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Abstract001

As a relatively new programming language,002
Rust has gained significant popularity in recent003
years due to its safety features during compi-004
lation. However, Rust developers often face005
challenges stemming from its strict compila-006
tion checks due to the steep learning curve of007
safety rules. To make matters worse, the lack of008
training data and the unique semantics of Rust009
lead to poor performance in learning-based au-010
tomated program repair techniques. To address011
these challenges, we propose a novel error in-012
jection approach to generate a balanced training013
dataset and leverage the Mid-level Intermediate014
Representation (MIR) as enhanced features for015
Rust’s unique compilation error repair. Using016
these innovations, we fine-tuned a new code017
model, LLaRRA: Large Language and Rust018
Repair Assistant. Experimental results demon-019
strate that LLaRRA significantly outperforms020
state-of-the-art models in terms of Pass@K and021
Acc@K.022

1 Introduction023

Rust is a newborn system programming language024

with high performance and memory safety (Rus,025

2024). To achieve these goals, Rust provides strict026

static rule checkers in compile-time to prevent027

plausible illegal memory access. Ownership and028

lifetime errors (OLEs) may occur when the code029

violates the corresponding rules. Benefits from030

both performance and safety advantages, Rust has031

been used in many safety-critical fundamental soft-032

ware (ann, 2023; Redox, 2023; Levy et al., 2017;033

Servo, 2023; Asay, 2020). However, Rust’s check-034

ers are a double-edge sword. Rigorous compile-035

time checking indeed serves fancy safety features036

while actually sacrifices the programming capabil-037

ity. Therefore, Rust developers struggle to fight038

with the official Rust compiler (rustc), and keep039

the loop of fixing OLEs and wait to check whether040

compilation success. To make things worse, rustc041

fails to provide enough information for develop- 042

ers (Zhu et al., 2022). Thus, to help the Rust devel- 043

opers, there is an emergency to automatically fix 044

the Rust OLEs. 045

Recent years, many automatically program 046

repair (APR) techniques are proposed to fix 047

the program fault, including learning-based and 048

unlearning-based approaches (Chen et al., 2021; 049

Li et al., 2020, 2022b; Chi et al., 2023; Li et al., 050

2022a; Huang et al., 2023; Tufano et al., 2019; 051

Wang et al., 2024; Zhang et al., 2023). Specif- 052

ically, Yang et al. (Yang et al., 2024) proposed 053

a rule-based approach, Rust-lancet, to fix own- 054

ership errors in Rust. However, this method is 055

limited to ownership errors and is difficult to ex- 056

tend to lifetime errors. To maximize the effec- 057

tiveness in fixing OLEs, learning-based techniques 058

are preferable—assuming the availability of high- 059

quality training data. Unfortunately, due to Rust 060

as a relatively fresh programming language com- 061

pared to the mainstream languages (C/C++ and 062

Java) and few developers tend to upload uncom- 063

pilable Rust program, lacking of enough compila- 064

tion errors as training data, even the most powerful 065

large language models (LLMs) cannot repair the 066

OLE ideally. Hence, the challenge 1 to enhance 067

learning-based techniques is how to obtain pairs 068

of high-quality uncompilable and compilable pro- 069

grams as training data. Existing work (Ahmed 070

et al., 2018) usually collect data from students’ 071

coding assignments for mainstream programming 072

languages, while Rust is not broadly introduced to 073

school yet. The challenge 2 is how to learn the un- 074

derlying Rust program representation where OLE 075

checkers are performed. These checkers analyze 076

program in Intermediate Representation (IR) in- 077

stead of source code. Thus, using pure Rust source 078

code while lack of this IR feature can limit LLMs 079

performance of OLE repair. 080

In this paper, we propose Rust-doctor to gen- 081

erate OLE from real-world Rust projects to im- 082
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prove the OLE fixing performance of LLMs with083

enhanced features. To address challenge 1 , we084

propose an OLE injection framework to generate085

arbitrarily scale error dataset. In our framework,086

we use existing popular third-party libraries (crates)087

as a corpus and leverage LLMs to mutate compi-088

lable Rust functions using error-specific prompts.089

To keep the diversity of dataset, these functions are090

selected based on code similarity. To tackle chal-091

lenge 2 , we introduce rustc’s MIR (MIR, 2024) as092

enhanced features for OLE repair. In Rust, MIR is093

designed to support more precise static checking,094

and the OLE is raised from MIR after the corre-095

sponding checking algorithm performed. Given096

the importance of MIR, we utilize an auto-encoder097

technique to capture its representation automati-098

cally and leverage the feature to improve repair099

capability of LLMs.100

Overall, Rust-doctor takes multiple crates and101

uses k-means (Ahmed et al., 2020) to obtain func-102

tion categories. After that, Rust-doctor selects a103

Rust function from each category evenly, conse-104

quently automatically mutates it by LLMs to trig-105

ger OLE and save the mutated function if the error106

is we want. Subsequently, a control flow graph is107

constructed based on MIR and its structure infor-108

mation is captured by a graph encoder. Finally, we109

fine-tune LLMs with Rust source code and features110

produced to fix Rust’s OLE. The fine-tuned models111

not only enhanced by large scale high quality train-112

ing data, but also learn the program representation113

where the OLE checkers are performed to fix OLE114

better.115

The main contributions are as follows:116

• A high-quality Rust OLE dataset and benchmark.117

We are the first to propose an automatic Rust118

OLE injection framework based on real-world119

Rust projects. Furthermore, we construct an open120

source high-quality Rust OLE dataset and bench-121

mark for the OLE repair community.122

• Feature exploration for OLE fixing. We explore123

the program representation features OLE check-124

ers performed on. The features provide direct125

control flow information, enhancing the LLMs126

capabilities for fixing OLE.127

• Large language models for OLE fixing. We imple-128

ment and evaluate our approach as Rust-doctor129

and fine-tune an LLM LLaRRA based on the130

generated dataset with enhanced features. The131

experimental results show that LLaRRA signif-132

icantly outperforms the state-of-the-art model,133

fn ownership_error(foo: Box<i8>) {
  let bar = foo;
  let baz = foo;
}

fn lifetime_error<'a, 'b>(foo: &'a i8, 
                    bar: &'b i8) -> &'a i8 {
  return bar;
}

error: lifetime may 
not live long enough

error: use of moved 
value: `foo`

Figure 1: Ownership and Lifetime Errors

with Pass@K increasing by 12.61% and Acc@K 134

increasing by 18.30%. 135

• Open-source. Upon publication, we will release 136

the following assets to the public: the gener- 137

ated OLE repair data, the codebase, and the 138

model checkpoints. Some pre-released assets 139

are already available at https://sites.google. 140

com/view/rustdoctor/index. 141

2 Preliminaries 142

2.1 Ownership and Lifetime Errors 143

There are two Rust-specific categories of compi- 144

lation errors: ownership errors and lifetime errors 145

(collectively referred to as OLE). 146

According to ownership rules, each value has a 147

unique owner, typically a variable. When owner- 148

ship is moved from one variable to another, the orig- 149

inal variable becomes invalid. Attempting to use a 150

moved value results in a compile-time ownership 151

error. In Figure 1, foo is a Box<i8>, a heap-allocated 152

value. After the move to bar, the ownership of foo 153

is moved, and foo becomes invalid. The second as- 154

signment to baz attempts to use foo again, leading 155

to a compilation error because the ownership has 156

already been moved. 157

While ownership governs who owns a value, life- 158

times track how long references are valid. Rust’s 159

compiler uses lifetimes to ensure that all references 160

are valid during their use and that no reference out- 161

lives the data it points to. A lifetime error occurs 162

when the compiler cannot guarantee that a returned 163

reference will remain valid. As shown in Figure 1, 164

the return type (&'a) declares that the returned refer- 165

ence must live at least as long as lifetime 'a. How- 166

ever, the function attempts to return bar, which has 167

lifetime 'b. If 'b is shorter than 'a, the returned 168
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reference could point to invalid memory, so the169

compiler raises a lifetime mismatch error.170

2.2 Problem Formulation171

Rust-doctor aims to address Rust OLE compila-172

tion errors by learning program semantics through173

fine-tuning techniques. Formally, let perr represent174

a Rust program with OLEs from a dataset D. Its175

associated compilation error message and emitted176

MIR, provided by rustc, are denoted as merr and177

irm, respectively. The objective of Rust-doctor178

is to learn a function f from the dataset D that179

takes (perr,merr, irm) as input and produces a cor-180

rected version pcorrect, which can be successfully181

compiled by rustc. This process can be formally182

expressed as:183

pcorrect = f(perr,merr, irm)184

To this end, we aim to generate a185

tuning dataset consisting of paired data186

⟨pcorrect, (perr,merr, irm)⟩. Given the pro-187

portion of the i-th OLE type, denoted as pi, the188

primary goal of the generation process, aimed at189

balancing the dataset, can be expressed as:190

Maximize Entropy(D) = −
K∑
i=1

pi log2 pi191

3 Related Work192

In recent years, numerous works (Huang et al.,193

2023) have been proposed to repair buggy code.194

Tufano et al.(Tufano et al., 2019) introduced a code195

abstraction technique to repair buggy code using196

neural machine translation. Following this, several197

end-to-end approaches(Chen et al., 2021; Li et al.,198

2020, 2022b; Chi et al., 2023; Li et al., 2022a)199

were developed to enhance model performance in200

code fixing tasks. Additionally, some non-end-to-201

end and non-learning-based methods have been202

proposed. RATCHET (Wang et al., 2024) intro-203

duced a dual deep learning-based automated pro-204

gram repair tool, with one model for localization205

and another for repair. OrdinalFix (Zhang et al.,206

2023) focuses on ensuring output correctness with207

minimal modifications by leveraging shortest-path208

context-free language reachability with attribute209

checking. Notably, Yang et al. (Yang et al., 2024)210

were the first to address Rust’s ownership-rule vio-211

lations using rule-based fixing strategies. In the era212

of large language models (LLMs), Ma et al. (Ma213

et al., 2024) conducted an empirical study using214

four probing tasks to evaluate the models’ capabili- 215

ties in learning code syntax and semantics. Their 216

results demonstrate that while code models excel at 217

learning code syntax, even state-of-the-art LLMs 218

require further improvement in understanding and 219

learning code semantics. 220

On the other hand, while learning-based tech- 221

niques have achieved a significant milestone in 222

automated program repair, they still suffer from 223

limitations when applied to tasks with insufficient 224

training data. Over the past years, many researchers 225

have concentrated on advancing automated data 226

generation methods by LLMs or Pre-trained Lan- 227

guage Models (PLMs). Meng et al.(Meng et al., 228

2022) proposed a straightforward approach that 229

leverages a unidirectional PLM to generate class- 230

conditioned texts guided by prompts. These gen- 231

erated texts are then used as training data to fine- 232

tune a bidirectional PLM. To generate diverse and 233

attribute-rich data, Yu et al.(Yu et al., 2023) ex- 234

plored the use of diversely attributed prompts to 235

create training data with LLMs. Moreover, numer- 236

ous code models (Rozière et al., 2023; Li et al., 237

2023; Muennighoff et al., 2024; Lozhkov et al., 238

2024a) have been fine-tuned using techniques such 239

as code generation, data distillation, and online 240

data collection, but they are not considering Rust’s 241

OLE repair. 242

In summary, although existing studies have made 243

progress in improving the performance of APR, 244

limitations remain in OLE repair for Rust. Specif- 245

ically, the APR community lacks effective ap- 246

proaches for both OLE data generation and Rust- 247

specific semantics learning. To address these chal- 248

lenges, we propose incorporating data generation 249

techniques and leveraging MIR features to enhance 250

the OLE repair performance of LLMs. 251

4 Proposed Method 252

An overview of the proposed approach is illustrated 253

in Figure 2. The approach comprises three key 254

components: a data generation module, a MIR 255

encoding module, and a tuning module. 256

4.1 Data Generation 257

A balanced training dataset is benefit to the per- 258

formance of LLMs. To this end, we leverage a 259

balanced function selection approach and inject the 260

compilation errors. 261

Initially, all functions and their corresponding 262

MIRs are extracted from the corpus crates. Since 263
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Language 
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MIR 
Similarity

Balanced 
Selection Modify

Functions

Erroneous
Function 

LLaRRA

Rust
Compiler

error[E0382]: use of moved value: f̀oo`
| fn ownership_error(foo: Box<i8>) {
|                    --- move occurs because ̀ foo  ̀has type `Box<i8>`, 
which does  not implement the `Copy  ̀trait
|     let bar = foo;
|               --- value moved here
|     let baz = foo;
|               ^^^ value used here after move

Compilation Error 

Crate

Crate

Crate

Crate

Fixed 
Rust

Function

§4.1

§4.2 §4.3

To address challenge❶

To address
challenge❷

Tuning 
Prompt 
Template

MIR

Graph
Embedding

Figure 2: Overview of Rust-doctor

OLE checkers operate on MIR, MIR similarity264

serves as a metric for assessing the balance of the265

OLE fixing training dataset. To achieve this, Rust-266

doctor utilizes CodeBERT (Feng et al., 2020) to267

encode the MIR code and k-means for clustering.268

Subsequently, Rust-doctor selects functions evenly269

from each cluster and mutates them using carefully270

designed Rust-specific mutation prompts including271

Statements Swapping, Statements Deleting, State-272

ments Inserting, Expression Changing, Lifetime273

Changing, Lifetime Adding and Reference Adding.274

In this module, Rust-doctor is tasked with col-275

lecting not only erroneous Rust functions but also276

their corresponding erroneous MIRs. However,277

rustc cannot emit MIRs for programs with compila-278

tion errors. To address this, we modified the order279

of rustc’s compilation passes to emit MIR before280

performing OLE checking.281

We successfully collected a total of 359K unique282

Rust OLE fixing samples, including 136K in MIR,283

183K in compilation error messages, and 40K in284

erroneous Rust functions. To evaluate the dataset,285

we conducted a sanitizer to measure code edge286

coverage of the OLE checkers. The results show287

that our generated dataset achieves 71.58% edge288

coverage of the OLE checkers, indicating that our289

dataset provides relatively comprehensive coverage290

of the core OLE checking algorithms.291

4.2 MIR Feature Extraction292

To extract semantic information from the MIR of293

Rust functions, we construct a control flow graph294

where each Basic Block (BB) serves as a node, and 295

the flow transfer between blocks forms an edge. 296

Based on this graph structure, we perform graph 297

embedding extraction. First, CodeBERT is used to 298

encode the code of each node into vector embed- 299

dings. Subsequently, a final feature vector repre- 300

senting the entire MIR is obtained by pooling all 301

the node features. 302

Formally, each basic block BB in the MIR con- 303

trol flow graph Xmir = {BB}, represents specific 304

statements or operations within a Rust program. 305

Let the textual representation of a node BBi be ti, 306

and its corresponding embedding vi is computed 307

as follows: 308

vi = CodeBERT(ti) (1) 309

Here, CodeBERT(·) denotes the function map- 310

ping input text to a fixed-dimensional vector. To 311

encode the entire control flow graph Xmir, we first 312

compute embeddings for all nodes BBi ∈ Xmir. 313

The set of embeddings is denoted as: 314

V = {v1,v2, . . . ,v|Xmir|} (2) 315

Next, we apply attention-based pooling to aggre- 316

gate these node embeddings into a single graph- 317

level representation g. Since the root cause of 318

OLEs are often localized to a specific area of code, 319

effectively capturing these local semantics is criti- 320

cal. Attention-based pooling allows the model to 321

assign higher importance to nodes that are more 322

4



Language Model 

Xmir

Hmir

Xq

Hq

Fixing Instruction with 
Rust Function and Compilation Errors

Fixed Rust Code

Xa

MIR Encoder

Figure 3: The overall architecture of LLaRRA

relevant for identifying such root causes. The at-323

tention weights αi for each node are computed as:324

αi =
exp(wT tanh(Wavi + ba))∑|V |
j=1 exp(w

T tanh(Wavj + ba))
(3)325

where Wa, ba, and w are learnable parameters326

of the attention mechanism. The MIR graph-level327

embedding Hmir is then obtained as a weighted328

sum of the node embeddings:329

Hmir =

|V|∑
i=1

αivi (4)330

This components helps extract semantic infor-331

mation from critical nodes and incorporates it as332

part of the input. It enables the model to focus on333

the most relevant nodes in the control flow graph,334

which are likely to explain the root causes of OLEs.335

4.3 Tuning336

The network architecture is illustrated in Figure 3.337

We select a base LLM and perform task-specific338

modifications to its structure. Specifically, we em-339

ploy Llama3.1-8b-instruct as our base LLM, as it340

is one of the most widely used instruction-tuned341

models among publicly available options. It offers342

competitive performance across diverse tasks and343

maintains an acceptable deployment cost, making344

it accessible to most research groups in the com-345

munity.346

To enhance the model’s capabilities, we intro-347

duce an additional semantic feature input module348

positioned before the first decoder. The output of349

this module is concatenated with the token embed-350

ding sequence as a prefix and then fed into the first351

decoder. This design enables the model to leverage 352

supplementary features, thereby improving its task 353

performance. Since Rust’s OLE checkers perform 354

on MIR, we incorporate MIR semantic informa- 355

tion as auxiliary input. This addition enhances 356

the model’s ability to understand specific errors, 357

ultimately aiming to improve its error repair perfor- 358

mance. 359

The first step involves designing the model’s in- 360

put. The primary input is a prompt, where the 361

instruction specifies the task for the model, and 362

the input provides the erroneous code and corre- 363

sponding compilation error message. The prompt 364

structure is as follows: 365
You are a highly skilled Rust developer Your task is to fix Rust 366
code that contains compilation errors and return only the 367
corrected complete Rust code. No explanations, comments, or extra 368
text output only the fixed code. Please fix the following code: 369
### Erroneous source code: 370

{function} 371
### Compilation error message: 372

{error message} 373
374

In addition to the prompt text, LLaRRA incorpo- 375

rates the MIR of the erroneous code as input to an 376

auxiliary semantic module. This combined input 377

design ensures comprehensive training by leverag- 378

ing both the textual information from the prompt 379

and the structural semantic features extracted from 380

the MIR encoder. Let Xq and Hmir represent the 381

textual input and MIR representation, respectively. 382

The combined input can be expressed as: 383

xcombined = fconcat(Hmir, fenc(Xq)) 384

where fenc denotes the textual encoder module 385

and fconcat represents the concatenation function 386

that merges the encoded textual representation and 387

the MIR representation. 388
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Once the input design is finalized, the train-389

ing objective is defined. To achieve efficient fine-390

tuning, we employ LoRA (Xu et al., 2024), which391

optimizes all network layers by introducing low-392

rank adaptations. The fine-tuning process mini-393

mizes the cross-entropy loss LCE for supervised394

fine-tuning (SFT). The objective is to ensure the395

generated output y closely matches the target ytrue.396

This can be expressed as:397

LCE = −
T∑
t=1

ytrue,t logP (yt | xcombined, θ)398

Here, T is the sequence length, θ represents the399

model parameters, and P (yt | xcombined, θ) denotes400

the predicted probability of the token at position401

t. This optimization enhances the model’s ability402

to generate accurate and context-aware responses,403

improving its robustness and precision in handling404

erroneous code.405

5 Experiments406

In this section, we evaluate Rust-doctor by fine-407

tuning a new model based on the LLama3.1-8b-408

instr from Meta (Meta, 2024). Our goal is to ad-409

dress the following research questions:410

• RQ1: How does LLaRRA perform compared411

with other state-of-the-art LLMs?412

• RQ2: How does each component of Rust-doctor413

contribute to LLaRRA’s fixing ability?414

• RQ3: What are the fixing capabilities overlap415

between LLaRRA and other LLMs?416

5.1 Experimental Settings417

Datasets. The dataset utilized in our experiments418

was generated using our proposed data generation419

module, based on the top 30 most-downloaded420

crates from crates.io (cra, 2017), the Rust com-421

munity’s official package registry. Each data sam-422

ple includes the pre-mutated Rust function as the423

ground truth and the mutated version as the model424

input, along with the corresponding MIR, erro-425

neous function’s file name, and compilation error426

message. After deduplication, the dataset com-427

prises a total of 9,467 Rust OLE samples. The428

dataset is split into training and testing subsets in429

an 8:2 ratio, with the training set designated for430

model training and the testing set reserved for per-431

formance evaluation.432

Compared Techniques. To evaluate the im-433

provement of the model’s performance compared 434

to that of existing techniques, we employ sev- 435

eral popular code models as comparative exper- 436

imental techniques: GPT-4-0613, GPT-4-turbo- 437

2024-04-09, GPT-4o-2024-08-06, GPT-4o-mini- 438

2024-07-18, DeepSeek-V3-2024-12-26 (Liu et al., 439

2024), DeepSeek-R1-2025-01-20 (DeepSeek-AI 440

et al., 2025), Gemini-2.0-flash-ex-2024-12 (Team 441

et al., 2023), Llama3.1-8b-instruct and Star- 442

Coder (Lozhkov et al., 2024b). A temperature of 443

0.5 was consistently applied across all models to 444

balance output determinism and randomness. 445

Implementation Details. In the data generation 446

module, we implemented an error injector using 447

Rust and Python. Specifically, the global con- 448

troller and core logic were developed in Rust, while 449

LLama3.1-8b-instr was employed as the model to 450

modify Rust functions. 451

The training process is configured with a se- 452

quence length cutoff of 2048 and a per-device batch 453

size of 4, with gradient accumulation over 8 steps. 454

The learning rate is set to 1.0e-4 and follows a co- 455

sine annealing schedule, with a warm-up ratio of 456

0.1 to gradually increase the learning rate during 457

the initial steps. LLaRRA is trained for 3 epochs 458

using mixed-precision (bf16) to optimize memory 459

usage and computational efficiency. These hyperpa- 460

rameters are carefully selected to balance training 461

performance and resource constraints, ensuring ef- 462

fective model optimization. 463

Metrics. In this study, we employ two metrics to 464

evaluate error repair performance. The first metric, 465

Pass@K, measures the percentage of generated pro- 466

grams that successfully compile among the top-K 467

returned results. However, while Pass@K is useful, 468

it has limitations in scenarios where erroneous lines 469

are simply removed rather than correctly edited (Li 470

et al., 2022a). To address this, we introduce a sec- 471

ond metric, Acc@K, which calculates the percent- 472

age of correct results present in the top-K returned 473

outputs. For all baseline techniques, K is set to 1, 474

3, and 5, except for DeepSeek-R1. Since DeepSeek- 475

R1 does not support multiple responses per query 476

and employs CoT (Wei et al., 2022), which involves 477

multiple conversations, K is set to 1 for this model. 478

5.2 Comparing with Other LLMs (RQ1) 479

LLaRRA achieves the highest scores. As shown 480

in Figure 4, across all baseline models in the 481

Rust OLE repair task, LLaRRA stands out by 482

achieving the highest average Pass@K and Acc@K 483
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Pass@1 Pass@3 Pass@5 Acc@1 Acc@3 Acc@5
GPT-4 22.02 24.5 25.4 13.67 15.68 16.47
GPT-4-turbo 22.8 25.01 25.65 16.57 18.89 19.79
GPT-4o 23.54 25.65 26.91 21.56 22.74 23.91
GPT-4o-mini 25.7 27.49 27.97 19.79 21.37 21.85
DeepSeek-V3 32.61 33.3 33.51 26.65 27.28 27.65
DeepSeek-R1 38.01 0 0 29.6 0 0
Gemini 24.25 25.78 26.3 19.08 20.35 20.88
StarCoder 16.53 24.45 26.77 12.67 19.01 21.96
Base 23.91 27.7 28.55 16.57 20.21 21.48
LLaRRA 50.62 54.28 55.35 47.9 52.99 54
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Figure 4: Comparing with other LLMs.

scores. Despite having only 8 billion parame-484

ters—the smallest among the benchmarked mod-485

els—LLaRRA outperforms all existing popular486

LLMs, including the code-focused model Star-487

Coder. Notably, it demonstrates a significant per-488

formance margin over the state-of-the-art reasoning489

model, DeepSeek-R1. These experimental results490

underscore the effectiveness of our proposed ap-491

proach in enhancing LLM performance for the Rust492

OLE repair task.493

The patches generated by LLaRRA are prac-494

tical. To repair a compilation error, the easiest495

approach might be to delete the line containing the496

erroneous code. However, this solution is gener-497

ally unacceptable in practice. As a result, a model498

with a high Pass@K score might produce more499

unexpected patches if it has a low Acc@K score.500

As shown in Figure 4, the average difference be-501

tween Pass@5 and Acc@5 across other methods502

is 5.5%. In contrast, LLaRRA achieves a signif-503

icantly smaller difference of 0.46%. This result504

demonstrates that patches generated by LLaRRA505

are highly likely to be both expected and correct.506

Models struggle to improve performance by in-507

creasing sample number K. From Pass@1 to508

Pass@5, the performance of all models does not in-509

crease significantly, as demonstrated in Figure 4. In510

most cases, issues are resolved within the Pass@1511

setting. Future work could explore methods to en-512

able models to learn from iterative queries, thereby513

improving overall performance as K increases.514

5.3 Ablation Study (RQ2)515

To distinguish the contributions of balanced data516

generation and enhanced MIR feature, we conduct517

Table 1: Ablation experiment results.

Models
Pass@K (%) Acc@K (%)

Pass@1 Pass@3 Pass@5 Acc@1 Acc@3 Acc@5

Base 23.91 27.70 28.55 16.57 20.21 21.48
LLaRRAM 44.33 46.70 47.44 43.87 46.19 46.98
LLaRRAB 31.65 37.05 39.21 28.42 33.09 35.61
LLaRRA 50.62 54.28 55.35 47.90 52.99 54.00

an ablation analysis by altering each module as 518

follows: 519

• LLaRRAM : Without employing the MIR encoder 520

for enhanced feature extraction. Instead, this 521

variant uses only pure prompt tuning instructions 522

along with Rust functions and compilation error 523

messages. 524

• LLaRRAB: To assess the impact of the balanced 525

data generation component, we remove the k- 526

means clustering and balanced selection strate- 527

gies. As a result, LLaRRAB is fine-tuned with the 528

base model using a randomly generated tuning 529

dataset. 530

In Table 1, the results highlight the effective- 531

ness of our proposed method. Both modified mod- 532

els outperform the base model but perform worse 533

than LLaRRA. Specifically, LLaRRAM resolves 534

18.89% more OLEs than the base model in terms of 535

Pass@5, demonstrating that the enhanced MIR fea- 536

ture significantly boosts repair performance. The 537

removal of balance data generation also leads to 538

decrease in all the metrics, emphasizing the im- 539

portance of balance data for OLE repair. Overall, 540

the complete LLaRRA is better than all other vari- 541

ants, further justifying the effectiveness of the com- 542

bination of generated dataset and enhanced MIR 543

feature. 544
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Figure 5: OLE coverage.

5.4 Fixing Capabilities Analysis (RQ3)545

To reveal the overlap in fixing capabilities between546

LLaRRA and other LLMs, we analyze the fixed547

results using two distinct distributions. First, we548

calculate the OLE coverage to quantify the degree549

of complementarity offered by other models. Sec-550

ond, we classify all compilation errors into four551

categories and assess the fixing capabilities of se-552

lected LLMs for each error type.553

LLaRRA fixes the most unique OLEs We eval-554

uate four models from different organizations.555

Among them, GPT-4o-mini, developed by OpenAI,556

delivers the best performance within the GPT se-557

ries in RQ1. Additionally, we select DeepSeek-R1558

from the DeepSeek series, as its incorporation of559

CoT enhances reasoning capabilities. The other560

two models are Gemini and LLaRRA.561

As shown in Figure 5, LLaRRA fixes the most562

unique OLEs (167), followed by Gemini. The ex-563

perimental results demonstrate that our approach564

enables LLMs to better understand the deep se-565

mantics of Rust OLEs, significantly outperforming566

reasoning model and close-source LLMs. Further-567

more, these results reveal the potential for improv-568

ing OLE repair performance through output fusion569

across distinct models.570

Error types and its degree of diffculty. We cate-571

gorize all compilation error codes into the follow-572

ing four types:573

• Lifetime Tag (T1): An error code is categorized574

as a Lifetime Tag if the standard patch in the575

official error specification involves a lifetime tag.576

• Variable Lifetime Mismatch (T2): An error code577

belongs to Variable Lifetime Mismatch if there578

is a mismatch between the lifetimes of two vari-579

ables, and the error does not fall under T1.580

Figure 6: The OLE fixing radar of models

• Borrow of Ownership (T3): An error code is cat- 581

egorized as Borrow of Ownership if the error 582

involves the borrowing of ownership between 583

two variables within a function body. 584

• Move of Ownership (T4): An error code belongs 585

to Move of Ownership if it involves a move 586

within a function and does not fall under T3. 587

As shown in Figure 6, LLaRRA outperforms 588

most other models, addressing a significant por- 589

tion of the errors fixed by OLE. The only exception 590

is error type T2, where DeepSeek-R1 surpasses 591

LLaRRA due to its superior reasoning capabilities, 592

enabling it to better infer relationships and con- 593

straints between variable lifetimes. 594

6 Conclusion 595

In this study, we propose Rust-doctor, a novel 596

data generation and enhanced feature approach de- 597

signed to automatically generate Rust’s OLE for 598

fine-tuning large language models (LLMs). Our 599

approach aims to deliver high-quality OLE data 600

to benefit the Rust program automatic repair com- 601

munity. Within the dataset, we successfully col- 602

lected a total of 359K unique Rust OLE fixing 603

samples, comprising 136K in MIR, 183K in com- 604

pilation error messages, and 40K in erroneous Rust 605

functions. Additionally, using the generated train- 606

ing dataset, we fine-tune and release a special- 607

ized LLM, LLaRRA. Experimental results demon- 608

strate that LLaRRA outperforms all popular base- 609

line LLMs, highlighting its potential as an effective 610

OLE repair tool for the Rust programming lan- 611

guage community. 612
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7 Limitations613

Regular syntax errors. We focus exclusively614

on addressing the challenges of repairing OLEs,615

without considering regular syntax errors. Prior616

work (Deligiannis et al., 2024) has demonstrated617

that regular syntax errors can be effectively re-618

solved. Nonetheless, this limitation of our work619

remains.620

Generalization. We evaluate Rust-doctor on the621

top 30 most downloaded crates. As these crates do622

not cover the full spectrum of coding scenarios, the623

generalization capability of the trained model may624

be limited. Nevertheless, we believe our methodol-625

ogy is applicable to a broader range of crates and626

has the potential to achieve better generalization627

performance.628

Real-world errors. Our experiments rely heavily629

on a synthesized dataset generated by an LLM, in630

which compilation errors have been artificially in-631

jected. Although modern LLMs exhibit human-like632

behavior, it remains uncertain whether the injected633

errors faithfully reflect real-world Rust OLEs. This634

uncertainty may limit the credibility of our results635

and the practical applicability of our approach.636
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