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ABSTRACT

The denoising diffusion model has recently emerged as a powerful generative
technique, capable of transforming noise into meaningful data. While theoreti-
cal convergence guarantees for diffusion models are well established when the
target distribution aligns with the training distribution, practical scenarios often
present mismatches. One common case is in zero-shot conditional diffusion sam-
pling, where the target conditional distribution is different from the (unconditional)
training distribution. These score-mismatched diffusion models remain largely
unexplored from a theoretical perspective. In this paper, we present the first
performance guarantee with explicit dimensional dependencies for general score-
mismatched diffusion samplers, focusing on target distributions with finite second
moments. We show that score mismatches result in an asymptotic distributional
bias between the target and sampling distributions, proportional to the accumulated
mismatch between the target and training distributions. This result can be directly
applied to zero-shot conditional samplers for any conditional model, irrespective
of measurement noise. Interestingly, the derived convergence upper bound offers
useful guidance for designing a novel bias-optimal zero-shot sampler in linear
conditional models that minimizes the asymptotic bias. For such bias-optimal
samplers, we further establish convergence guarantees with explicit dependencies
on dimension and conditioning, applied to several interesting target distributions,
including those with bounded support and Gaussian mixtures. Our findings are
supported by numerical studies.

1 INTRODUCTION

Generative modeling stands as a cornerstone in deep learning, with the goal of producing samples
whose distribution emulates that of the training data. Traditional approaches encompass variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), normalizing flows (Rezende & Mohamed, 2015), and others. Recently, diffusion models,
especially the denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020), have emerged as particularly compelling generative models, gaining widespread acclaim
for their stable and cutting-edge performance across various tasks, such as image and video generation
(Ramesh et al., 2022; Rombach et al., 2022).

In ideal situations, the training and target distributions of generative models match each other.
However, this often does not hold in practice, where distributional mismatch between the training and
target distributions can occur due to various reasons such as possible privacy constraints, need for
computational efficiency, and knowledge gap between training and sampling processes. Specifically
for diffusion models, such mismatches exhibit between the scores obtained from the training data
and the scores of the target distribution from which we want to generate samples. One common
scenario that existing studies primarily focus on is conditional diffusion models in image generation
tasks (see Croitoru et al. (2023); Li et al. (2023); Moser et al. (2024) for surveys of diffusion models
in computer vision). Different from unconditional image generation, conditional image samplers
aim to generate images that are consistent with the given information, either be a text-prompt (as
in text-to-image synthesis) or a sub-image (as in image super-resolution). For example, in image
super-resolution, given the input of a low-resolution image, the goal is not to generate some arbitrary
high-resolution image but the one whose corresponding low-resolution part matches the given input.
Here the diffusion models are well-trained on the unconditional distribution of high-resolution images,
whereas the target distribution is the conditional distribution given the low-resolution input. If one
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uses these well-trained unconditional scores to generate conditional samples, there will be a mismatch
at each step of the sampling process.

One class of methods to tackle the conditional sampling problem is to include extra-guided training,
where a modified score function is trained with the extra knowledge of the conditioning information
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). On the theory side, several recent works (Yuan
et al., 2023; Wu et al., 2024; Fu et al., 2024) provided the performance guarantee for such conditional
diffusion samplers, where a score guidance is obtained through extra training based on the conditional
information. However, the additional guided training in these samplers requires extra computations
and needs to be conducted for every image conditioning, which may not be efficient in practice.

Alternatively, zero-shot conditional image samplers arise as a prevalent approach (e.g., Choi et al.
(2021); Chung et al. (2022b;a; 2023); Wang et al. (2023); Song et al. (2023a); Fei et al. (2023)) for
training-free conditional generation given well-trained unconditional scores. For each conditioned
image, zero-shot samplers require no additional training to modify the scores. Instead, they adjust the
scores during sampling by calculating rectified scores based on conditional information to mitigate
the mismatch between the oracle conditional scores and the approximated ones.1 Despite their
empirical promise, theoretical guarantee on these zero-shot samplers is largely unexplored. In Gupta
et al. (2024), the authors provided a super-polynomial lower bound for zero-shot sampling as a
converse result. In Xu & Chi (2024), the authors proposed and analyzed a plug-and-play conditional
sampler. However, their analysis relies on the properties of the Markov transition kernel specific
to their plug-and-play model, which does not appear to be applicable to several widely used zero-
shot samplers, such as Come-Closer-Diffuse-Faster (CCDF) (Chung et al., 2022b) and Denoising
Diffusion Null-space Model (DDNM) (Wang et al., 2023). Therefore, there is a need to provide the
performance guarantee for those popular zero-shot conditional samplers.

In this paper, we address two key theoretical research gaps in zero-shot score-mismatched diffusion
models: (i) We provide performance guarantees for general score-mismatched diffusion models,
extending their applicability beyond the primary focus of existing theoretical studies on the special
case of conditional image generation. (ii) We analyze zero-shot conditional diffusion models, which
are generally applicable to existing zero-shot samplers such as CCDF (Chung et al., 2022b) and
DDNM (Wang et al., 2023) for which the analysis in Xu & Chi (2024) is not applicable (as we discuss
above).

1.1 OUR CONTRIBUTIONS

Technically, the main challenge due to mismatched scores is to analyze the expected tilting factor
(Liang et al., 2024) under a mean-perturbed Gaussian, providing an upper bound of the asymptotic
orders of all Gaussian non-centralized moments. Our detailed contributions are as follows.

Convergence of General Score-Mismatched DDPM: We provide the first non-asymptotic con-
vergence bound on the KL divergence between the target and generated distributions when there is
mismatch between the sampling and target scores in DDPM samplers, for general target distributions
having finite second moments. We show that the score mismatch at each diffusion step introduces an
asymptotic distributional bias that is proportional to the accumulated mismatch. We also provide the
first explicit dimensional dependency when the sixth moment of the target distribution exists. Our
result is applicable to general forms of mismatch between the target and training scores, which greatly
extend the focus of the existing theoretical research on conditional score-mismatch diffusion models.

We then apply our results to zero-shot conditional DDPM samplers, as long as the conditioning
involves certain deterministic or random transformations of the data. This provides the first theoretical
guarantees for several existing zero-shot samplers, such as CCDF (Chung et al., 2022b) and DDNM
(Wang et al., 2023). Notably, the theory in Xu & Chi (2024) does not apply to these samplers, as their
analysis relies on the properties of the Markov transition kernel specific to their plug-and-play model.
In contrast, our approach is based on the tilting-factor analysis from Liang et al. (2024), which is
applicable to general score-mismatched DDPM models. Moreover, the theory in Xu & Chi (2024) is
limited to cases where the measurement log-likelihood function is differentiable and bounded and
does not provide explicit dependencies on the data dimension. In contrast, our results do not require

1Note, however, that some zero-shot methods, such as DPS (Chung et al., 2023) and ΠGDM (Song et al.,
2023a), might induce additional computational costs during sampling.
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the measurement log-likelihood function to be differentiable or bounded and explicitly characterize
the dependencies on the data dimension.

Novel Design of Bias-Optimal Zero-shot Sampler BO-DDNM: Inspired by our convergence
analysis of score-mismatched DDPM, we design a novel zero-shot conditional sampler, called the
BO-DDNM sampler, which minimizes the asymptotic bias for linear conditional models. Such a
sampler coincides with the regular DDNM sampler (Wang et al., 2023) when there is no presence of
measurement noise, and achieves faster convergence than both the DDNM and DDNM+ samplers
under measurement noise, as shown by our theory and numerical simulations.

Theory for BO-DDNM with Explicit Parameter Dependencies: We provide the convergence
bound for the proposed BO-DDNM sampler with explicit dependencies on the dimension d as well
as the conditional information y, for various interesting classes of target distributions including
those having bounded support and Gaussian mixture. For the case of Gaussian mixture, we further
show that three factors positively affect the asymptotic bias: (1) the variance of the measurement
noise, (2) the averaged distance between y and the mean of each Gaussian component, and (3) the
corresponding correlation coefficient for each component.

1.2 RELATED WORK

We provide a summary of works addressing unconditional and score-matched diffusion models in
Appendix B. Below we discuss related works on conditional diffusion models which are closely
related to our study here.

Extra-Guided Training: In order to achieve conditional sampling using DDPM models in practice,
one method is to introduce conditional guided training, where one either uses an existing classifier
(a.k.a., classifier guidance) (Dhariwal & Nichol, 2021) or jointly trains the unconditional and condi-
tional scores (a.k.a., classifier-free guidance (CFG)) (Ho & Salimans, 2022). Here a guidance term
is obtained to “guide” the diffusion sampling process at each step such that the sampling scores
correspond to the true conditional scores. On the theory side, Wu et al. (2024) investigates the effect
of the guidance strength in CFG on Gaussian mixtures, Bradley & Nakkiran (2024) shows that CFG
is an instance of predictor-corrector methods, and Chidambaram et al. (2024) finds that CFG might
fail to sample correctly on certain mixture targets. There are other theoretical works that investigate
sample complexity bounds for conditional score matching for a variety of target distribution models,
including the conditional Ising models (Mei & Wu, 2023), those supported on a low-dimensional
linear subspace (Yuan et al., 2023), and Hölder smooth and sub-Gaussian conditional models (Fu
et al., 2024). Other than stochastic samplers, a conditional ODE sampler is proposed and studied in
Chang et al. (2024), which also requires extra training of the conditional score function.

Zero-shot Samplers: To achieve conditional DDPM sampling, a popular method is to use zero-shot
conditional samplers, with which one generates a conditional sample using approximated scores.
These scores are calculated from the unconditional score estimates and the conditional information
using simple (usually linear) functions without extra-training (Choi et al., 2021; Chung et al., 2022a;b;
2023; Wang et al., 2023; Song et al., 2023a; Fei et al., 2023). The only theoretical works on the
performance of zero-shot DDPM conditional samplers are Xu & Chi (2024); Gupta et al. (2024). In
Xu & Chi (2024), a diffusion plug-and-play sampler is proposed which alternates between a diffusion
sampling step and a consistency sampling step. The difference of our results from those in Xu &
Chi (2024) has been thoroughly discussed in Section 1.1. From an alternative perspective, Gupta
et al. (2024) shows that the sampling complexity with zero-shot samplers can take super-polynomial
time for some worst-case distribution (among the set of distributions where smooth scores can be
efficiently estimated). In contract, our result shows a consistent fact that there exists a non-vanishing
asymptotic distributional bias within polynomial time.

2 PROBLEM SETUP

In this section, we first provide some background on the (typical) score-matched DDPMs. Then, we
introduce the score-mismatched DDPM samplers and, as a special example, the conditional sampling
problem and zero-shot samplers.

2.1 BACKGROUND OF SCORE-MATCHED DDPMS

The goal of the (typical) score-matched sampling problem is to generate a sample whose distribution
is close to the data distribution. To this end, the DDPM algorithm (Ho et al., 2020) is widely used,
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which consists of a forward process and a reverse process of latent variables. Let x0 ∈ Rd be the
initial data, and let xt ∈ Rd,∀1 ≤ t ≤ T be the latent variables. Let Q0 be the data distribution, and
let Qt (resp., Qt,t−1) be the marginal (resp., joint) latent distribution for all 1 ≤ t ≤ T .

Forward Process: In the forward process, white Gaussian noise is gradually added to the data:
xt =

√
1− βtxt−1 +

√
βtwt, ∀1 ≤ t ≤ T , where wt

i.i.d.∼ N (0, Id). Equivalently, this can be
expressed as:

Qt|t−1(xt|xt−1) = N (xt;
√

1− βtxt−1, βtId), (1)

which means that under Q, the Markov chain X0 → X1 → · · · → XT holds. Define αt := 1− βt

and ᾱt :=
∏t

i=1 αi for all 1 ≤ t ≤ T . An immediate result by accumulating the steps is that
Qt|0(xt|x0) = N (xt;

√
ᾱtx0, (1−ᾱt)Id), or, written equivalently, xt =

√
ᾱtx0+

√
1− ᾱtw̄t, ∀1 ≤

t ≤ T , where w̄t ∼ N (0, Id) denotes the aggregated noise at time t and is independent of x0. Finally,
since each w̄t is Gaussian, each Qt (t ≥ 1) is absolutely continuous w.r.t. the Lebesgue measure. Let
the p.d.f. of each Qt be qt, and qt,t−1, qt|t−1, and qt−1|t for t ≥ 1 can be similarly defined.

Reverse Process: In the reverse process, the latent variable at time T is first drawn from a standard
Gaussian distribution: xT ∼ N (0, Id) =: PT . Then, each forward step is approximated by a
reverse sampling step. At each time t = T, T − 1, . . . , 1, define the true reverse process as xt−1 =
µt(xt) + σtzt, where z ∼ N (0, Id). Here σ2

t := 1−αt

αt
. For the typical DDPM sampling process,

µt(xt) = 1√
αt

(xt + (1− αt)∇ log qt(xt)). Equivalently, Pt−1|t = N (xt−1;µt(xt), σ
2
t Id). Here

∇ log qt(x) is called the score of qt, and µt(xt) is a function of the score. Let Pt be the marginal
distributions of xt in the true reverse process, and let pt be its corresponding p.d.f. w.r.t. the Lebesgue
measure. Define pt−1|t and pt|t−1 in a way similar to the forward process.

In practice, one does not have access to ∇ log qt(xt) and thus µt(xt). Instead, an estimate of
∇ log qt(xt), denoted as st(xt), is used, which results in an estimated µ̂t(xt) and the estimated
reverse process: xt−1 = µ̂t(xt) + σtz. Let P̂t be the marginal distributions of xt in the estimated
reverse process with the corresponding p.d.f. p̂t. Note that P̂t−1|t = N (xt−1; µ̂t(xt), σ

2
t Id) and

P̂T = PT . Hence, under P and P̂ , XT → XT−1 → · · · → X0 holds.

Performance Metrics: In the case where Q0 is absolutely continuous w.r.t. the Lebesgue measure,
we are interested in measuring the sampling performance through the KL divergence between Q0

and P̂0, defined as

KL(Q∥P ) :=
∫
log dQ

dP dQ = EX∼Q

[
log q(X)

p(X)

]
≥ 0.

Indeed, from Pinsker’s inequality, the total-variation (TV) distance can be upper bounded as
TV(Q0, P̂0)

2 ≤ 1
2KL(Q0∥P̂0). When q0 does not exist, we use the Wasserstein-2 distance to

measure the one-step perturbed performance, which is defined as

W2(Q,P ) :=
{
minΓ∈Π(Q,P )

∫
Rd×Rd ∥x− y∥2 dΓ(x, y)

}1/2

,

where Π(Q,P ) is the set of all joint probability measures on Rd × Rd with marginal distributions Q
and P , respectively. Both metrics are widely adopted (Chen et al., 2023a; Benton et al., 2024a).

2.2 SCORE-MISMATCHED DDPMS

Differently from the score-matched sampling problem, the goal of the score-mismatched problem is
to sample from a different target distribution from the training distribution with which we estimate
the scores. Thus, there will be a mismatch between the target score and the estimated score at
each diffusion step. Let Qt (t ≥ 0) be the training distributions used for training the score. Let
Q̃0 be the target distribution that one hopes to generate samples from, and let Q̃t (t ≥ 1) be its
Gaussian-perturbed distributions according to the forward process in (1). Define the posterior mean
under the target distributions as mt(xt) := EXt−1∼Q̃t−1|t

[Xt−1|xt]. Note that by Tweedie’s formula

(Efron, 2011), mt(xt) =
1√
αt

(xt + (1− αt)∇ log q̃t(xt)). Recall that Pt and P̂t are the sampling
distributions of the true and estimated reverse process, respectively. For general score-mismatched
DDPMs, we leave the generic definition of µt(xt) without providing any particular expression. An
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example of µt(xt) is given later in (6), yet our general analysis does not require any particular form
for µt. With these notations, the score mismatch at each step t ≥ 1 can be defined as

∆t(xt) :=
√
αt

1−αt

(
EXt−1∼Q̃t−1|t

[Xt−1|xt]− EXt−1∼Pt−1|t [Xt−1|xt]
)
=

√
αt

1−αt
(mt(xt)− µt(xt)).

(2)
The goal, then, is to provide an upper bound on the distributional dissimilarity between the target
distribution Q̃0 and the sampling distribution P̂0. We use the same metrics as those defined in
Section 2.1 to evaluate the performance of the score-mismatched DDPM.

2.3 ZERO-SHOT CONDITIONAL DDPMS

One interesting example of score mismatch is the zero-shot conditional sampling problem. Differently
from the unconditional counterpart, the conditional sampling problem aims to obtain a sample that
aligns in particular with the provided conditioning. Define y ∈ Rp to be the conditioned information
about x0. Specifically, let y = h(x0), where h(·) is some arbitrary (deterministic or random) function
of only x0 (apart from independent noise). Note that general score-mismatched DDPMs can be
specialized to zero-shot conditional samplers with the following notations:

Q̃t = Qt|y, mt = mt,y, µt = µt,y, and ∆t = ∆t,y. (3)

Linear Conditional Models: In practice, one commonly adopted model is the linear conditional
model (Jalal et al., 2021; Wang et al., 2023; Song et al., 2023a), defined as

y := Hx0 + n, (4)

where H ∈ Rp×d (p ≤ d) is a deterministic matrix and n ∼ N (0, σ2
yIp) is the measurement noise,

which is assumed to be Gaussian and independent of x0. For the case where there is no measurement
noise, let σ2

y = 0 and thus n = 0 almost surely. In applications like image super-resolution and
inpainting (Wang et al., 2023), H admits a simple form of a 0-1 diagonal matrix, where the 1’s occur
only on the diagonal and at those locations corresponding to the provided pixels. In these scenarios,
both H and y are fixed and given. The linear conditional model is studied in Section 4.

Conditional Forward Process for Linear Models: Write the Moore–Penrose pseudo-inverse of H
as H†, and note that H†H is an orthogonal projection matrix. With this notation, under (4), we can
re-express the forward process in (1) as

xt =
√
ᾱt(Id −H†H)x0 +

√
ᾱtH

†y −
√
ᾱtH

†n+
√
1− ᾱtw̄t.

Here, since n is independent of w̄t, for fixed x0 and y, we have that, for all t ≥ 1,

Qt|0,y(xt|x0, y) = N (xt;
√
ᾱt(Id −H†H)x0 +

√
ᾱtH

†y, ᾱtσ
2
yH

†(H†)⊺ + (1− ᾱt)Id). (5)

Also, since the forward process is a Markov chain, we have that Qt|t−1,y = Qt|t−1 for all t ≥ 1.

Zero-shot Conditional Sampler for Linear Models: We employ the zero-shot conditional sampler
for linear conditional models in the following form: xt−1 = µt,y(xt) + σtzt, where

µt,y(xt) =
1√
αt

(xt + (1− αt)gt,y(xt)) , gt,y := (Id −H†H)∇ log qt(xt) + ft,y(xt). (6)

Here ft,y(xt) is a simple function of y and xt computable without extra training and such that
(Id −H†H)ft,y(x) ≡ 0 for all x ∈ Rd. Intuitively, ft,y characterizes the score rectification in the
range space of H†H . Indeed, many zero-shot samplers in the literature have such ft,y(xt)’s that
satisfy (6) (see Appendix D). Now, with the linear model in (4) and the zero-shot conditional sampler
in (6), the score mismatch at each time t ≥ 1 is equal to

∆t,y(xt) = (Id −H†H)(∇ log qt|y(xt)−∇ log qt(xt)) + (H†H)∇ log qt|y(xt)− ft,y(xt). (7)

3 DDPM UNDER GENERAL SCORE MISMATCH

In this section, we provide convergence guarantees for general score-mismatched DDPM samplers
under a general target distribution Q̃0. Throughout this section we keep the generic definition for
score mismatch ∆t as in (2), without assuming any particular expression for µt.
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3.1 TECHNICAL ASSUMPTIONS

We will analyze general score-mismatched DDPMs under the following technical assumptions.

Assumption 1 (Finite Second Moment). There exists a constant M2 < ∞ (that does not depend on
d and T ) such that EX0∼Q̃0

∥X0∥2 ≤ dM2.

The first Assumption 1 is commonly adopted in the analyses of score-matched DDPM samplers
(Chen et al., 2023a;d; Liang et al., 2024).

Assumption 2 (Posterior Mean Estimation). The estimated posterior mean µ̂t at t = 1, . . . , T satisfy
1
T

∑T
t=1

αt

(1−αt)2
EXt∼Q̃t

∥µ̂t(Xt)− µt(Xt)∥2 ≤ ε2, where ε2 = Õ(T−2).

The above Assumption 2 is made for the score estimation error for the general mismatched setting,
where we leave generic definitions of µt and µ̂t. For zero-shot conditional samplers in linear
models, this assumption is weaker than that for the estimation error for unconditional scores (see (9)).
Compared with the score-matched case, the estimation error needs to be achieved at a higher accuracy
because of the extra error term when there is score mismatch (Lemma 2). Such a higher level of
estimation accuracy also occurs in previous theoretical studies for accelerated DDPM samplers (Li
et al., 2024a, Theorem 3.2).

Assumption 3 (Regular Derivatives). For all t ≥ 1 where q̃t−1 exists, ℓ ≥ 1, and a ∈ [d]p where
|a| = p ≥ 1,

EXt∼Q̃t
|∂p

a log q̃t(Xt)|ℓ = O (1) , EXt∼Q̃t
|∂p

a log q̃t−1(mt(Xt))|ℓ = O (1) .

The above Assumption 3 is useful for our tilting-factor based analysis, which guarantees that all
(higher-order) Taylor polynomials of log q̃t are well controlled in expectation. It is rather soft, and it
can be verified when Q̃0 has finite variance (under early-stopping) (Liang et al., 2024).

Assumption 4 (Bounded Mismatch). For all t ≥ 1 where q̃t−1 exists, and ℓ ≥ 2,

EXt∼Q̃t
∥∆t(Xt)∥ℓ = O(ᾱt).

The above Assumption 4 is used to characterize the amount of mismatch at each time t ≥ 1. The
ᾱt :=

∏t
i=1 αi is necessary for the overall bias to be bounded.

In the paper, Assumptions 3 and 4 have been established in two cases of zero-shot conditional
sampling: (i) where Q0 has bounded support for any H , using a special αt in (8) (see the proof of
Theorem 4); and (ii) where Q0 is Gaussian mixture and H = (Ip 0) (see Lemma 8). For Case (i),
the assumption that Q0 has bounded support has wide applicability in practice (e.g., images (Ho
et al., 2020; Wang et al., 2023)) and is commonly made in many theoretical investigations of the
score-matched DDPM (Li et al., 2024a;c).

Finally, note that when q̃0 does not exist (e.g., for images (Ho et al., 2020; Wang et al., 2023)),
Assumptions 3 and 4 are required only for t ≥ 2.

3.2 CONVERGENCE BOUND

To present the main result, we first define a set of noise schedule as follows.

Definition 1 (Noise Schedule). For all sufficiently large T , set the step size αt’s to satisfy

1− αt ≲
log T
T , ∀1 ≤ t ≤ T, and ᾱT :=

∏T
t=1 αt = o

(
1
T

)
.

An example of αt that satisfies Definition 1 is 1 − αt ≡ c log T
T , ∀t ≥ 1 with c > 1. Then,

ᾱT =
(
1− c log T

T

)T
= exp

(
T log

(
1− c log T

T

))
= O

(
eT

−c log T
T

)
= o

(
T−1

)
.

The following Theorem 1 provides an upper bound on the KL-divergence between the target distri-
bution Q̃0 and the sampling distribution P̂0, as a function of (general) score-mismatch ∆t at each
time t ≥ 1. Theorem 1 is the first convergence result for score-mismatched DDPM samplers for any
smooth Q̃0 that has finite second moment (along with some mild regularity conditions).
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Theorem 1 (DDPM under Score Mismatch). Suppose that Q̃0 has a p.d.f. q̃0 which is analytic, and
suppose that Assumptions 1 to 4 are satisfied. Then, with the αt chosen to satisfy Definition 1, the
distribution P̂0 from the score-mismatched DDPM satisfies

KL(Q̃0∥P̂0) ≲ Woracle +Wbias +Wvanish, where

Woracle =
∑T

t=1
(1−αt)

2

2αt
EXt∼Q̃t

[
Tr
(
∇2 log q̃t−1(mt(Xt))∇2 log q̃t(Xt)

)]
+ (log T )ε2

Wbias =
∑T

t=1(1− αt)EXt∼Q̃t
∥∆t(Xt)∥2

Wvanish =
∑T

t=1
1−αt√

αt
EXt∼Q̃t

[
(∇ log q̃t−1(mt(Xt))−

√
αt∇ log q̃t(Xt))

⊺∆t(Xt)

]
−
∑T

t=1
(1−αt)

2

2αt
EXt∼Q̃t

[
∆t(Xt)

⊺∇2 log q̃t−1(mt(Xt))∆t(Xt)
]

+
∑T

t=1
(1−αt)

2

3!αt
3/2 EXt∼Q̃t

[
3
∑d

i=1 ∂
3
iii log q̃t−1(mt(Xt))∆t(Xt)

i

+
∑d

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt(Xt))∆t(Xt)

j

]
+maxt≥1

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε.

When Q̃0 does not have a p.d.f., a similar upper bound is applied to KL(Q̃1∥P̂1) such that
W2(Q̃1, Q̃0)

2 ≲ (1− α1)d (see Corollary 1 in Appendix F.5).

To explain the three error terms in Theorem 1, Woracle captures the error assuming that one has access
to (a close estimate of) ∇ log q̃t, ∀t ≥ 1. This error is independent of the score mismatch ∆t, and it
decays as Õ(T−1) under Assumption 3 (Liang et al., 2024, Theorem 1). The remaining two error
terms Wbias and Wvanish arise from the mismatched sampling process. Both terms become zero if
∆t ≡ 0 for all t ≥ 1, which corresponds to the score-matched case. Under Assumptions 3 and 4,
Wvanish decays as Õ(T−1) under an additional mild condition (see Lemma 5 in Appendix G), and
Wbias asymptotically approaches a constant. Combining all three terms, score mismatch causes an
asymptotic distributional bias between Q̃0 and P̂0.

To further understand Wbias, note that 1 − αt is usually summable under Assumption 4 (cf. Lem-
mas 7 and 10). Thus, the bias can be further upper-bounded by the maximum step-wise mismatch
maxt≥1 EXt∼Q̃t

∥∆t(Xt)∥2. In case that µt(xt) =
1√
αt

(xt + (1− αt)gt(xt)) (as for the zero-shot

sampler in (6)), define a measure P̃t such that gt(xt) = ∇ log p̃t(xt). Then, from (2),

EXt∼Q̃t
∥∆t(Xt)∥2 = EXt∼Q̃t

∥∥∥∇ log q̃t(Xt)
p̃t(Xt)

∥∥∥2 =: F(Q̃t∥P̃t).

where F(Q∥P ) denotes the Fisher divergence (or called relative Fisher information) between Q and
P . In Section 4, this distributional bias Wbias inspires us to design a novel zero-shot DDPM sampler,
the BO-DDNM sampler, that minimizes the asymptotic bias.

Next we provide an upper bound with explicit dimensional dependency, for any Q0 that has finite
sixth moment such as Gaussian mixture Q0’s and those Q0’s having bounded support. To this end,
we consider a special noise schedule first proposed in Li et al. (2024c):

1− α1 = δ, 1− αt =
c log T

T min

{
δ
(
1 + c log T

T

)t
, 1

}
, ∀2 ≤ t ≤ T (8)

for any constants (c, δ) such that c > 1 and δec > 1. Note that this noise schedule corresponds to
early-stopping in the literature (Chen et al., 2023a; Benton et al., 2024a). With the αt in (8), we can
show that the regularity condition Assumption 3 holds for a quite general set of distributions (see
Lemma 5 in Appendix G).

Theorem 2. Suppose that EX0∼Q̃0
∥X0∥6 ≲ d3. Further, suppose that ∆t satisfies that

EXt∼Q̃t
∥∆t(Xt)∥4 ≲ ᾱ2

t

(1−ᾱt)2r
d2γ with some γ, r ≥ 1 for all t ≥ 2. Then, if the estimation

error satisfies Assumption 2 and if ∆t satisfies Assumption 4, with the αt in (8) such that δ ≪ 1 and

7
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c ≍ log(1/δ), we have, for some Q̃1 such that W2(Q̃1, Q̃0)
2 ≲ δd,

KL(Q̃1∥P̂1) ≲ dγδ−r
(
1− 2 log(1/δ) log T

T

)
+max{d(3+γ)/2δ−

r+2
2 , d1+γδ−(r−1)} (log T )2

T + dγ/2δ−r/2(log T )ε.

Note that Theorem 2 provides the first performance guarantee with explicit dimensional dependence
for general score-mismatched DDPMs. Here the finite sixth moment is a technical condition to
guarantee small expected difference of the first-order Taylor polynomial in case of mismatched scores
(see Lemma 5 in Appendix G). Later, Theorem 2 will be useful to provide guarantees for zero-shot
conditional samplers under linear models (Theorem 4).

4 ZERO-SHOT CONDITIONAL DDPM SAMPLERS

As we discuss before, an important scenario of score-mismatched diffusion models is the zero-shot
conditional problem, where certain information y is given. In this section, we apply our general
results for score-mismatch DDPMs in Section 3 to studying zero-shot conditional DDPM samplers,
with the notations in (3) for y = h(x0) for some arbitrary (deterministic or random) h(·).
In the following, we are particularly interested in the linear conditional model in (4). We take the same
Assumptions 1, 3 and 4 (albeit with changed notations), and further adopt the following common
assumption on the unconditional score estimation (Chen et al., 2023a;d; Liang et al., 2024).

Assumption 5 (Estimation Error of Unconditional Score). Suppose that st satisfies
1
T

∑T
t=1 EXt∼Qt|y ∥st(Xt)−∇ log qt(Xt)∥2 ≤ ε2, where ε2 = Õ(T−2).

Note that, with the zero-shot sampler defined in (6), since
∥∥Id −H†H

∥∥ = 1, we have, ∀x ∈ Rd,

∥µ̂t,y − µt,y∥2 =
(1− αt)

2

αt

∥∥(Id −H†H)(st −∇ log qt)
∥∥2 ≤ (1− αt)

2

αt
∥st −∇ log qt∥2 . (9)

Therefore, Assumption 5 directly implies Assumption 2, and thus Theorem 1 (as well as Corollary 1)
still holds under Assumptions 1 and 3 to 5.

4.1 A NOVEL BIAS-OPTIMAL ZERO-SHOT SAMPLER

Guided by the performance guarantee characterized in Theorem 1, we will propose a novel optimized
zero-shot condition sampler. With the zero-shot sampler defined in (6), the goal is to choose the ft,y
function that minimizes the convergence error for each y ∈ Rp and t ≥ 1.

Specifically, it is observed in Theorem 1 that the convergence error in terms of the KL-divergence
will have an asymptotic distributional bias given by Wbias. As follows, we characterize an optimal
ft,y that minimizes Wbias, which thus yields a corresponding bias-optimal zero-shot sampler.

Theorem 3. Define Σt|0,y := ᾱtσ
2
yH

†(H†)⊺ + (1− ᾱt)Id. For any Q0 and t ≥ 1, we have

∇ log qt|y(xt) = Σ−1
t|0,y(

√
ᾱtH

†y − xt) +
√
ᾱt

1−ᾱt
(Id −H†H)EQ0|t,y [X0|xt, y].

Also, recall the sampler in (6) and define f∗
t,y as

f∗
t,y(xt) := Σ−1

t|0,y
(√

ᾱtH
†y −H†Hxt

)
. (10)

Also recall ∆t,y from (7). Then, f∗
t,y satisfies that, for all t ≥ 1 and fixed y ∈ Rp,

f∗
t,y ∈ argmin

ft,y :(Id−H†H)ft,y≡0

∥∆t,y∥2 , Qt|y–almost surely.

The sampler f∗
t,y(xt) defined in (10) provides a bias-optimal zero-shot conditional DDPM sampler.

In the case with σy = 0, such an optimal sampler coincides with the regular DDNM sampler in Wang
et al. (2023) (see Appendix D). Thus, we call this sampler as Bias-Optimal (BO) DDNM sampler.
With (10), we can also calculate the minimum step-wise mismatch as

min
ft,y :(Id−H†H)ft,y≡0

EXt∼Qt|y ∥∆t,y∥2 = EXt∼Qt|y

∥∥∥∇ log
qt|y(Xt)

qt(Xt)

∥∥∥2
(Id−H†H)

,

8
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Figure 1: Comparison of BO-DDNM, DDNM
and DDNM+ for Gaussian (left) and Gaussian
mixture (right) Q0 under measurement noise.

Figure 2: Distributional bias as a function of the
conditioning y (left) and the correlation coeffi-
cient ρ (right) for Gaussian Q0.

which is the projected Fisher divergence between Qt|y and Qt on range(Id −H†H).

In the following lemma, we provide the performance bound for BO-DDNM when Q0 has bounded
support. For comparison, we also provide the theoretical performance of vanilla DDNM, denoted as
fN
t,y .

Theorem 4 (BO-DDNM vs. DDNM). Suppose that ∥X0∥2 ≤ R2d a.s. under Q0. Suppose that
Assumptions 1 and 5 hold. Then, with the conditional sampler f∗

t,y in (10), Theorem 2 holds with
γ = 1 and r = 2. Also, with the conditional sampler fN

t,y := (1− ᾱt)
−1
(√

ᾱtH
†y −H†Hxt

)
, if

further
∥∥H†

∥∥ ≲ 1, then Theorem 2 holds with γ = 1 and r = 4.

Theorem 4 establishes the first result applicable to DDNM-type zero-shot conditional samplers for
any linear conditional models on those target distributions having bounded support.

Advantage of BO-DDNM over DDNM and DDNM+: When there is positive measurement noise,
Theorem 4 indicates that our BO-DDNM sampler that uses ft,y = f∗

t,y enjoys a smaller asymptotic
bias than DDNM that uses fN

t,y with the αt in (8) (δ−2 vs. δ−4). Note that the DDNM sampler
corresponds to ft,y = fN

t,y (see Appendix D). Such an advantage is also demonstrated by our
numerical experiment. In Figure 1, we numerically compared modified conditional zero-shot sampler
(as given in (10)) with the DDNM and DDNM+ sampler for both Gaussian and Gaussian mixture
Q0’s at different levels of measurement noise. It is observed that the optimal BO-DDNM sampler
achieves a much lower bias than both the DDNM and the DDNM+ samplers numerically, especially
when σ2

y becomes large.

4.2 BO-DDNM SAMPLER FOR GAUSSIAN MIXTURE Q0

In this section, we focus on the convergence dependency on other system parameters of the BO-
DDNM sampler, including the chosen y. In particular, we restrict our attention to Gaussian mixture
Q0’s and to a special conditional model, where H = (Ip 0). This choice can be seen in many
applications, such as image super-resolution and inpainting (after reorganizing the pixels), where Ip
corresponds to the locations of the given pixels (Wang et al., 2023; Song et al., 2023a). We assume
positive measurement noise. We introduce the notation [Σ0]ab to denote the variance components
that correspond to the space of a× b where a, b ∈ {y, ȳ}.

The following Proposition 1 gives an upper bound on the asymptotic bias for Gaussian mixture Q0.

Proposition 1. Suppose that Q0 is Gaussian mixture with equal variance, whose p.d.f. is given
by q0(x0) =

∑N
n=1 πnq0,n(x0), where q0,n is the p.d.f. of N (µ0,n,Σ0) and πn ∈ [0, 1] is the

mixing coefficient with
∑N

n=1 πn = 1. Suppose that H = (Ip 0), and adopt f∗
t,y in (10) and αt

in Definition 1. Write λ1 ≥ · · · ≥ λd > 0 and λ̃1 ≥ · · · ≥ λ̃d−p > 0 as the eigenvalues of Σ0 and
[Σ0]ȳȳ , respectively. Then,

EXt∼Qt|y ∥∆t,y(Xt)∥2

≲ ᾱtd+ ᾱ2
t

∥[Σ0]yȳ∥2

min{λ̃d−p,1}2 min{λd,1}2
max

{
d(λ1 + σ2

y) +
∑N

n=1 πn

∥∥H†y −H†Hµ0,n

∥∥2 , d}
≲ ᾱt

(
d+

∑N
n=1 πn

∥∥H†y −H†Hµ0,n

∥∥2) .
9
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Proposition 1 indicates that three factors affect (an upper bound on) the asymptotic bias. (i) The
measurement noise variance σ2

y determined by the system nature has an increasing effect on the bias.

(ii) The averaged distance
∑N

n=1 πn

∥∥H†y −H†Hµ0,n

∥∥2 between H†y and H†Hµ0,n captures the
quadratic dependency in y, as illustrated in the left plot of Figure 2. (iii) The correlation between Hx0

and (Id −H†H)x0 of each mixture component contributes positively to the bias, which is contained
in the factor ∥[Σ0]yȳ∥2

min{λd,1}2 . To see this, consider σ2
y = 0 and a specific Gaussian example with d = 2,

p = 1, and Σ0 =

(
σ2
11 ρσ11σ22

ρσ11σ22 σ2
22

)
. As the correlation coefficient ρ increases, Σ0 becomes

closer to be singular, and thus λd decreases to 0. Also, ∥[Σ0]yȳ∥2 = ρ2σ2
11σ

2
22 increases quadratically

with ρ. Hence, this factor ∥[Σ0]yȳ∥2

min{λd,1}2 grows unboundedly as ρ → 1, as does EXt∼Qt|y ∥∆t,y(Xt)∥2.
Such dependency on the correlation is illustrated numerically in the right plot of Figure 2.

The following theorem characterizes the conditional KL divergence when Q0 is mixture Gaussian.
In particular, we can show Assumption 4 holds with any αt that satisfies Definition 1 when Q0 is
Gaussian mixture (see Lemma 8 in Appendix I.5).

Theorem 5. Suppose the same conditions in Proposition 1 hold and σ2
y > 0. Suppose that As-

sumption 5 holds. Take f∗
t,y in (10) and αt that further satisfies

∑T
t=1(1 − αt)ᾱt = 1 + o(1).

Then,

KL(Q0|y∥P̂0|y) ≲
(
d+

∑N
n=1 πn

∥∥H†y −H†Hµ0,n

∥∥2)+(
d2 +

∑N
n=1 πn

∥∥H†y −H†Hµ0,n

∥∥4) (log T )2

T +
√
d+

∑N
n=1 πn ∥H†y −H†Hµ0,n∥2(log T )ε.

Although Proposition 1 and Theorem 5 assume H = (Ip 0), extension to general H is straightfor-
ward by modifying the proof of Lemma 8 and using the fact that

∥∥H†H
∥∥ =

∥∥Id −H†H
∥∥ = 1.

This is the first convergence result for zero-shot samplers where explicit dependency on the condi-
tioning y is derived for Gaussian mixture targets. Note that the extra condition on αt can be verified
for both constant αt (Lemma 10) and that in (8) (Lemma 7). Among the three terms in Theorem 5,
the first term is the asymptotic bias analyzed in Proposition 1. Since the last two terms decrease to
zero as T → ∞, the asymptotic KL divergence will also approach some non-zero limit of order d.

The proof of Theorem 5 is non-trivial because from Theorem 1 we need to figure out the dependency
on y in all first three orders of partial derivatives of a Gaussian mixture density, which is generally
hard to express. To this end, we restrict focus to a particular linear model where explicit dependency
can be sought. The result can be extended to the case of σ2

y = 0 with the αt in (8) (see Remark 2).

5 CONCLUSION

In this paper, we have provided convergence guarantees for the general score-mismatched diffusion
models, which are specialized to zero-shot conditional samplers. For linear conditional models,
we also designed an optimal BO-DDNM sampler that minimizes the asymptotic bias, for which
we showed the dependencies on the system parameters. One future direction is to explore zero-
shot samplers that use higher-order derivatives of the log-densities, which might achieve better
convergence results.
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