Rust-doctor: Enhanced Feature for Rust Ownership and Lifetime Repair
with Balanced Training Data Generation

Anonymous ACL submission

Abstract

As a relatively new programming language,
Rust has gained significant popularity in recent
years due to its safety features during compi-
lation. However, Rust developers often face
challenges stemming from its strict compila-
tion checks due to the steep learning curve of
safety rules. To make matters worse, the lack of
training data and the unique semantics of Rust
lead to poor performance in learning-based au-
tomated program repair techniques. To address
these challenges, we propose a novel error in-
jection approach to generate a balanced training
dataset and leverage the Mid-level Intermediate
Representation (MIR) as enhanced features for
Rust’s unique compilation error repair. Using
these innovations, we fine-tuned a new code
model, LLaRRA: Large Language and Rust
Repair Assistant. Experimental results demon-
strate that LLaRRA significantly outperforms
state-of-the-art models in terms of Pass@K and
Acc@K.

1 Introduction

Rust is a newborn system programming language
with high performance and memory safety (Rus,
2024). To achieve these goals, Rust provides strict
static rule checkers in compile-time to prevent
plausible illegal memory access. Ownership and
lifetime errors (OLEs) may occur when the code
violates the corresponding rules. Benefits from
both performance and safety advantages, Rust has
been used in many safety-critical fundamental soft-
ware (ann, 2023; Redox, 2023; Levy et al., 2017,
Servo, 2023; Asay, 2020). However, Rust’s check-
ers are a double-edge sword. Rigorous compile-
time checking indeed serves fancy safety features
while actually sacrifices the programming capabil-
ity. Therefore, Rust developers struggle to fight
with the official Rust compiler (rustc), and keep
the loop of fixing OLEs and wait to check whether
compilation success. To make things worse, rustc

fails to provide enough information for develop-
ers (Zhu et al., 2022). Thus, to help the Rust devel-
opers, there is an emergency to automatically fix
the Rust OLEs.

Recent years, many automatically program
repair (APR) techniques are proposed to fix
the program fault, including learning-based and
unlearning-based approaches (Chen et al., 2021;
Li et al., 2020, 2022b; Chi et al., 2023; Li et al.,
2022a; Huang et al., 2023; Tufano et al., 2019;
Wang et al., 2024; Zhang et al., 2023). Specit-
ically, Yang et al. (Yang et al., 2024) proposed
a rule-based approach, Rust-lancet, to fix own-
ership errors in Rust. However, this method is
limited to ownership errors and is difficult to ex-
tend to lifetime errors. To maximize the effec-
tiveness in fixing OLEs, learning-based techniques
are preferable—assuming the availability of high-
quality training data. Unfortunately, due to Rust
as a relatively fresh programming language com-
pared to the mainstream languages (C/C++ and
Java) and few developers tend to upload uncom-
pilable Rust program, lacking of enough compila-
tion errors as training data, even the most powerful
large language models (LLMs) cannot repair the
OLE ideally. Hence, the challenge @ to enhance
learning-based techniques is how to obtain pairs
of high-quality uncompilable and compilable pro-
grams as training data. Existing work (Ahmed
et al., 2018) usually collect data from students’
coding assignments for mainstream programming
languages, while Rust is not broadly introduced to
school yet. The challenge @ is how to learn the un-
derlying Rust program representation where OLE
checkers are performed. These checkers analyze
program in Intermediate Representation (IR) in-
stead of source code. Thus, using pure Rust source
code while lack of this IR feature can limit LLMs
performance of OLE repair.

In this paper, we propose Rust-doctor to gen-
erate OLE from real-world Rust projects to im-

prove the OLE fixing performance of LLMs with
enhanced features. To address challenge @, we
propose an OLE injection framework to generate
arbitrarily scale error dataset. In our framework,
we use existing popular third-party libraries (crates)
as a corpus and leverage LL.Ms to mutate compi-
lable Rust functions using error-specific prompts.
To keep the diversity of dataset, these functions are
selected based on code similarity. To tackle chal-
lenge @, we introduce rustc’s MIR (MIR, 2024) as
enhanced features for OLE repair. In Rust, MIR is
designed to support more precise static checking,
and the OLE is raised from MIR after the corre-
sponding checking algorithm performed. Given
the importance of MIR, we utilize an auto-encoder
technique to capture its representation automati-
cally and leverage the feature to improve repair
capability of LLMs.

Overall, Rust-doctor takes multiple crates and
uses k-means (Ahmed et al., 2020) to obtain func-
tion categories. After that, Rust-doctor selects a
Rust function from each category evenly, conse-
quently automatically mutates it by LLMs to trig-
ger OLE and save the mutated function if the error
is we want. Subsequently, a control flow graph is
constructed based on MIR and its structure infor-
mation is captured by a graph encoder. Finally, we
fine-tune LLMs with Rust source code and features
produced to fix Rust’s OLE. The fine-tuned models
not only enhanced by large scale high quality train-
ing data, but also learn the program representation
where the OLE checkers are performed to fix OLE
better.

The main contributions are as follows:

* A high-quality Rust OLE dataset and benchmark.
We are the first to propose an automatic Rust
OLE injection framework based on real-world
Rust projects. Furthermore, we construct an open
source high-quality Rust OLE dataset and bench-
mark for the OLE repair community.

* Feature exploration for OLE fixing. We explore
the program representation features OLE check-
ers performed on. The features provide direct
control flow information, enhancing the LLMs
capabilities for fixing OLE.

* Large language models for OLE fixing. We imple-
ment and evaluate our approach as Rust-doctor
and fine-tune an LLM LLaRRA based on the
generated dataset with enhanced features. The
experimental results show that LLaRRA signif-
icantly outperforms the state-of-the-art model,

fn ownership_error(foo: Box<i8>) {
let bar = foo;

}

error: use of moved
value: “foo’

fn lifetime_error<'a, 'b>(foo: &'a i8,

bar:[&'b i8) ->|&'a i8| {

return bar;

}

error: lifetime may
not live long enough

Figure 1: Ownership and Lifetime Errors

with Pass@K increasing by 12.61% and Acc@K
increasing by 18.30%.

* Open-source. Upon publication, we will release
the following assets to the public: the gener-
ated OLE repair data, the codebase, and the
model checkpoints. Some pre-released assets
are already available at https://sites.google.
com/view/rustdoctor/index.

2 Preliminaries

2.1 Ownership and Lifetime Errors

There are two Rust-specific categories of compi-
lation errors: ownership errors and lifetime errors
(collectively referred to as OLE).

According to ownership rules, each value has a
unique owner, typically a variable. When owner-
ship is moved from one variable to another, the orig-
inal variable becomes invalid. Attempting to use a
moved value results in a compile-time ownership
error. In Figure 1, foo is a Box<i8>, a heap-allocated
value. After the move to bar, the ownership of foo
1s moved, and foo becomes invalid. The second as-
signment to baz attempts to use foo again, leading
to a compilation error because the ownership has
already been moved.

While ownership governs who owns a value, life-
times track how long references are valid. Rust’s
compiler uses lifetimes to ensure that all references
are valid during their use and that no reference out-
lives the data it points to. A lifetime error occurs
when the compiler cannot guarantee that a returned
reference will remain valid. As shown in Figure 1,
the return type (&'a) declares that the returned refer-
ence must live at least as long as lifetime 'a. How-
ever, the function attempts to return bar, which has
lifetime 'b. If 'b is shorter than 'a, the returned

https://sites.google.com/view/rustdoctor/index
https://sites.google.com/view/rustdoctor/index
https://sites.google.com/view/rustdoctor/index

reference could point to invalid memory, so the
compiler raises a lifetime mismatch error.

2.2 Problem Formulation

Rust-doctor aims to address Rust OLE compila-
tion errors by learning program semantics through
fine-tuning techniques. Formally, let p.,, represent
a Rust program with OLEs from a dataset D. Its
associated compilation error message and emitted
MIR, provided by rustc, are denoted as M., and
1T, respectively. The objective of Rust-doctor
is to learn a function f from the dataset D that
takes (perr, Merr, i) as input and produces a cor-
rected version Peorrect, Which can be successfully
compiled by rustc. This process can be formally
expressed as:

DPcorrect = f(perra Merr, irm)

To this end, we aim to generate a
tuning dataset consisting of paired data
<pcorrect7 (pe’r‘r7 Merr, 1rm)> Given the pro-
portion of the i-th OLE type, denoted as p;, the
primary goal of the generation process, aimed at
balancing the dataset, can be expressed as:

K
Maximize FEntropy(D) = — sz’ logy pi
i=1

3 Related Work

In recent years, numerous works (Huang et al.,
2023) have been proposed to repair buggy code.
Tufano et al.(Tufano et al., 2019) introduced a code
abstraction technique to repair buggy code using
neural machine translation. Following this, several
end-to-end approaches(Chen et al., 2021; Li et al.,
2020, 2022b; Chi et al., 2023; Li et al., 2022a)
were developed to enhance model performance in
code fixing tasks. Additionally, some non-end-to-
end and non-learning-based methods have been
proposed. RATCHET (Wang et al., 2024) intro-
duced a dual deep learning-based automated pro-
gram repair tool, with one model for localization
and another for repair. OrdinalFix (Zhang et al.,
2023) focuses on ensuring output correctness with
minimal modifications by leveraging shortest-path
context-free language reachability with attribute
checking. Notably, Yang et al. (Yang et al., 2024)
were the first to address Rust’s ownership-rule vio-
lations using rule-based fixing strategies. In the era
of large language models (LLMs), Ma et al. (Ma
et al., 2024) conducted an empirical study using

four probing tasks to evaluate the models’ capabili-
ties in learning code syntax and semantics. Their
results demonstrate that while code models excel at
learning code syntax, even state-of-the-art LLMs
require further improvement in understanding and
learning code semantics.

On the other hand, while learning-based tech-
niques have achieved a significant milestone in
automated program repair, they still suffer from
limitations when applied to tasks with insufficient
training data. Over the past years, many researchers
have concentrated on advancing automated data
generation methods by LLMs or Pre-trained Lan-
guage Models (PLMs). Meng et al.(Meng et al.,
2022) proposed a straightforward approach that
leverages a unidirectional PLM to generate class-
conditioned texts guided by prompts. These gen-
erated texts are then used as training data to fine-
tune a bidirectional PLM. To generate diverse and
attribute-rich data, Yu et al.(Yu et al., 2023) ex-
plored the use of diversely attributed prompts to
create training data with LLMs. Moreover, numer-
ous code models (Roziere et al., 2023; Li et al.,
2023; Muennighoff et al., 2024; Lozhkov et al.,
2024a) have been fine-tuned using techniques such
as code generation, data distillation, and online
data collection, but they are not considering Rust’s
OLE repair.

In summary, although existing studies have made
progress in improving the performance of APR,
limitations remain in OLE repair for Rust. Specif-
ically, the APR community lacks effective ap-
proaches for both OLE data generation and Rust-
specific semantics learning. To address these chal-
lenges, we propose incorporating data generation
techniques and leveraging MIR features to enhance
the OLE repair performance of LLMs.

4 Proposed Method

An overview of the proposed approach is illustrated
in Figure 2. The approach comprises three key
components: a data generation module, a MIR
encoding module, and a tuning module.

4.1 Data Generation

A balanced training dataset is benefit to the per-
formance of LLMs. To this end, we leverage a
balanced function selection approach and inject the
compilation errors.

Initially, all functions and their corresponding
MIRs are extracted from the corpus crates. Since

Similarity

. | Balanced

Selection =1, nguage

Model

1

I

Modify . Erroneous | |
Function I

I

1

1

___________ 1
§4.2 To address "
challenge@ |

Graph
Embedding

——— [IEL = Rust

Rust

Tuning
Prompt
Template

Fixed

Function

T o = = e e e e e

Figure 2: Overview of Rust-doctor

OLE checkers operate on MIR, MIR similarity
serves as a metric for assessing the balance of the
OLE fixing training dataset. To achieve this, Rust-
doctor utilizes CodeBERT (Feng et al., 2020) to
encode the MIR code and k-means for clustering.
Subsequently, Rust-doctor selects functions evenly
from each cluster and mutates them using carefully
designed Rust-specific mutation prompts including
Statements Swapping, Statements Deleting, State-
ments Inserting, Expression Changing, Lifetime
Changing, Lifetime Adding and Reference Adding.

In this module, Rust-doctor is tasked with col-
lecting not only erroneous Rust functions but also
their corresponding erroneous MIRs. However,
rustc cannot emit MIRs for programs with compila-
tion errors. To address this, we modified the order
of rustc’s compilation passes to emit MIR before
performing OLE checking.

We successfully collected a total of 359K unique
Rust OLE fixing samples, including 136K in MIR,
183K in compilation error messages, and 40K in
erroneous Rust functions. To evaluate the dataset,
we conducted a sanitizer to measure code edge
coverage of the OLE checkers. The results show
that our generated dataset achieves 71.58% edge
coverage of the OLE checkers, indicating that our
dataset provides relatively comprehensive coverage
of the core OLE checking algorithms.

4.2 MIR Feature Extraction

To extract semantic information from the MIR of
Rust functions, we construct a control flow graph

where each Basic Block (BB) serves as a node, and
the flow transfer between blocks forms an edge.
Based on this graph structure, we perform graph
embedding extraction. First, CodeBERT is used to
encode the code of each node into vector embed-
dings. Subsequently, a final feature vector repre-
senting the entire MIR is obtained by pooling all
the node features.

Formally, each basic block BB in the MIR con-
trol flow graph X,,;, = { BB}, represents specific
statements or operations within a Rust program.
Let the textual representation of a node BB; be t;,
and its corresponding embedding v; is computed
as follows:

v; = CodeBERT(¢;) €))

Here, CodeBERT() denotes the function map-
ping input text to a fixed-dimensional vector. To
encode the entire control flow graph X,,,;,, we first
compute embeddings for all nodes BB; € X .
The set of embeddings is denoted as:

V:{V17v27"'7v|Xmir|} (2)

Next, we apply attention-based pooling to aggre-
gate these node embeddings into a single graph-
level representation g. Since the root cause of
OLE:s are often localized to a specific area of code,
effectively capturing these local semantics is criti-
cal. Attention-based pooling allows the model to
assign higher importance to nodes that are more

Language Model

I'Imir
X

Fixed Rust Code

2,

X Fixing Instruction with
q Rust Function and Compilation Errors

Figure 3: The overall architecture of LLaRRA

relevant for identifying such root causes. The at-
tention weights «; for each node are computed as:

exp(w! tanh(W,v; + b))
Z'}L’l exp(w’tanh(W,v; + b))

3)

oy =

where W, b,, and w are learnable parameters
of the attention mechanism. The MIR graph-level
embedding H ;. is then obtained as a weighted
sum of the node embeddings:

VI
Huir = § Q;Vj
i=1

This components helps extract semantic infor-
mation from critical nodes and incorporates it as
part of the input. It enables the model to focus on
the most relevant nodes in the control flow graph,
which are likely to explain the root causes of OLEs.

4

4.3 Tuning

The network architecture is illustrated in Figure 3.
We select a base LLM and perform task-specific
modifications to its structure. Specifically, we em-
ploy Llama3.1-8b-instruct as our base LLM, as it
is one of the most widely used instruction-tuned
models among publicly available options. It offers
competitive performance across diverse tasks and
maintains an acceptable deployment cost, making
it accessible to most research groups in the com-
munity.

To enhance the model’s capabilities, we intro-
duce an additional semantic feature input module
positioned before the first decoder. The output of
this module is concatenated with the token embed-
ding sequence as a prefix and then fed into the first

decoder. This design enables the model to leverage
supplementary features, thereby improving its task
performance. Since Rust’s OLE checkers perform
on MIR, we incorporate MIR semantic informa-
tion as auxiliary input. This addition enhances
the model’s ability to understand specific errors,
ultimately aiming to improve its error repair perfor-
mance.

The first step involves designing the model’s in-
put. The primary input is a prompt, where the
instruction specifies the task for the model, and
the input provides the erroneous code and corre-
sponding compilation error message. The prompt

structure is as follows:

You are a highly skilled Rust developer Your task is to fix Rust
code that contains compilation errors and return only the
corrected complete Rust code. No explanations, comments, or extra
text output only the fixed code. Please fix the following code:
Erroneous source code:

{function}
Compilation error message:

{error message}

In addition to the prompt text, LLaRRA incorpo-
rates the MIR of the erroneous code as input to an
auxiliary semantic module. This combined input
design ensures comprehensive training by leverag-
ing both the textual information from the prompt
and the structural semantic features extracted from
the MIR encoder. Let X, and H,,;, represent the
textual input and MIR representation, respectively.
The combined input can be expressed as:

Lcombined = fconcat (Hmir) fenc (Xq))

where f.nc denotes the textual encoder module
and fconcat TEpresents the concatenation function
that merges the encoded textual representation and
the MIR representation.

Once the input design is finalized, the train-
ing objective is defined. To achieve efficient fine-
tuning, we employ LoRA (Xu et al., 2024), which
optimizes all network layers by introducing low-
rank adaptations. The fine-tuning process mini-
mizes the cross-entropy loss Lcg for supervised
fine-tuning (SFT). The objective is to ensure the
generated output y closely matches the target yeye.
This can be expressed as:

T

ECE = - Z Ytrue,t log P(yt ’ Zcombined 0)
t=1

Here, T is the sequence length, 6 represents the
model parameters, and P(y; | Zcombined, &) denotes
the predicted probability of the token at position
t. This optimization enhances the model’s ability
to generate accurate and context-aware responses,
improving its robustness and precision in handling
erroneous code.

5 Experiments

In this section, we evaluate Rust-doctor by fine-
tuning a new model based on the LLama3.1-8b-
instr from Meta (Meta, 2024). Our goal is to ad-
dress the following research questions:

* RQ1: How does LLaRRA perform compared
with other state-of-the-art LLMs?

* RQ2: How does each component of Rust-doctor
contribute to LLaRRA’s fixing ability?

* RQ3: What are the fixing capabilities overlap
between LLaRRA and other LLMs?

5.1 Experimental Settings

Datasets. The dataset utilized in our experiments
was generated using our proposed data generation
module, based on the top 30 most-downloaded
crates from crates.io (cra, 2017), the Rust com-
munity’s official package registry. Each data sam-
ple includes the pre-mutated Rust function as the
ground truth and the mutated version as the model
input, along with the corresponding MIR, erro-
neous function’s file name, and compilation error
message. After deduplication, the dataset com-
prises a total of 9,467 Rust OLE samples. The
dataset is split into training and testing subsets in
an 8:2 ratio, with the training set designated for
model training and the testing set reserved for per-
formance evaluation.

Compared Techniques. To evaluate the im-

provement of the model’s performance compared
to that of existing techniques, we employ sev-
eral popular code models as comparative exper-
imental techniques: GPT-4-0613, GPT-4-turbo-
2024-04-09, GPT-40-2024-08-06, GPT-40-mini-
2024-07-18, DeepSeek-V3-2024-12-26 (Liu et al.,
2024), DeepSeek-R1-2025-01-20 (DeepSeek-Al
et al., 2025), Gemini-2.0-flash-ex-2024-12 (Team
et al., 2023), Llama3.1-8b-instruct and Star-
Coder (Lozhkov et al., 2024b). A temperature of
0.5 was consistently applied across all models to
balance output determinism and randomness.

Implementation Details. In the data generation
module, we implemented an error injector using
Rust and Python. Specifically, the global con-
troller and core logic were developed in Rust, while
LLama3.1-8b-instr was employed as the model to
modify Rust functions.

The training process is configured with a se-
quence length cutoff of 2048 and a per-device batch
size of 4, with gradient accumulation over 8 steps.
The learning rate is set to 1.0e-4 and follows a co-
sine annealing schedule, with a warm-up ratio of
0.1 to gradually increase the learning rate during
the initial steps. LLaRRA is trained for 3 epochs
using mixed-precision (bf16) to optimize memory
usage and computational efficiency. These hyperpa-
rameters are carefully selected to balance training
performance and resource constraints, ensuring ef-
fective model optimization.

Metrics. In this study, we employ two metrics to
evaluate error repair performance. The first metric,
Pass@K, measures the percentage of generated pro-
grams that successfully compile among the top-K
returned results. However, while Pass@K is useful,
it has limitations in scenarios where erroneous lines
are simply removed rather than correctly edited (Li
et al., 2022a). To address this, we introduce a sec-
ond metric, Acc@K, which calculates the percent-
age of correct results present in the top-K returned
outputs. For all baseline techniques, K is set to 1,
3, and 5, except for DeepSeek-R1. Since DeepSeek-
R1 does not support multiple responses per query
and employs CoT (Wei et al., 2022), which involves
multiple conversations, K is set to 1 for this model.

5.2 Comparing with Other LLMs (RQ1)

LLaRRA achieves the highest scores. As shown
in Figure 4, across all baseline models in the
Rust OLE repair task, LLaRRA stands out by
achieving the highest average Pass@K and Acc@K

I 245
I 25.01
25.65
27.49
333
0
25.78
24.45
27.7
I 5 4. 28

BN w s @
o &8 8 & & &
22.02
22.8
23.54
25.7

32.61
38.01
24.25
16.53
23.91
I 50.62

Pass@1
HGPT-4 22.02 24.5 25.4
B GPT-4-turbo 22.8 25.01
GPT-40 23.54 25.65
W GPT-40-mini 25.7 27.49
W DeepSeek-V3 32.61 333
M DeepSeek-R1 38.01 0)
Gemini 24.25 25.78 26.3
StarCoder 16.53 24.45 26.77
Base 23.91 27.7 28.55
W LLaRRA 50.62 54.28 55.35

Figure 4: Comparing with other LLMs.

scores. Despite having only 8 billion parame-
ters—the smallest among the benchmarked mod-
els—LLaRRA outperforms all existing popular
LLMs, including the code-focused model Star-
Coder. Notably, it demonstrates a significant per-
formance margin over the state-of-the-art reasoning
model, DeepSeek-R1. These experimental results
underscore the effectiveness of our proposed ap-
proach in enhancing LLM performance for the Rust
OLE repair task.

The patches generated by LLaRRA are prac-
tical. To repair a compilation error, the easiest
approach might be to delete the line containing the
erroneous code. However, this solution is gener-
ally unacceptable in practice. As a result, a model
with a high Pass@K score might produce more
unexpected patches if it has a low Acc@K score.
As shown in Figure 4, the average difference be-
tween Pass@5 and Acc@5 across other methods
is 5.5%. In contrast, LLaRRA achieves a signif-
icantly smaller difference of 0.46%. This result
demonstrates that patches generated by LLaRRA
are highly likely to be both expected and correct.

Models struggle to improve performance by in-
creasing sample number K. From Pass@1 to
Pass @35, the performance of all models does not in-
crease significantly, as demonstrated in Figure 4. In
most cases, issues are resolved within the Pass@1
setting. Future work could explore methods to en-
able models to learn from iterative queries, thereby
improving overall performance as K increases.

5.3 Ablation Study (RQ2)

To distinguish the contributions of balanced data
generation and enhanced MIR feature, we conduct

Table 1: Ablation experiment results.

Models | Pass@K (%) | Acc@K (%)

| Pass@1 | Pass@3 | Pass@5 | Acc@1 | Acc@3 | Acc@5
Base 2391 [2770 |2855 |1657 |2021 |21.48
LLaRRA); | 44.33 | 4670 | 47.44 | 4387 | 4619 | 46.98
LLaRRAp | 31.65 | 37.05 | 3921 2842 | 33.09 | 35.61
LLaRRA | 50.62 | 5428 |5535 |47.90 |5299 | 54.00

an ablation analysis by altering each module as
follows:

e LLaRRA): Without employing the MIR encoder
for enhanced feature extraction. Instead, this
variant uses only pure prompt tuning instructions
along with Rust functions and compilation error
messages.

* LLaRRAR: To assess the impact of the balanced
data generation component, we remove the k-
means clustering and balanced selection strate-
gies. As aresult, LLaRRA p is fine-tuned with the
base model using a randomly generated tuning
dataset.

In Table 1, the results highlight the effective-
ness of our proposed method. Both modified mod-
els outperform the base model but perform worse
than LLaRRA. Specifically, LLaRRA); resolves
18.89% more OLEs than the base model in terms of
Pass@5, demonstrating that the enhanced MIR fea-
ture significantly boosts repair performance. The
removal of balance data generation also leads to
decrease in all the metrics, emphasizing the im-
portance of balance data for OLE repair. Overall,
the complete LLaRRA is better than all other vari-
ants, further justifying the effectiveness of the com-
bination of generated dataset and enhanced MIR
feature.

GPT-40-mini

PR

DeepSeek-R1 Gemini

Figure 5: OLE coverage.

5.4 Fixing Capabilities Analysis (RQ3)

To reveal the overlap in fixing capabilities between
LLaRRA and other LLMs, we analyze the fixed
results using two distinct distributions. First, we
calculate the OLE coverage to quantify the degree
of complementarity offered by other models. Sec-
ond, we classify all compilation errors into four
categories and assess the fixing capabilities of se-
lected LLMs for each error type.

LLaRRA fixes the most unique OLEs We eval-
uvate four models from different organizations.
Among them, GPT-4o-mini, developed by OpenAl,
delivers the best performance within the GPT se-
ries in RQ1. Additionally, we select DeepSeek-R1
from the DeepSeek series, as its incorporation of
CoT enhances reasoning capabilities. The other
two models are Gemini and LLaRRA.

As shown in Figure 5, LLaRRA fixes the most
unique OLEs (167), followed by Gemini. The ex-
perimental results demonstrate that our approach
enables LLMs to better understand the deep se-
mantics of Rust OLEs, significantly outperforming
reasoning model and close-source LLMs. Further-
more, these results reveal the potential for improv-
ing OLE repair performance through output fusion
across distinct models.

Error types and its degree of diffculty. We cate-
gorize all compilation error codes into the follow-
ing four types:

e Lifetime Tag (T1): An error code is categorized
as a Lifetime Tag if the standard patch in the
official error specification involves a lifetime tag.

* Variable Lifetime Mismatch (T2): An error code
belongs to Variable Lifetime Mismatch if there
is a mismatch between the lifetimes of two vari-
ables, and the error does not fall under T1.

Variable Lifetime Mismatch (T2)

/ ®

/
/ g
[

Borrow of / —
\
\

Ownership (T3) \
\ .
\\\
T~

0s

03 \
\\)
Lifetime

Tag (T1)

\
|
|

/

AN
/
/
//

Move ome?e?ship (T4)
—— GPT-40-MINI — Gemini — LLaRRA
DeepSeek-R1 —— Base

-

Figure 6: The OLE fixing radar of models

* Borrow of Ownership (T3): An error code is cat-
egorized as Borrow of Ownership if the error
involves the borrowing of ownership between
two variables within a function body.

* Move of Ownership (T4): An error code belongs
to Move of Ownership if it involves a move
within a function and does not fall under T3.

As shown in Figure 6, LLaRRA outperforms
most other models, addressing a significant por-
tion of the errors fixed by OLE. The only exception
is error type T2, where DeepSeek-R1 surpasses
LLaRRA due to its superior reasoning capabilities,
enabling it to better infer relationships and con-
straints between variable lifetimes.

6 Conclusion

In this study, we propose Rust-doctor, a novel
data generation and enhanced feature approach de-
signed to automatically generate Rust’s OLE for
fine-tuning large language models (LLMs). Our
approach aims to deliver high-quality OLE data
to benefit the Rust program automatic repair com-
munity. Within the dataset, we successfully col-
lected a total of 359K unique Rust OLE fixing
samples, comprising 136K in MIR, 183K in com-
pilation error messages, and 40K in erroneous Rust
functions. Additionally, using the generated train-
ing dataset, we fine-tune and release a special-
ized LLM, LLaRRA. Experimental results demon-
strate that LLaRRA outperforms all popular base-
line LLMs, highlighting its potential as an effective
OLE repair tool for the Rust programming lan-
guage community.

7 Limitations

Regular syntax errors. We focus exclusively
on addressing the challenges of repairing OLE:s,
without considering regular syntax errors. Prior
work (Deligiannis et al., 2024) has demonstrated
that regular syntax errors can be effectively re-
solved. Nonetheless, this limitation of our work
remains.

Generalization. We evaluate Rust-doctor on the
top 30 most downloaded crates. As these crates do
not cover the full spectrum of coding scenarios, the
generalization capability of the trained model may
be limited. Nevertheless, we believe our methodol-
ogy is applicable to a broader range of crates and
has the potential to achieve better generalization
performance.

Real-world errors. Our experiments rely heavily
on a synthesized dataset generated by an LLM, in
which compilation errors have been artificially in-
jected. Although modern LLMs exhibit human-like
behavior, it remains uncertain whether the injected
errors faithfully reflect real-world Rust OLEs. This
uncertainty may limit the credibility of our results
and the practical applicability of our approach.

References

2017. crates.io.
2025-01-10.

https://crates.io/. Accessed:

2023. announcing-windows-11-insider-preview-build-
25905. Accessed: 2023-07-21.

2024. Rust: A language empowering everyone to build
reliable and efficient software.

Mohiuddin Ahmed, Raihan Seraj, and Syed Mo-
hammed Shamsul Islam. 2020. The k-means algo-
rithm: A comprehensive survey and performance
evaluation. Electronics, 9(8):1295.

Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Pu-
rushottam Kar, and Sumit Gulwani. 2018. Compi-
lation error repair: for the student programs, from
the student programs. In Proceedings of the 40th
International Conference on Software Engineering:
Software Engineering Education and Training, ICSE
(SEET) 2018, Gothenburg, Sweden, May 27 - June
03, 2018, pages 78-87. ACM.

Matt Asay. 2020. Why AWS loves Rust, and how we’d
like to help.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-
Noél Pouchet, Denys Poshyvanyk, and Martin Mon-
perrus. 2021. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. IEEE Trans.
Software Eng., 47(9):1943—1959.

Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng
Yin. 2023. Seqtrans: Automatic vulnerability fix via
sequence to sequence learning. IEEE Trans. Software
Eng., 49(2):564-585.

DeepSeek-Al, Daya Guo, Dejian Yang, and etc.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Pantazis Deligiannis, Akash Lal, Nikita Mehrotra, Rishi
Poddar, and Aseem Rastogi. 2024. Rustassistant:
Using llms to fix compilation errors in rust code. In
2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pages 267-279. IEEE
Computer Society.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536—1547. Association
for Computational Linguistics.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu,
Wenjie Wang, Shuhao Li, and Yuqing Zhang. 2023.
An empirical study on fine-tuning large language
models of code for automated program repair. In
38th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 1162—-1174. IEEE.

Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and
Philip Levis. 2017. Multiprogramming a 64kb com-
puter safely and efficiently. In Proceedings of the
26th Symposium on Operating Systems Principles,
SOSP ’17, Shanghai, China.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
and 48 others. 2023. Starcoder: may the source be
with you! Trans. Mach. Learn. Res., 2023.

Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu
Meng, Xiaofei Xie, Kai Chen, and Yang Liu. 2022a.
Transrepair: Context-aware program repair for com-
pilation errors. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE
2022, Rochester, MI, USA, October 10-14, 2022,
pages 108:1-108:13. ACM.

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DI-
fix: context-based code transformation learning for
automated program repair. In ICSE "20: 42nd Inter-
national Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, pages 602-614.
ACM.

https://crates.io/
https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1145/3183377.3183383
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2022.3156637
https://doi.org/10.1109/TSE.2022.3156637
https://doi.org/10.1109/TSE.2022.3156637
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.1109/ASE56229.2023.00181
https://doi.org/10.1109/ASE56229.2023.00181
https://doi.org/10.1109/ASE56229.2023.00181
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.1145/3551349.3560422
https://doi.org/10.1145/3551349.3560422
https://doi.org/10.1145/3551349.3560422
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380345

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022b.
DEAR: A novel deep learning-based approach for
automated program repair. In 44th IEEE/ACM 44th
International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 511-523. ACM.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, and 38 others.
2024a. Starcoder 2 and the stack v2: The next gener-
ation. CoRR, abs/2402.19173.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang
Wei, and 1 others. 2024b. Starcoder 2 and the
stack v2: The next generation. arXiv preprint
arXiv:2402.19173.

Wei Ma, Shangqing Liu, Mengjie Zhao, Xiaofei Xie,
Wenhan Wang, Qiang Hu, Jie Zhang, and Yang Liu.
2024. Unveiling code pre-trained models: Investi-
gating syntax and semantics capacities. ACM Trans.
Softw. Eng. Methodol., 33(7):169:1-169:29.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Meta. 2024. Llama 3.1.
MIR. 2024. MIR.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra,
and Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Redox. 2023. Redox - Your Next(Gen) OS.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, and
6 others. 2023. Code llama: Open foundation models
for code. CoRR, abs/2308.12950.

10

Servo. 2023. Servo.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-
lican, and 1 others. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. ACM Trans. Softw. Eng. Methodol., 28(4):19:1-
19:29.

Jian Wang, Shangqing Liu, Xiaofei Xie, Jingkai Siow,
Kui Liu, and Yi Li. 2024. Ratchet: Retrieval aug-
mented transformer for program repair. In 35th IEEE
International Symposium on Software Reliability En-
gineering, ISSRE 2024, Tsukuba, Japan, October
28-31, 2024, pages 427-438. IEEE.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng
Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng
Zhang, and Qi Tian. 2024. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Wenzhang Yang, Linhai Song, and Yinxing Xue. 2024.
Rust-lancet: Automated ownership-rule-violation fix-
ing with behavior preservation. In Proceedings of
the 46th IEEE/ACM International Conference on
Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024, pages 85:1-85:13. ACM.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J. Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2023. Large language model as
attributed training data generator: A tale of diversity
and bias. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Wenjie Zhang, Guancheng Wang, Junjie Chen, Yingfei
Xiong, Yong Liu, and Lu Zhang. 2023. Ordinal-
fix: Fixing compilation errors via shortest-path CFL
reachability. In 38th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE
2023, Luxembourg, September 11-15, 2023, pages
1200-1211. IEEE.

Shuofei Zhu, Ziyi Zhang, Boqgin Qin, Aiping Xiong,
and Linhai Song. 2022. Learning and programming

https://doi.org/10.1145/3510003.3510177
https://doi.org/10.1145/3510003.3510177
https://doi.org/10.1145/3510003.3510177
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.1145/3664606
https://doi.org/10.1145/3664606
https://doi.org/10.1145/3664606
http://papers.nips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
https://ai.meta.com/blog/meta-llama-3-1/
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://www.redox-os.org/
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://servo.org/
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1109/ISSRE62328.2024.00048
https://doi.org/10.1109/ISSRE62328.2024.00048
https://doi.org/10.1109/ISSRE62328.2024.00048
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://doi.org/10.1145/3597503.3639103
https://doi.org/10.1145/3597503.3639103
https://doi.org/10.1145/3597503.3639103
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1109/ASE56229.2023.00072
https://doi.org/10.1109/ASE56229.2023.00072
https://doi.org/10.1109/ASE56229.2023.00072
https://doi.org/10.1109/ASE56229.2023.00072
https://doi.org/10.1109/ASE56229.2023.00072

challenges of rust: A mixed-methods study. In Pro-
ceedings of the 44th International Conference on
Software Engineering, pages 1269-1281.

11

	Introduction
	Preliminaries
	Ownership and Lifetime Errors
	Problem Formulation

	Related Work
	Proposed Method
	Data Generation
	MIR Feature Extraction
	Tuning

	Experiments
	Experimental Settings
	Comparing with Other LLMs (RQ1)
	Ablation Study (RQ2)
	Fixing Capabilities Analysis (RQ3)

	Conclusion
	Limitations

