF, placeD). The lowest level of the spatial hierarchy
(locations) encodes all occupiable positions for the agent, items, and receptacles in
the scene; e.g., atLoc(agent, locationB), itemAtLoc(mugA, locationD), recepAtLoc(fridgeC, loca-
tionG). Such relations equate to logical predicates in [5] and can be altered by the agent should
the required preconditions of an action be met in the current state; e.g., ¬holdsAny(agent) and
∧(atLoc(agent, locX), itemAtLoc(mugA, locX)) are preconditions for PICKUPITEM(mugA, agent).

As mentioned in Sec. 1.1, the goals in grounded planning problems are specified with inRecep-
tacle literals. Concretely, a Rearrangement(k) task for k = 1 requires the agent to pick-and-
place a ground item in a ground receptacle, where each object in the goal is uniquely identified;
e.g., G = inReceptacle(mugA, fridgeC). By extension, a Rearrangement(k) task for k = 2 is
solved iff the agent derives a state satisfying the conjunction of two inReceptacle goal literals; e.g.,
G = ∧(inReceptacle(mugA, fridgeC), inReceptacle(plateD, shelfB)). The Courier(n, k) domains
attribute weights (w ∈ 1, 2, 3 units) to items based on their volume, and equips the agent with a
knapsack of fixed capacity n to stow and retrieve items as it traverses the scene. While the knapsack
in Courier(n, k) enables planners to exploit stowing capacity to compute lower cost solutions (at
the expense of task complexity) in comparison to Rearrangement(k), goals are identically specified
between the two task categories since they are both considered grounded.

In stark constrast, lifted planning problems are specified with classRelation literals expressed over
item-receptacle class combinations. For instance, the following Lifted Rearrangement(k) or Lifted
Courier(n, k) domain with k = 2, G = ∧(classRelation(cup, cupboard), classRelation(plate, sink)),
requires the agent to place at least one cup in a cupboard and plate in a sink for the task to be
complete. This disambiguates the planner which is no longer able to exploit ground objects featured
in the goal as heuristic landmarks, and reduces the effectiveness of deterministic graph sparsification
techniques such as SCRUB. As in the grounded domain variants, the goal specifications for both
the Lifted Rearrangement(k) and Lifted Courier(n, k) are identical.
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1.3 Symbolic environment interaction

The action space of the most complex domain in TASKOGRAPHY equips the agent with 16 operators
where only a subset are feasible at any given state. Below, we describe but a few of these operators
which demonstrate motion through 3DSG hierachies and object-level robot interaction.

• GOTOROOM: The robot moves from the door of its current room to the door of the target
room if the rooms are connected.

• GOTOPLACE: The robot moves from the center of its current place to the center of the
target place if the places are in the same room.

• GOTOLOCATION: The robot moves from the current location to the target location if the
locations are in the same place.

• OPENRECEPTACLE: The robot opens a queried openable receptacle.
• CLOSERECEPTACLE: The robot closes a queried openable receptacle.
• PICKUPITEM: The robot picks-up an item at a particular location with a free gripper; three

operator variations for picking from non existent, non-opening, and opening receptacles.
• PLACEITEM: The robot places an in-gripper item at a particular location; two operator

variations for placing in non-opening and opening receptacles.
• STOWITEM: The robot stows an in-gripper item in its knapsack: three operator variations

for small, medium, and large items consuming increasing numbers of bagslots.
• RETRIEVEITEM: The robot retrieves an item from its knapsack into its gripper; three oper-

ator variations for small, medium, and large items freeing increasing number of bagslots.

Should the preconditions for any of these actions not be satisfied, the action is deemed invalid.

2 SCRUB: Discussion and analysis

In the main paper, for sake of brevity, we only discussed the applicability of SCRUB to grounded
planning problems with deterministic transitions. However, by design, SCRUB may be applied to
any planning problem: lifted or grounded, with deterministic or stochastic transitions.

In lifted planning problems, we modify SCRUB to trivially include all ground object tuples that
satisfy goal conditions into the initial sufficient object set. This in-turn ensures that all of these
ground objects are reachable from the start state, ensuring a satisficing plan exists. However, this
conservative strategy may resulting in retaining more objects than minimally required – this is where
SEEK can be applied to opportunistically retain important objects instead.

In a similar vein, for stochastic transitions, we modify SCRUB to include all binary predicates result-
ing from all possible stochastic transitions from a given node.

We now prove that SCRUB results in a minimal scene subgraph for all grounded planning problems.

Proposition 1. SCRUB is complete and results in a minimal scene subgraph for all grounded plan-
ning problems over the scenegraph domain.

Proof. We prove the minimality of SCRUB by demonstrating that whenever we prune a node from a
SCRUBBED scenegraph, the resultant planning problem is unsolvable. Assume that we prune a node
n from a SCRUBBED 3DSG Ĝ. Recall the types of nodes we have in the 3DSG: agent, room,
place, receptacle, item, floor, building .

1. If n is of type agent or building, the problem is unsolvable, by construction.

2. If n is of type item, removing it would render the goal state unreachable — recall that Ĝ
only retains item nodes that feature in the goal state.

3. If n is of type receptacle, it is retained in Ĝ either because (a) it is required to access a
goal object of type item, or (b) it is a goal receptacle (i.e., a target location an item
must be moved into). Removing n will thus render one of the objects in the goal state
unreachable.
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4. If n is of type place, room or floor, n ∈ Ĝ because n directly features in the goal
state, or because n is required to traverse from the start state to the goal state (e.g., rooms
that connect the start and goal rooms, etc.).

Since pruning any of these nodes renders the problem unsolvable, the SCRUBBED graph Ĝ is a
minimal scene subgraph for the grounded planning problem considered.

3 Additional results on TASKOGRAPHY domains

In this section, we provide results over several extended domains from the TASKOGRAPHY bench-
mark. Please see Tables 3, 4, 5, 6, 7, 8.

Table 3: Performance of planners over the Rearrangement(k)-Tiny tasks. For all metrics, lower values indicate
better performance.

Rearr(1) Tiny Rearr(2) Tiny Rearr(10) Tiny

Planner Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.77 24.81 0.04 25.80 104.47 0.55 - - 1.00
SatPlan 14.77 10.35 0.45 26.67 3.27 0.67 - - 1.00
Delfi 15.13 0.36 0.16 29.10 27.77 0.29 - - 1.00
DecStar-opt-fb - - 1.00 - - 1.00 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in

g

FF 16.71 0.19 0.00 34.44 0.55 0.00 162.61 7.04 0.07
FF-X 16.71 0.25 0.00 34.44 0.58 0.00 162.30 7.39 0.09
FD-lama-first 15.19 2.96 0.33 38.47 3.25 0.18 205.89 7.68 0.51
Cerberus-sat 11.50 12.00 0.85 - - 1.00 - - 1.00
Cerberus-agl 14.77 5.13 0.45 33.00 7.30 0.49 186.07 9.04 0.73
DecStar-agl-fb 14.72 2.62 0.55 34.96 2.58 0.58 193.00 6.78 0.85
BFWS 15.56 0.90 0.22 32.16 0.37 0.18 160.93 0.57 0.18
Regression-plan - - 1.00 - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00 - - 1.00
PLOI [7] 16.45 0.00* 0.00 37.04 0.00* 0.00 221.71 0.18 0.00

Table 4: Performance of planners over the Rearrangement(k)-Medium tasks. For all metrics, lower values
indicate better performance.

Rearr(1) Medium Rearr(2) Medium Rearr(10) Medium

Planner Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.53 19.68 0.06 27.13 125.69 0.41 - - 1.00
SatPlan 14.98 11.98 0.33 28.23 5.45 0.50 - - 1.00
Delfi 15.40 3.62 0.16 29.13 12.79 0.28 - - 1.00
DecStar-opt-fb 15.42 41.35 0.93 28.50 111.53 0.91 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in

g

FF 16.45 0.25 0.00 32.87 0.41 0.00 159.04 5.30 0.09
FF-X 16.45 0.21 0.00 32.87 0.45 0.00 159.80 5.02 0.08
FD-lama-first 15.51 2.48 0.21 39.20 2.77 0.20 208.28 6.35 0.49
Cerberus-sat 11.20 10.17 0.88 - - 1.00 - - 1.00
Cerberus-agl 15.18 6.10 0.34 32.20 6.40 0.33 176.60 8.91 0.72
DecStar-agl-fb 15.36 2.15 0.58 36.35 2.40 0.59 211.16 7.20 0.82
BFWS 15.42 0.60 0.23 30.65 0.44 0.27 151.17 0.41 0.23
Regression-plan - - 1.00 - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00 - - 1.00
PLOI [7] 16.44 0.00* 0.00 36.19 0.00* 0.00 213.43 0.17 0.00
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Table 5: Performance of planners over the Courier(n, k)-Tiny tasks. For all metrics, lower values indicate better
performance.

Cour(3, 10) Tiny Cour(5, 10) Tiny Cour(7, 10) Tiny Cour(10, 10) Tiny

Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

sa
tis

fic
in

g

FF 146.35 7.57 0.13 136.38 7.97 0.33 127.88 6.84 0.55 124.93 14.62 0.73
FF-X 144.80 8.34 0.11 137.05 7.49 0.31 128.42 8.34 0.53 126.31 15.21 0.71
FD-lama-first 175.15 8.31 0.53 159.64 7.31 0.55 156.12 6.97 0.55 145.00 7.50 0.56
Cerberus-sat - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 137.87 10.79 0.73 127.30 17.61 0.82 138.25 21.65 0.93 - - 1.00
DecStar-agl-fb 140.47 4.52 0.69 124.62 4.65 0.71 120.20 4.04 0.73 117.73 6.98 0.73
BFWS 160.18 1.19 0.18 159.17 0.94 0.25 159.90 1.80 0.29 153.93 4.28 0.45
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00 - - 1.00 - - 1.00
PLOI [7] 193.55 0.22 0.00 179.36 0.26 0.00 172.87 0.37 0.00 167.38 0.71 0.00

Table 6: Performance of planners over the Courier(n, k)-Medium tasks. For all metrics, lower values indicate
better performance.

Cour(3, 10) Medium Cour(5, 10) Medium Cour(7, 10) Medium Cour(10, 10) Medium

Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

sa
tis

fic
in

g

FF 141.89 4.94 0.07 133.46 6.29 0.20 128.41 6.62 0.24 117.50 14.27 0.78
FF-X 141.89 4.47 0.07 133.50 5.80 0.19 128.19 6.72 0.24 118.67 15.52 0.77
FD-lama-first 180.38 7.11 0.40 166.35 6.27 0.45 156.34 4.92 0.29 141.75 6.80 0.63
Cerberus-sat - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 148.41 10.17 0.74 133.31 11.50 0.77 125.73 12.99 0.83 109.56 15.58 0.95
DecStar-agl-fb 154.07 6.45 0.66 142.42 4.01 0.61 132.60 4.50 0.58 128.58 7.60 0.70
BFWS 151.09 0.60 0.27 152.61 0.66 0.20 152.71 1.13 0.21 153.02 2.81 0.30
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00 - - 1.00 - - 1.00
PLOI [7] 182.31 0.20 0.00 169.20 0.24 0.00 161.90 0.34 0.00 152.19 0.61 0.00

Table 7: Performance of planners over the Lifted Rearrangement(k) domains. For all metrics, lower values
indicate better performance.

Lifted Rearr(5, 5) Tiny Lifted Rearr(5, 5) Medium

Planner Len. Time Fail Len. Time Fail

sa
tis

fic
in

g

FF 62.86 3.40 0.47 61.90 3.04 0.37
FF-X 67.88 3.48 0.89 61.78 2.30 0.72
FD-lama-first 66.81 3.20 0.49 71.15 4.11 0.46
Cerberus-sat - - 1.00 - - 1.00
Cerberus-agl 60.50 7.62 0.60 64.26 6.74 0.57
DecStar-agl-fb 66.30 3.02 0.71 77.00 3.08 0.71
BFWS 56.90 0.94 0.41 55.36 0.80 0.43
Regression-plan - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00
PLOI [7] 78.68 0.22 0.24 76.62 0.22 0.24
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Table 8: Performance of planners over the Lifted Courier(n, k) domains. For all metrics, lower values indicate
better performance.

Lifted Cour(5, 5) Tiny Lifted Cour(5, 5) Medium

Planner Len. Time Fail Len. Time Fail

sa
tis

fic
in

g

FF 57.74 4.03 0.44 57.38 4.81 0.37
FF-X 61.19 7.56 0.77 60.05 3.79 0.64
FD-lama-first 61.13 3.34 0.56 63.19 3.31 0.45
Cerberus-sat - - 1.00 - - 1.00
Cerberus-agl 59.19 7.05 0.77 59.61 7.45 0.68
DecStar-agl-fb 58.75 4.46 0.71 63.93 3.85 0.68
BFWS 61.92 2.30 0.43 56.14 0.67 0.38
Regression-plan - - 1.00 - - 1.00

le
ar

n Relational policy [6] - - 1.00 - - 1.00
PLOI [7] 71.71 0.26 0.26 69.92 0.46 0.30
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