
A Proof of Theorem 4.1

We first state the following Lemma which we will use to prove Theorem 4.1.

Lemma A.1 ([Rogers et al., 2016]). Let M : Xm → O be an (ε, δ)-differentially private algorithm
for 0 < ε ≤ 1/2 and 0 < δ < ε. Then,

Pr
(x,m′)∼(X,M(X))

[
log

(
Pr [X = x,M(X) = m′]

Pr [X = x] Pr [M(X) = m′]

)
≥ k

]
≤ β

where the probability is taken with respect to the joint distribution of X and M(X), and

k = O

(
ε2m+m

√
δ

ε

)
, β = e−ε

2m +O

(
m

√
δ

ε

)
Theorem 4.1 (A General Theorem). Fix a pair of learning and unlearning algorithms (A,RA) and
the publishing functions {f tpublish}t. Suppose for every round t, the sequence of publishing functions
{f t′publish}t′≤t is (ε, δ)-differentially private in r ∼ Pm, for 0 < ε ≤ 1/2 and 0 < δ < ε. Suppose
RA is a non-adaptive (α, β, γ)-unlearning algorithm for A. ThenRA is an (α′, β′, γ′)-unlearning

algorithm for A for α′ = α+ ε′, β′ = βeε
′
+
√
δ′, γ′ = γ +

√
δ′ where ε′ = O

(
ε2m+m

√
δ/ε
)

and δ′ = e−ε
2m +O

(
m
√
δ/ε
)

.

Proof. Fix a data set D and an update requester UpdReq. Fix any unlearning step t ≥ 1. Note that
the sequence of updates up to round t, i.e. u≤t = (u1, . . . , ut), can be seen as a post-processing
of the sequence of published objects up to round t − 1, i.e. ψ≤t−1 = (ψ0, . . . , ψt−1), where the
post-processing function is defined by UpdReq (see Definition 2.2). But we know that {f t′publish}t′≤t−1
that generates ψ≤t−1 is (ε, δ)-differentially private in r. Hence, given that post-processing preserves
differential privacy (Lemma 2.1), we have that u≤t is also (ε, δ)-differentially private in r. Conse-
quently, we can apply the fact that DP implies bounded max-information (Lemma A.1) to get that

Pr
(r,u≤t)

[
log

Pr
[
r|u≤t

]
Pr [r]

≥ ε′
]

= Pr
(r,u≤t)

[
log

Pr
[
r, u≤t

]
Pr [r] Pr [u≤t]

≥ ε′
]
≤ δ′ (1)

where the probability is taken with respect to the joint distribution of (r, u≤t), and that

ε′ , O

(
ε2m+m

√
δ

ε

)
, δ′ , e−ε

2m +O

(
m

√
δ

ε

)

Now define the “Good" event for the update sequence u≤t:

G =

{
u≤t : Pr

r|u≤t

[
log

Pr
[
r|u≤t

]
Pr [r]

≥ ε′
]
≤
√
δ′

}
We have that

Pr
u≤t

[
u≤t /∈ G

]
= Pr
u≤t

[
Pr
r|u≤t

[
log

Pr
[
r
∣∣u≤t]

Pr [r]
≥ ε′

]
>
√
δ′

]

≤
Eu≤t

[
Prr|u≤t

[
log

Pr[r|u≤t]
Pr[r] ≥ ε′

]]
√
δ′

=

Pr(r,u≤t)

[
log

Pr[r|u≤t]
Pr[r] ≥ ε′

]
√
δ′

≤
√
δ′

13

where the first inequality is an application of Markov’s inequality, and the last one follows from
Equation (1). Therefore, if we condition on {u≤t ∈ G} which happens with probability at least
1−
√
δ′, we have the following guarantee.

Pr
r|u≤t

[
log

Pr
[
r|u≤t

]
Pr [r]

≥ ε′
]
≤
√
δ′

which in turn implies, with probability 1−
√
δ′ over the draw of u≤t, that for every event F in the

space of random seeds (r),

Pr
[
r ∈ F |u≤t

]
≤ eε

′
Pr [r ∈ F] +

√
δ′ (2)

Now we condition on {u≤t ∈ G}. Fix any event E ⊆ Θ∗ in the space of models, and let F = {r :
RA(Dt−1, ut, st−1) ∈ E} be the event that the output models of the unlearning algorithm on round
t belongs to E, recalling that st−1 = gt−1(D0, u≤t−1, r). Substituting F in Equation (2), we get
that

Pr
[
RA(Dt−1, ut, st−1) ∈ E |u≤t

]
≤ eε

′
Pr
[
RA(Dt−1, ut, st−1) ∈ E

]
+
√
δ′ (3)

Note that because on the right hand side we do not condition the probability on the update sequence,
we are taking the probability over the distribution of output models of round t for a nonadaptively
chosen update sequence. Therefore by the unlearning guarantees for nonadaptive update requesters,
we have that with probability at least 1− γ over the draw of u≤t,

Pr
[
RA(Dt−1, ut, st−1) ∈ E

]
≤ eα Pr

[
A(Dt) ∈ E

]
+ β (4)

Now we can combine Equations (3) and (4) to conclude that, with probability 1− γ −
√
δ′ over u≤t,

Pr
[
RA(Dt−1, ut, st−1) ∈ E |u≤t

]
≤ eα+ε

′
Pr
[
A(Dt) ∈ E

]
+ βeε

′
+
√
δ′

completing the proof.

B Missing Details from Section 5

Lemma B.1. Consider the distributed learning and unlearning algorithms Adistr andRdistr
A . If the

update requester is non-adaptive, for every t: for every shard i, we have Dt
i is an independent draw

from the distribution of Sampler(Dt, p).

Proof. We prove this via induction. It’s easy to see that this holds true at round t = 0 because we
explicitly set D0

i = Sampler(D0, p). Now, suppose that Dτ−1
i is an independent draw from the

distribution of Sampler(Dτ−1, p) for some τ ≥ 1. If the update request uτ = (zτ , ′delete′) is a
deletion request, then it’s easy to see that simply deleting the point zτ from every shard that contains
it will maintain that each element is chosen to be in the shard with probability p. And Dτ

i |uτ−1 and
Dτ
i |uτ must be identically distributed because the update request uτ is non-adaptive and has been

fixed prior to the interaction — and hence is statistically independent of Dτ−1. More formally, we
have that for any z ∈ Dτ ,

Pr[z ∈ Dτ
i] = Pr[z ∈ Dτ

i |u≤τ] = Pr[z ∈ Dτ
i |u≤τ−1] = Pr[z ∈ Dτ−1

i |u≤τ−1] = p.

The same argument applies for the addition request where Rdistr
A adds the element requested to

be added with probability p. More formally, we have Pr[z ∈ Dτ
i] = p for any z ∈ Dτ−1 and

Pr[zτ ∈ Dτ
i] = p by construction.

Lemma 5.1. RAdistr is a non-adaptive (0, 0, 0)-unlearning algorithm for Adistr.

Proof. Fix any arbitrary round t ∈ [T]. For a non-adaptive UpdReq, we can think of the update
sequence u≤t as fixed prior to the start of the interaction between the learning procedure and the
UpdReq. Now, in order to show (0, 0, 0)-deletion guarantee of the unlearning algorithm, we need to
show that for any E ⊆ Θ∗,

Pr
[
RAdistr(Dt−1, ut, st−1) ∈ E|u≤t

]
= Pr

[
Adistr(Dt) ∈ E

]
.

14

Note that it is equivalent to show that for any i ∈ [k] and E ⊆ Θ, we have

Pr
[
θti ∈ E|u≤t

]
= Pr

[
Asingle
i (Sampleri(D

t, p)) ∈ E
]

because Sampleri and Asingle
i behave independently across i ∈ [k] in bothRAdistr and Adistr. Hence,

from here on, we focus on some fixed i ∈ [k].

Now, we argue that it is sufficient to show that the distribution over Dt
i conditional on u≤t that is

being kept in the state st of the unlearning algorithm is exactly the same as that of Sampleri(D
t, p),

which we have already proved in Lemma B.1. Using the fact that update sequence is non-adaptive
with respect to the algorithm’s randomness, we have for any realization path for shard i until round
t (i.e. how the initial shard D0

i was formed and whether each addition request until round t was
actually added to shard i or not)

Pr[θti ∈ E|u≤t] = Pr[θt
′

i ∈ E|u≤t]

= Pr[θt
′

i ∈ E|u≤t
′
]

= Pr[Asingle
i (Dt′

i) ∈ E|u≤t
′
]

= Pr[Asingle
i (Dt

i) ∈ E|u≤t]

where t′ = min{τ ≤ t : Dτ
i = Dt

i} is the time at which we last trained the model for shard i in the
unlearning algorithm.

Theorem 5.1 (Unlearning Guarantees). If for every round t, the sequence of publishing functions
{f t′publish}t′≤t is (ε, δ)-differentially private in the random seeds r ∼ Pk of the algorithms for
0 < ε ≤ 1/2 and 0 < δ < ε, thenRAdistr is an (α, β, γ)-unlearning algorithm for Adistr where

α = O
(
ε2k + k

√
δ/ε
)
, β = γ = O

(√
e−ε2k + k

√
δ/ε

)
Proof. Lemma 5.1 provides that RAdistr is a (0, 0, 0)-unlearning algorithm for Adistr against any
nonadaptive update requester.

Note that because the randomness used in each shard i ∈ [k] is always independent and there is a
symmetry across these shards in both Adistr andRiter

Adistr , we can imagine drawing all the randomness
required for each shard throughout the interaction prior to the interaction r ∼ Pk such that each
shard i ∈ [k] relies ri on as the source of its randomness.

Now, note that the state kept by Rdistr
A consists of the shards {Dt−1

i }i and the models trained via
Asingle on those shards {θt−1i }i. Hence, at any round t, given access to initial dataset D0, previous
update requests u≤t−1, and the randomness that has been drawn prior to the interaction r, we
can deterministically determine the state st−1 = ({Dt−1

i }i, {θt−1i }i), meaning there exists some
deterministic mapping gt−1 such that st−1 = gt−1(D0, u≤t−1, r).

Therefore, we can combine the (0, 0, 0)-deletion guarantee promised by Lemma 5.1 with Theorem
4.1 to conclude thatRdistr

A must be (α, β, γ)-unlearning algorithm for Adistr.

Theorem 5.2 (Run-time Guarantees). Let p = 1/k. Suppose the publishing functions satisfy the
differential privacy requirement of Theorem 5.1. Let N t denote the number of times Rdistr

A calls
Asingle at round t. We have that N0 = k, and for every round t ≥ 1: 1) if the update requester is
non-adaptive, for every ξ, with probability at least 1− ξ, N t ≤ 1 +

√
2 log (1/ξ). 2) if the update

requester is adaptive, for every ξ, with probability at least 1 − ξ, N t ≤ 1 +
√

2 log ((n+ t)/ξ).
Furthermore, for ξ > δ′, with probability at least 1− ξ, we have

N t ≤ 1 + min
{√

2 log (2(n+ t)/(ξ − δ′)),
√

2ε′ + 2 log (2/(ξ − δ′))
}

where ε′ = O
(
ε2k + k

√
δ/ε
)

and δ′ = e−ε
2k +O

(
k
√
δ/ε
)

Proof. Throughout we use Bin(k, p) to denote a binomial random variable with parameters k
(number of trials) and p (success probability). First we state the following fact:

15

Fact B.1 (Binomial Tail Bound). Let X ∼ Bin(k, p) and let µ := kp. We have that for every η ≥ 0,

Pr [X ≥ (1 + η)µ] ≤ e−
η2µ
2+η

which in turn implies, for every δ, with probability at least 1− δ,

X ≤

1 +

√
log2 (1/δ) + 8µ log (1/δ)− log (1/δ)

2µ

µ ≤ µ+
√

2µ log (1/δ)

Fix any round t ≥ 1 of the update, and let µ = kp throughout. Suppose the update requester is
non-adaptive. If the update of round t is an addition, then N t ∼ Bin(k, p) by construction. If the
update of round t is a deletion: ut = (zt, ′delete′), then

N t =

k∑
i=1

1
[
zt ∈ Dt−1

i

]
But the update requester being non-adaptive (implying zt is independent of the randomness of the
algorithms), together with Lemma B.1, imply that N t is a sum of independent Bernoulli random
variables with parameter p; hence, N t ∼ Bin(k, p). Therefore, if the update requester is non-
adaptive, we can apply Fact B.1 to conclude that for every ξ, with probability at least 1 − ξ, we
have

N t ≤ µ+
√

2µ log (1/ξ)

which proves the first part of the theorem for the choice of p = 1/k. Now suppose the update
requester is adaptive. If the update of round t is an addition, then N t ∼ Bin(k, p) by construction,
and therefore using Fact B.1, with probability at least 1− ξ, we have N t ≤ µ+

√
2µ log (1/ξ). Now

suppose the update is a deletion: ut = (zt, ′delete′). We have in this case that

N t =

k∑
i=1

1
[
zt ∈ Dt−1

i

]
First note that we have the following upper bound

N t ≤ sup
z∈Dt−1

k∑
i=1

1
[
z ∈ Dt−1

i

]
≤ sup
z∈D0∪{z1,...,zt−1}

k∑
i=1

1
[
z ∈ Dt−1

i

]
(5)

where {z1, . . . , zt−1} are the data points that have been requested to be added or deleted by the update
requester in the previous rounds. Here, in the worst case (to get upper bounds), we are assuming that
all previous t− 1 updates are addition requests. Note that for every z ∈ D0 ∪ {z1, . . . , zt−1}, the
number of shards that contain z is an independent draw from aBin(k, p) distribution, by construction.
We therefore have that

sup
z∈D0∪{z1,...,zt−1}

k∑
i=1

1
[
z ∈ Dt−1

i

] d
= sup

1≤j≤n+t−1
Xj (6)

where the equality is in distribution, and Xj ∼ Bin(k, p). Now, combining Equations (5) and (6),
and using Fact B.1, we get that for every η ≥ 0,

Pr
[
N t ≥ (1 + η)µ

]
≤
n+t−1∑
j=1

Pr [Xj ≥ (1 + η)µ] ≤ (n+ t)e−
η2µ
2+η

which implies, for every ξ ≥ 0, with probability at least 1− ξ,

N t ≤ µ+
√

2µ log ((n+ t)/ξ). (7)

We will prove another upper bound using the max-information bound. Recall that our distributed
algorithms can be seen as drawing all the randomness r ∼ Pk upfront for some distribution P (one
draw from P per shard). Since the update sequence u≤t (which is a post processing of the published

16

objects) is guaranteed to be (ε, δ)-differentially private in r, we get using the max-information bound
that, for every η ≥ 0,

Pr
[
N t ≥ (1 + η)µ

]
≤ eε

′
Pr

(r⊗u≤t)

[
N t ≥ (1 + η)µ

]
+ δ′ (8)

where on the left hand side the probability is taken with respect to the joint distribution of r and
u≤t, and on the right hand side (r ⊗ u≤t) means r and u≤t are drawn independently from their
corresponding marginal distributions. But when r and u≤t are drawn independently (i.e., the update
requester is non-adaptive), N t ∼ Bin(k, p) as we have shown in the first part of this theorem.

Pr
(r⊗ut)

[
N t ≥ (1 + η)µ

]
= Pr [Bin(k, p) ≥ (1 + η)µ] ≤ e−

η2µ
2+η (9)

Therefore, combining Equations (8) and (9), we get that

Pr
[
N t ≥ (1 + η)µ

]
≤ eε

′− η
2µ

2+η + δ′

which in turn implies, for every ξ > δ′, with probability at least 1− ξ,

N t ≤ µ+
√

2µ (ε′ + log (1/(ξ − δ′))) (10)

Combining the bounds of Equations (7) and (10), we get that for every ξ > δ′, with probability 1− ξ,

N t ≤ µ+ min
{√

2µ log (2(n+ t)/(ξ − δ′)),
√

2µ (ε′ + 2 log (2/(ξ − δ′)))
}

which completes the proof by the choice of p = 1/k (µ = kp = 1).

Algorithm 4: PrivatePredictionInteraction(ε′, ε, δ, k)

l = 0
for t = 1, . . . , T do

if l >
⌊

ε2

8(ε′)2 ln(1
δ)

⌋
// “Restart” Rdistr

A when privacy budget is exhausted
then
Dt
i = Sampleri(D

t, p) and θti = Asingle
i (Dt

i) for each i ∈ [k]
Update st = ({Dt

i}i, {θti}i)
l = 0

else
{θti}i = RAdistr(Dt−1, ut, st−1)

while there is a prediction request for some x do
Publish ŷ = PrivatePredictkε′({θti}i, x)
l = l + 1

Lemma B.2. Assume ε < 1 and δ > 0. Then, (ŷ1, . . . , ŷl) is (ε, δ)-differentially private in {θi}i
where ŷj = PrivatePredictkε′({θi}, xj) and

l =

⌊
ε2

8(ε′)2 ln(1
δ)

⌋
.

Proof. This claim holds immediately by the (ε′, 0)-differential privacy of PrivatePredictkε′ and
the advanced composition theorem. See Corollary 3.21 in Dwork and Roth [2014] for details.

Theorem 5.3. The models {{θti}i}t in PrivatePredictionInteraction(ε′, ε, δ, k) satisfy

(α, β, γ)-unlearning guarantee for Adistr where α = O
(
ε2k + k

√
δ/ε
)

and β, γ =

O

(√
e−ε2k + k

√
δ/ε

)
, if 0 < ε ≤ 1/2 and 0 < δ < ε.

17

Algorithm 5: ASISA: Learning Algorithm for SISA

Proof. Input: dataset D ≡ D0 of size n
Draw the shards: D0

i∈[k] = RandomAssignPartition(D0, k).
Train the models: θ0i∈[k] = Asingle(D0

i), for every i ∈ [k].
Save the state: s0 = ({D0

i }i∈[k], {θ0i }i∈[k])
Output: {θ0i }i∈[k]

Algorithm 6:RASISA : Unlearning Algorithm for SISA: t’th round of unlearning

Input: dataset Dt−1, update ut = (zt, •t), state st−1 = ({Dt−1
i }i∈[k], {θt−1i }i∈[k])

if •t = ′delete′ then
i = j ∈ [k], where zt ∈ Dt−1

j

else
i = randint(1, 2, . . . , k)

Update the shards: Dt
i =

{
Dt−1
j ◦ ut if i = j

Dt−1
j otherwise

, for every j ∈ [k].

Update the models: θtj =

{
Asingle(Dt

j) if i = j

θt−1j otherwise
, for every i ∈ [k].

Update the state: st = ({Dt
i}i∈[k], {θti}j∈[k])

Output: {θti}i∈[k]

Proof. Suppose full retraining occurs in rounds (t1, t2, . . . , tG) where we always have t1 = 0 and
l >

⌊
ε2

8(ε′)2 ln(1
δ)

⌋
at round tg for any g > 1.

At any round tg when full retraining occurs, we can imagine restartingRdistr
A by resetting the internal

round as t = 0 and drawing fresh randomness r ∼ Pk, which determines the new initial state s0.
Therefore, for any g ∈ [G − 1] and tg ≤ t < tg+1, we must have that {f t′publish}tg≤t′≤t are (ε, δ)-
differentially private in the randomness r drawn in round tg . Then, we can appeal to Theorem 5.1 to
conclude that for any g ∈ [G− 1] and tg ≤ t < tg+1, we have

∀E ⊆ Θ∗ : Pr
[
{θti}i ∈ E

∣∣ (utg , . . . , ut)] ≤ eα · Pr
[
A
(
Dt
)
∈ E

]
+ β.

Because we are redrawing fresh randomness r ∼ Pk at tg , we can combine combine all the previous
unlearning guarantees in the previous (tg′−1, tg′) for g′ < g to conclude that at any round t ∈ [T]

∀E ⊆ Θ∗ : Pr
[
{θti}i ∈ E

∣∣u≤t] ≤ eα · Pr
[
A
(
Dt
)
∈ E

]
+ β.

C Details From Section 3

C.1 Proof of Theorem 3.1

Theorem 3.1. There are learning and unlearning algorithms in the SISA framework (A,RA) such
that for any α, and any β, γ < 1/4,RA is not an (α, β, γ)-unlearning algorithm for A.

Define ASISA and RASISA as Algorithms 5 and 6 respectively instantiated with the “lookup
table” model Asingle(D) = D and “lookup table” prediction rule fθ. In Algorithm 5,
RandomAssignPartition(D, k) assigns every (x, y) ∈ D to one of the k partitions uniformly
at random. The prediction rule, given parameter θ = D and query point x, outputs y if (x, y) ∈ θ
and ⊥ otherwise:

fθ(x) =

{
y if (x, y) ∈ θ,
⊥ otherwise.

18

We wish to show that there exists a dataset D0 and adaptive update requester UpdReq such that
for some update step t ≥ 1, with probability at least 1 − γ over the draw of the update sequence
u≤t = (u1, . . . , ut) from UpdReq, ∃E ⊆ Θ∗ : Pr

[
RA

(
Dt−1, ut, st−1

)
∈ E

∣∣u≤t] > eα ·
Pr [A (Dt) ∈ E] + β. We prove this with the following example, instantiated for k = 3.

Consider dataset D0 consisting of training examples {(xi, yi)}i∈[2n], n ∈ Z+ such that D0 contains
2 copies each of n distinct feature vectors x. Both copies of each distinct feature vector x are paired
with the same (arbitrary) label y.

Further, given ensemble model parameters {θi}i∈[k] = Adistr(D), let the ensemble output the mode
of the predictions made by the underlying models:

ŷi = Mode
({
fθj (xi)

}
j∈[k]

)
.

Let ψ0, the published object after initial training, be the ensemble’s predictions for each training
point: ψ0 = f0publish = (ŷ01 , ŷ

0
2 , . . . , ŷ

0
2n).

Given these predictions, let I = {i1, i2, . . . , it} ⊆ [2n] be the indices for the points which were
classified correctly. That is, ∀i ∈ [2n] : i ∈ I if yi = ŷi. Given ψ0, let UpdReq be a function which
outputs the deletion sequence (u1, u2, . . . , ut) where each update request is responsible for deleting
one of the correctly predicted points: ∀j ∈ [t] : uj = ((xij , yij),

′delete′).

Recall that our model is parameterized by a set of model parameters {θi}i∈[k] and each θi is the
dataset that shard is trained on. We now define the event E of interest: the set of all models such
that the ensemble attains zero accuracy on the remaining points Dt = D0 ◦ (u1, u2, . . . , ut), which
happens if and only if all identical points (both copies of the same point) fall into the same shard.

Et =
{
{θi}i∈[k] where | {θi : (x, y) ∈ θi} | = 1 for all (x, y) ∈ Dt

}
To make our final assertion, first note that Pr[RASISA(Dt−1, ut, st−1) ∈ E|u≤t] = 1 as UpdReq has
requested all the correctly classified points to be deleted. We therefore need to show that

Pr
[
RASISA

(
Dt−1, ut, st−1

)
∈ E

∣∣u≤t] = 1 > eα · Pr
[
ASISA (Dt

)
∈ E

]
+ β

equivalently, 1−β
eα > Pr

[
ASISA (Dt) ∈ E

]
with probability 1− γ over the randomness of the update

sequence (which in this case is simply the randomness of the initial partition).

Note that t, the number of copies of points that were initially classified correctly is distributed as
Binomial(n, 23) because for each pair of identical (x, y) ∈ D0, the probability that they fall in
different shards initially is exactly 2/3. Also, note that for any fixed t ≤ n− 1,

Pr[Adistr(Dt) ∈ E] =
1

3n−t
.

Using the tail bound for the Binomial distribution (Fact B.1), we have that with probability 1− γ,

t ≤ 2n

3
+

√
4n

3
log

(
1

γ

)
.

When n ≥ 13 log(1/γ), we have 2n
3 +

√
4n
3 log

(
1
γ

)
≤ 0.99n. Hence, for sufficiently large n, we

can conclude that with probability 1− γ,

Pr[Adistr(Dt) ∈ E] ≤ 1

30.01n
.

Finally, for any c = 1−β
eα > 0, there exists a D0 such that c > Pr

[
ASISA (Dt) ∈ E

]
with probability

1− γ because we can choose a sufficiently large n such that n ≥ 13 log(1/γ) and 1
30.01n ≤ c, i.e.,

we can choose:

n ≥ max

{
13 log(1/γ),

100 log(1/c)

log 3

}

19

C.2 Failures in (0, 0, 0)-Unlearning Beyond Section 3

Observable failures in unlearning guarantees for algorithms in the SISA framework go beyond the
simplistic setting constructed in Section 3. In this section, we describe a more natural setting in which
we employ the learning and unlearning algorithms for SISA (A,RA) and are able to construct an
adaptive deletion sequence (only given discrete predictions through fpublish) which, to a high degree of
confidence, rejects the null hypothesis that (A,RA) satisfy a perfect (0, 0, 0)-unlearning guarantee.

In Section 3 we explicitly define a base model fθ which relies on the fact that each point is copied
twice to reveal perfect information about how points were partitioned through its predictions. Here,
we define a new model which relaxes this condition. Given a query point x, rather than return the
label of an exactly matching point, the model fD,τ (x) is additionally parameterized by a threshold τ .
This model, reminiscent of 1-nearest neighbors, returns the label of the closest point (x′, y′) ∈ D
where |x− x′|2 ≤ τ , and ⊥ otherwise, essentially treating nearby points as "identical."

Here we defineASISA andRASISA as Algorithms 5 and 6 respectively, instantiated withAsingle(D) = D
and prediction rule fD,τ . We assume the null hypothesis that A andRA satisfy a (0, 0, 0)-unlearning
guarantee.

To make an assertion about this hypothesis, we train an ensemble using three shards as before. We
then execute a similar experiment to that as described in Section 3 in which, after initial training,
we publish the aggregated discrete predictions for each training point and delete a random subset of
correctly classified points. We then observe the accuracy of the ensemble on the remaining training
points. Our hypothesis, the same as before, is that the resulting accuracy will be lower in the adaptive
deletion setting than the retrain setting with high probability.

We then define an event E of interest to be when the training accuracy after the adaptive deletion
sequence falls below a cutoff c ∈ [0%, 100%] after deleting all correctly classified points. We can
then estimate the probability of this event by defining an indicator for each trial which is 1 if the
training accuracy falls below this threshold and 0 otherwise. We then run many trials to calculate
confidence intervals on our estimate of this probability under either setting. If the confidence intervals
are non-overlapping at some confidence level, we can then reject the null hypothesis at some level of
confidence.

Our concrete experiment samples 1,000 random points from MNIST, each being either a "0" or
"1" (preprocessing each image by dividing each pixel value by 255). With τ = 6.5, this setting is
"plausible" in the sense that this model’s performance on held-out test data is nontrivial (approximately
91.2% test accuracy before deletion) for a common benchmark task. We then delete t points (a
uniformly random subset of correctly predicted points), observe the average accuracies across trials
on remaining points under the adaptive setting and the retrain scenario. We grid search for the c which
yields the largest difference in the confidence intervals (since the unlearning guarantee should hold
for all c). Under these conditions we find that after 200 trials, we attain 97.5% confidence intervals
on our statistic to be those shown in Figure 2. We see that for deletion sequences of 200 points or
more we can induce a reliable difference in this statistic at a high level of confidence, rejecting the
null hypothesis at p ≤ 0.05 that ASISA andRASISA satisfy a perfect (0, 0, 0)-unlearning guarantee.

D Full Experimental Details From Section 6

Choices in hyperparameters and and model architecture for experiments presented in Section 6 were
inspired by those used by Papernot et al. [2021]. All models were optimized using momentum with
mass equal to 0.9. The clipping parameter (upper bound on maximum `2-norm of per-example
gradients) used in DP-SGD for all experiments was equal to 0.1. For certain experiments, the batch
size was reduced from what was presented in Papernot et al. [2021] to reduce computational cost.
Each experiment was repeated with new random seeds across 300 trials to get the confidence intervals
displayed in Figure 1. The precise model definition for each experiment is given below:

Sequential(
Conv(out_chan=16, filter_shape=(8, 8), padding=’SAME’, strides=(2, 2)),
Tanh,
MaxPool(window_shape=(2, 2), strides=(1, 1)),
Conv(out_chan=32, filter_shape=(4, 4), padding=’VALID’, strides=(2, 2)),

20

Figure 2: Confidence intervals for the indicator defined in Section C.2 as a function of the number
of deleted points. Red confidence intervals correspond to the statistic after the adaptive deletion
sequence, and blue confidence intervals correspond to the statistic after full retraining. For deletion
sequences of 200 points or more we can induce a reliable enough difference in the confidence intervals
to reject the null hypothesis at p ≤ 0.05 that ASISA andRASISA satisfy a perfect (0, 0, 0)-unlearning
guarantee in a realistic setting.

Tanh,
MaxPool(window_shape=(2, 2), strides=(1, 1)),
Flatten,
Dense(out_dim=32),
Tanh,
Dense(out_dim=num_classes)

)

In our experiments we make use of 3 common benchmark machine learning datasets. The MNIST
database of handwritten digits given by Lecun et al. [1998] consists of 70,000 28 × 28 images of
handwritten digits, each belonging to one of 10 classes characterizing the digit shown in each image.
MNIST is made available under the Creative Commons Attribution-Share Alike 3.0 license. The
Fashion-MNIST dataset given by Xiao et al. [2017] consists of 70,000 28 × 28 grayscale images
of pieces of clothing, each belonging to one of 10 classes (e.g. t-shirt, dress, sneaker, etc.) Fashion-
MNIST is made available under the MIT license. The CIFAR-10 dataset given by Krizhevsky and
Hinton [2009] consists of 60,000 32 × 32 images in RGB format, each belonging to one of 10
classes characterizing the class of the object given in each image (e.g. airplane, automobile, bird,
etc.) CIFAR-10 is made available under the MIT license.

With respect to computing environment, experiments were conducted using the JAX deep learning
framework developed by Bradbury et al. [2018]. Experiments were run using 1 Tesla V100 GPU
using CUDA version 11.0, where an individual trial (training a full ensemble, deleting targeted points,
and retraining) would take approximately 1-6 minutes depending on the number of shards, iterations,
image size, etc.

21

E[Indicator] Acc. (after) Acc. (before) Noise mult. Shard pred. acc.

CIFAR-10k=6

[0.890, 0.952] 0.507± 0.025 0.572± 0.011 0 0.303± 0.005
[0.784, 0.869] 0.504± 0.020 0.554± 0.010 0.15 0.257± 0.004
[0.670, 0.772] 0.487± 0.021 0.525± 0.011 0.22 0.229± 0.003
[0.490, 0.603] 0.455± 0.025 0.484± 0.012 0.3 0.205± 0.003

CIFAR-10k=2

[0.947, 0.987] 0.448± 0.033 0.521± 0.019 0 0.655± 0.012
[0.797, 0.881] 0.433± 0.026 0.475± 0.015 0.2 0.587± 0.007
[0.638, 0.744] 0.419± 0.025 0.452± 0.015 0.25 0.567± 0.006
[0.493, 0.607] 0.399± 0.027 0.427± 0.015 0.3 0.550± 0.005

Fashion-MNISTk=6

[0.819, 0.899] 0.849± 0.011 0.874± 0.004 0 0.248± 0.007
[0.662, 0.765] 0.838± 0.011 0.854± 0.005 0.4 0.215± 0.005
[0.540, 0.652] 0.823± 0.009 0.834± 0.006 0.6 0.198± 0.004
[0.477, 0.590] 0.810± 0.012 0.820± 0.006 0.75 0.190± 0.004

Fashion-MNISTk=2

[0.976, 0.999] 0.826± 0.016 0.863± 0.006 0 0.597± 0.014
[0.797, 0.881] 0.808± 0.013 0.828± 0.007 0.5 0.555± 0.010
[0.607, 0.715] 0.791± 0.016 0.807± 0.008 0.7 0.538± 0.007
[0.497, 0.610] 0.763± 0.020 0.781± 0.009 1 0.523± 0.005

MNISTk=6

[0.849, 0.922] 0.973± 0.004 0.978± 0.002 0 0.201± 0.004
[0.729, 0.824] 0.965± 0.005 0.969± 0.003 0.4 0.186± 0.003
[0.583, 0.694] 0.940± 0.009 0.945± 0.004 0.8 0.178± 0.003
[0.493, 0.607] 0.913± 0.018 0.923± 0.007 1.1 0.176± 0.003

MNISTk=2

[0.927, 0.976] 0.962± 0.007 0.971± 0.003 0 0.540± 0.006
[0.769, 0.857] 0.959± 0.008 0.968± 0.003 0.8 0.534± 0.006
[0.587, 0.697] 0.953± 0.007 0.962± 0.004 1.3 0.530± 0.006
[0.497, 0.610] 0.949± 0.008 0.957± 0.004 1.6 0.527± 0.006

Table 1: Numerical representation of results displayed in Figure 1. The x axis in Figure 1 corresponds
to column "E[Indicator]", and the y axis corresponds to column "Acc. (after)". Column "E[Indicator]"
represents the 95% confidence interval of the indicator after 300 trials. Columns "Acc. (before)" and
"Acc. (after)" represent the accuracy of the ensemble on a held-out test set (5,000 points each) before
and after deleting approximately half of the points from the ensemble, with confidence intervals
given by two standard deviations above and below the observed mean. "Noise multiplier" represents
the standard deviation of Gaussian noise applied to each per-example gradient during DP-SGD.
Shard prediction accuracy denotes the prediction accuracy of the adversary in targeting models when
deleting points, where random guessing would achieve an accuracy of 1/(# shards).

Experiment Points per shard Batch Size Iterations Step size

CIFAR-10k=6 8000 64 4000 1.0
CIFAR-10k=2 8000 64 4000 1.0
Fashion-MNISTk=6 6000 256 1500 4.0
Fashion-MNISTk=2 6000 256 2000 4.0
MNISTk=6 6000 64 2500 0.5
MNISTk=2 6000 256 2000 0.5

Table 2: Remaining hyperparameter settings for each experiment, by dataset.

22

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

23

