
A A3 Time Complexity

This section gives the worst-case time analysis for Algorithm 1. We denote Ta to be the attack time
and Tr to be the search time. We will show that with the per sample per attack time constraint of Tc:

Ta ≤ m×N × Tc (3)

Tr ≤ 2×m× n× k × Tc (4)

Where m, N , n, k are the number of attacks, the size of the dataset D, the size of initial dataset size,
the number of attacks to sample respectively.

In Algorithm 1, only steps on lines 1,4,8,14 are timing critical as they apply the expensive attack
algorithms. Other steps like sampling datasets and applying parameter estimator M are considered as
constant overhead. Ta is the total runtime of line 4, because line 4 is the step to apply the attack on
all the samples. Tr includes the runtime of lines 1,8,14.

Ta has the worst-case runtime when each of the m attacks uses the full time budget Tc on all the
samples (denoted as N). This gives the bound shown in Eq. 3.

For Tr, we first analyze the time in lines 8 and 14 for a single attack. In line 8, the maximum time to
perform k attacks on n samples is: n×k×Tc. In line 14, the cost of the first iteration is: 1

2n×k×Tc

as there are k/4 attacks and 2n samples. The cost of SHA iteration is halved for every subsequent
iteration by such design, so the total time for line 14 is n× k × Tc. As there are m attacks, the total
time bound for lines 8 and 14 is: 2×m× n× k × Tc.

The runtime for line 1 is bounded by N × Tfast as we run single attack on all the samples. Here,
we use Tfast to denote the maximum runtime of a fast attack that we run at this stage. This step is
typically negligible compared to the subsequent search, i.e., N × Tfast � 2 × m × n × k × Tc.
Overall, we can therefore bound the search runtime by considering the lines and 8 and 14, which
leads to the bound from Eq. 4.

In our evaluation, we use m = 3, k = 64, n = 100, N = 10000. Substituting into Eq. 4 leads to
Tr ≤ 2× 3× 100× 64× Tc ≤ 4×N × Tc. This means the total search time is bounded by the time
bound of executing a sequence of 4 attacks on the full dataset. Further, Tr ≤ 4

3 ×m×N ×Tc, which
means the search time of an attack is bounded by 4

3 of the allowed runtime to execute the attack.

B Search Space of S× L

B.1 Loss function space L

Recall that the loss function search space is defined as:

(Loss Function Search Space)
L ::= targeted Loss, n with Z |

untargeted Loss with Z |
targeted Loss, n - untargeted Loss with Z

Z ::= logits | probs

To refer to different settings, we use the following notation:

• U: for the untargeted loss,

• T: for the targeted loss,

• D: for the targeted − untargeted loss

• L: for using logits, and

• P: for using probs

For example, we use DLR-U-L to denote untargeted DLR loss with logits. The loss space used in
our evaluation is shown in Table 3. For hinge loss, we set κ = −∞ in implementation to encourage
stronger adversarial samples. Effectively, the search space includes all the possible combinations
expect that the cross-entropy loss supports only probability. Note that although �DLR is designed

14

Table 3: Loss functions and their modifiers. ✓ means the loss supports the modifier. P means the loss
always uses Probability.

Name Targeted Logit/Prob Loss

�CE ✓ P �CrossEntropy = −�K
i=1 yi log(Z(x)i)

�Hinge ✓ ✓ �HingeLoss = max(−Z(x)y +max
i�=y

Z(x)i,−κ)

�L1 ✓ ✓ �L1 = −Z(x)y

�DLR ✓ ✓ �DLR = −Z(x)y −maxi�=y Z(x)i
Z(x)π1

− Z(x)π3

�LogitMatching ✓ ✓ �LogitMatching = �Z(x�)− Z(x)�22

Table 4: Generic parameters and loss support for each attack in the search space. For the loss
column, ”-” means the loss is from the library implementation, and ✓ means the attack supports all
the loss functions defined in Table 3. In other columns ✓ means the attack supports all the values,
and the attack supports only the indicated set of values otherwise.

ATTACK RANDOMIZE EOT REPEAT LOSS TARGETED LOGIT/PROB

FGSM TRUE Z[1, 200] ∗Z[1, 10000] ✓ ✓ ✓
PGD TRUE Z[1, 40] Z[1, 10] ✓ ✓ ✓
DeepFool FALSE 1 1 ✓ D ✓
APGD TRUE Z[1, 40] Z[1, 10] ✓ ✓ ✓
C&W FALSE 1 1 - {U, T} L
FAB TRUE 1 Z[1, 10] - {U, T} L
SQR TRUE 1 Z[1, 3] ✓ ✓ ✓
NES TRUE 1 1 ✓ ✓ ✓

for logits, and �LogitMatching is designed for targeted attacks, the search space still makes other
possibilities an option (i.e., it is up to the search algorithm to learn which combinations are useful
and which are not).

B.2 Attack Algorithm & Parameters Space S

Recall the attack space defined as:

S ::= S; S | randomize S | EOT S, n | repeat S, n |
try S for n | Attack with params with loss ∈ L

randomize, EOT, repeat are the generic parameters, and params refers to attack specific parame-
ters. The type of every parameter is either integer or float. An integer ranges from p to q inclusive
is denoted as Z[p, q]. A float range from p to q inclusive is denoted as R[p, q]. Besides value range,
prior is needed for parameter estimator model (TPE in our case), which is either uniform (default) or
log uniform (denoted with ∗). For example, ∗Z[1, 100] means an integer value ranges from 1 to 100
with log uniform prior; R[0.1, 1] means a float value ranges from 0.1 to 1 with uniform prior.

Generic parameters and the supported loss for each attack algorithm are defined in Table 4. The
algorithm returns a deterministic result if randomize is False, and otherwise the results might differ
due to randomization. Randomness can come from either perturbing the initial input or randomness
in the attack algorithm. Input perturbation is deterministic if the starting input is the original input
or an input with fixed disturbance, and it is randomized if the starting input is chosen uniformly at
random within the adversarial capability. For example, the first iteration of FAB uses the original
input but the subsequent inputs are randomized (if the randomization is enabled). Attack algorithms
like SQR, which is based on random search, has randomness in the algorithm itself. The deterministic
version of such randomized algorithms is obtained by fixing the initial random seed.

The definition of randomize for FGSM, PGD, NES, APGD, FAB, DeepFool, C&W is whether to start from
the original input or uniformly at random select a point within the adversarial capability. For SQR,
random means whether to fix the seed. We generally set randomize to be True to allow repeating the

15

Table 5: List of attack specific parameters. The parameter names correspond to the names in the
library implementation

Attack Parameter Range and prior

NES
step Z[20, 80]
rel stepsize ∗R[0.01, 0.1]
n samples Z[400, 4000]

C&W

confidence R[0, 0.1]
max iter Z[20, 200]
binary search steps Z[5, 25]
learning rate ∗R[0.0001, 0.01]
max halving Z[5, 15]
max doubling Z[5, 15]

Attack Parameter Range and prior

PGD step Z[20, 200]
rel stepsize ∗R[1/1000, 1]

APGD rho R[0.5, 0.9]
n iter Z[20, 500]

FAB
n iter Z[10, 200]
eta R[1, 1.2]
beta R[0.7, 1]

SQR n queries Z[1000, 8000]
p init R[0.5, 0.9]

attacks for stronger attack strength, yet we set DeepFool and C&W to False as they are minimization
attacks designed with the original inputs as the starting inputs.

The attack specific parameters are listed in Table 5, and the ranges are chosen to be representative
by setting reasonable upper and lower bounds to include the default values of parameters. Note that
DeepFool algorithm uses the loss D to take difference between the predictions of two classes by
design (i.e., targeted − untargeted loss). FAB uses loss similar to DeepFool, and C&W uses the
hinge loss. For C&W and FAB, we just take the library implementation of the loss (i.e. without our loss
function space formulation).

B.3 Search space conditioned on network property

Properties of network defenses (e.g. randomized, detector, obfuscation) can be used as a prior
to reduce the search space. In our work, EOT is set to be 1 for deterministic networks. Using
meta-learning techniques to reduce the search space is left for future work.

C Evaluation Metrics Details

We use the following L∞ criteria in the formulation:

�x� − x�∞ ≤ � s.t. f̂(x�) �= f̂(x)
MISCLASSIFICATION

L∞ ATTACK

We remove the misclassified clean input as a pre-processing step, such that the evaluation is performed
only on the subset of correctly classified samples (i.e. f̂(x) = y).

Sequence of Attacks Sequence of attacks defined in Section 3 is a way to calculate the per-example
worst-case evaluation, and the four attack ensemble in AutoAttack is equivalent to sequence of four
attacks [APGDCE, APGDDLR, FAB, SQR]. Algorithm 2 elaborates how the sequence of attacks is evaluated.
That is, the attacks are performed in the order they were defined and the first sample x� that satisfies
the criterion c is returned.

Robust Test Error (Rerr) Following Stutz et al. (2020), we use the robust test error (Rerr) metric
to combine the evaluation of defenses with and without detectors. Rerr is defined as:

Rerr =

�N
n=1 maxd(x�,x)≤�,g(x�)=1 �f(x�)�=y�N

n=1 maxd(x�,x)≤� �g(x�)=1

(5)

where g : X → {0, 1} is a detector that accepts a sample if g(x�) = 1, and �f(x�)�=y evaluates to one
if x� causes a misprediction and to zero otherwise. The numerator counts the number of samples that
are both accepted and lead to a successful attack (including cases where the original x is incorrect),
and the denominator counts the number of samples not rejected by the detector. A defense without a
detector (i.e., g(x�) = 1) reduces Eq. 5 to the standard Rerr. We define robust accuracy as 1− Rerr.

16

Algorithm 2: Sequence of attacks
def SeqAttack

Input: model f , data x, sequence attacks S ⊆ S, network transformation t ∈ T,
criterion function c

Output: x�

1 for θ ∈ S do
2 x�=a[θ,t](x, f);
3 if c(f, x�, x) then
4 return x�

5 return x�

Note however that Rerr defined in Eq. 5 has intractable maximization problem in the denominator,
so Eq. 6 is the empirical equation used to give an upper bound evaluation of Rerr. This empirical
evaluation is the same as the evaluation in Stutz et al. (2020).

Rerr =

�N
n=1 max{�f(xn)�=yn

g(xn),�f(x�
n)�=yn

g(x�
n)}�N

n=1 max{g(xn), g(x�
n)}

(6)

Detectors For a network f with a detector g, the criterion function c is misclassification with the
detectors, and it is applied in line 3 in Algorithm 2. This formulation enables per-example worst-case
evaluation for detector defenses.

Note that we use a zero knowledge detector model, so none of the attacks in the search space are
aware of the detector. However, A3 search adapts to the detector defense by choosing attacks with
higher scores on the detector defense, which for A4, C15 and C24 does lead to lower robustness.

f̂(x�) �= f̂(x)

g(x�) = 1
�x� − x�∞ ≤ � s.t.

MISCLASSIFICATION
L∞ ATTACK

WITH DETECTOR g

Randomized Defenses If f has randomized component, f(xn) in Eq. 6 means to draw a random
sample from the distribution. In the evaluation metrics, we report the mean of adversarial samples
evaluated 10 times using f .

D Discovered Adaptive Attacks

To provide more details on Table 1, Table 7 shows the network transformation result, and Table 6
shows the searched attacks and losses during the attack search.

Network Transformation Related Defenses In the benchmark, there are 4 defenses that are related
to the network transformations. JPEG compression (JPEG) applies image compression algorithm
to filter the adversarial disturbances and to make the network non-differentiable. Reverse sigmoid
(RS) is a special layer applied on the model’s logit output to obfuscate the gradient. Thermometer
Encoding (TE) is an input encoding technique to shatter the linearity of inputs. Random rotation (RR)
is in the family of randomized defense which rotates the input image by a random degree each time.
Table 7 shows where the defenses appear and what network processing strategies are applied.

Diversity of Attacks From table 6, the majority of attack algorithms searched are APGD, which
shows the attack is indeed a strong attack. The second or third attack can be a non-effective weak
attack like FGSM and DeepFool in some cases, and the reason is that the noise in the untargeted CE
loss tie-breaker determines the choice of attack when none of the samples are broken by the searched
attacks. In these cases, the arbitrary choice is acceptable as none of the other attacks are effective.
The loss functions show variety, yet Hinge and DLR appear more often than CE even we use CE loss
as the tie-breaker. This challenges the common practise of using CE as the loss function by default to
evaluate adversarial robustness.

17

Table 6: Time limit (TL), attacks and losses result. Due to the cost of A10, only one attack is searched
and used. The Loss follows the format: Loss - Targeted - Logit/Prob. The abbreviations are defined
in Section B.

TL(S) ATTACK1 LOSS1 ATTACK2 LOSS2 ATTACK3 LOSS3

A1 0.5 APGD HINGE-T-P APGD L1-D-P APGD CE-T-P
A2 0.5 APGD HINGE-U-L APGD DLR-T-L APGD CE-D-P
A3 0.5 APGD CE-T-P APGD DLR-U-L APGD L1-T-P
A4 0.5 FAB –F-L APGD LM-U-P DEEPFOOL DLR-D-L
A5 0.5 APGD HINGE-U-P APGD HINGE-U-P PGD DLR-T-P
A6 0.5 APGD L1-D-L APGD DLR-U-L APGD HINGE-T-L
A7 0.5 APGD DLR-T-P APGD DLR-U-L APGD HINGE-T-L
A8 1 APGD L1-U-P APGD CE-U-P APGD CE-D-P
A9 1 APGD DLR-U-L APGD HINGE-U-P APGD CE-U-L
A9’ 30 NES HINGE-U-P - - - -
B10 3 APGD DLR-U-L APGD DLR-U-S DEEPFOOL CE-D-P
B11 3 APGD HINGE-T-P DEEPFOOL L1-D-L PGD CE-D-P
B12 3 APGD HINGE-T-P DEEPFOOL HINGE-D-P DEEPFOOL L1-D-L
B13 3 APGD CE-D-L APGD DLR-F-P DEEPFOOL CE-D-L
B14 3 APGD HINGE-T-L APGD CE-U-P C&W –U-L
C15 2 SQR DLR-U-L SQR DLR-T-L APGD HINGE-U-P
C16 3 FAB –F-L APGD L1-T-L FAB –F-L
C17 3 APGD L1-D-P APGD CE-F-P APGD DLR-T-L
C18 3 SQR HINGE-U-L SQR L1-U-L SQR CE-U-L
C19 3 APGD L1-D-P C&W HINGE-U-L PGD HINGE-T-L
C20 3 APGD HINGE-U-L APGD DLR-T-L FGSM CE-U-P
C21 3 APGD HINGE-U-L APGD DLR-T-L FGSM DLR-U-P
C22 3 PGD DLR-U-P FGSM L1-U-P FGSM DLR-U-L
C23 3 APGD L1-T-L PGD L1-U-P PGD L1-U-P
C24 2 PGD L1-T-P APGD CE-T-P APGD L1-U-L

Table 7: List of network processing strategy used on relevant benchmarks. The format is defense-
policy. The defenses are defined in Section D. For layer removal policies, 1 means to remove the
layer, 0 means not to remove the layer. For BPDA policies, I means identity, and C means using the
network with two convolutions having ReLU activation in between.

REMOVAL POLICIES BPDA POLICIES

A2 - TE-C
A3 JPEG-1 RS-1 JPEG-I
A4 RR-0 -
A6 JPEG-1 RS-1 RR-1 TE-C, JPEG-I
C20 JPEG-0 RS-0 JPEG-I
C21 JPEG-1 RS-1 JPEG-I
C22 RR-0 -
C23 RR-0 -

E Scalability Study

Here we provide details on scalability study in Section 5.

We designed an extended search space with addition of 8 random attacks and 4 random losses to test
the scalability of A3. Random attack is to sample a point inside of the disturbance budget uniformly
at random, and random loss is �CE with random sign. In our original search space for a single attack,
the number of attacks is 8 and the number of losses is 4 (8× 4), so the extended search space (16× 8)
has 4× the search space compared with the original space. In the other setting, we use half of the
samples (n = 50) to check A3 performance with halved search time. We evaluate block A models
except A9 model because of the high variance in result (around ±1.5) due to the obfuscated nature of
the defense.

18

Table 8: Evaluating scalability of A3. Original search space corresponds to the search space defined
in Appendix B. Extended search space additionally contains 8 random attacks and 4 losses.

Net AA Original Search Space Extended Search Space

Normal n=50 k=64 k=96

A1 44.78 44.69 44.93 44.80 44.80
A2 2.29 1.96 2.09 2.14 1.83
A3 0.59 0.11 0.11 0.11 0.10
A4 6.17 3.04 3.15 3.47 2.89
A5 22.30 12.14 12.53 11.65 11.85
A6 4.14 3.94 3.86 4.43 4.43
A7 2.85 2.71 2.78 2.79 2.76
A8 19.82 11.11 11.52 13.02 11.09
Avg 12.87 9.96 10.12 10.30 9.97

We show the result in Table 8. We see a minor drop in performance with the extended search space or
with half of the samples, and A3 still gives competitive evaluation in these scenarios. When increasing
the number of trials to 96 on the scaled dataset, the result reaches same performance.

The redundancy of m = 3 attack is an explanation of A3 giving competitive performance in these
scenarios. As long as one strong attack is found within the 3 attacks, the robustness evaluation is
competitive.

F Ablation Study

Here we provide details on the ablation study in Section 5.

F.1 Attack Algorithm & Parameters

In the experiment setup, the search space includes four attacks (FGSM, PGD, DeepFool, C&W) with
their generic and specific parameters shown in Table 4 and Table 5 respectively. The loss search
space is fixed to the loss in the original library implementation, and the network transformation
space contains only BPDA. Robust accuracy (Racc) is used as the evaluation metric. The best Racc
scores among FGSM, PGD, DeepFool, C&W with library default parameters are calculated, and they are
compared with the Racc from the attack found by A3.

The result in Table 9 shows the average robustness improvement is 5.5%, up to 17.3%. PGD evaluation
can be much stronger after tuning by A3, reflecting the fact that insufficient parameter tuning in PGD
was a common cause to over-estimate the robustness in literature. At closer inspection, the searched
attacks have larger step sizes (typically 0.1 compared with 1/40), and higher number of attack steps
(60+ compared with 40).

F.2 Loss

Figure 2 shows the comparison between TPE with loss formulation and TPE with default loss. The
search space with default loss means the space containing only L1 and CE loss, with only untargeted
loss and logit output. The result shows the loss formulation gives 3.0% improvement over the final
score.

F.3 TPE algorithm vs Random

In this experiment, we take n = 100 samples uniformly at random and run both TPE and random
search algorithm on block A models. We record the progression of the best score in k = 100 trials.
We repeat the experiment 5 times and average across the models and repeats to obtain the progression
graph shown in Figure 2. The result shows that TPE finds better scores by an average of 1.3% and up
to 8.0% (A6).

19

Table 9: Comparison with library default parameters and the searched best attack. The implementa-
tions of FGSM, PGD, and DeepFool are based on FoolBox (Rauber et al., 2017) version 3.0.0, C&W is
based on ART (Nicolae et al., 2018) version 1.3.0.

Library Impl. A3

Net Racc Attack Racc Δ Attack

A1 47.1 C&W 47.0 -0.1 PGD
A2 13.4 PGD 6.7 -6.8 PGD
A3 35.9 DeepFool 30.3 -5.6 PGD
A4 6.6 DeepFool 6.6 0.0 DeepFool
A5 14.5 PGD 8.4 -6.1 PGD
A6 35.0 PGD 17.3 -17.7 PGD
A7 6.9 C&W 6.6 -0.3 C&W
A8 25.4 PGD 14.7 -10.7 PGD
A9 64.7 FGSM 62.4 -2.3 PGD

In practice, random search algorithm is simpler and parallelizable. We observe that random search
can achieve competitive performance as TPE search.

Figure 2: The best score progression measured by the average of 5 runs of models A1 to A9.

Figure 3: Attack-score distribution generated by TPE algorithm on A1 model. Scores with negative
values corresponds to the time-out trials.

20

Table 10: Three independent runs and confidence intervals of A3 for models in Block A and B. The
bold numbers show the worst case evaluation for each model. Each confidence interval is calculated
as the plus and minus the standard deviation value across the three runs. Note, that the numbers from
run 3 are identical to the numbers reported in Table 1.

Run σ

Net 1 2 3 Confidence Interval

A1 44.79 44.7 44.69 44.73 ± 0.04
A2 2.23 2.13 1.96 2.11 ± 0.11
A3 0.10 0.10 0.11 0.10 ± 0.01
A4 3.00 3.32 3.04 3.12 ± 0.14
A5 12.73 12.74 12.14 12.54 ± 0.28
A6 4.18 4.11 3.94 4.08 ± 0.10
A7 2.73 2.71 2.71 2.72 ± 0.01
A8 10.86 10.49 11.11 10.82 ± 0.25
A9 62.62 62.31 63.56 62.83 ± 0.53
B10 62.80 62.83 62.79 62.81 ± 0.02
B11 60.43 60.04 60.01 60.16 ± 0.19
B12 59.54 59.54 59.56 59.55 ± 0.01
B13 59.22 59.32 59.51 59.35 ± 0.12
B14 57.11 57.24 57.16 57.17 ± 0.05

G Attack-Score Distribution during Search

The analysis of attack-score distribution is useful to understand A3. Figure 3 shows the distribution
when running A3 on network A1. In this experiment, the number of trials is k = 100 and the initial
dataset size is n = 200, the time budget is Tc = 0.5, and we use the search space defined in Appendix
B. We used single GTX1060 on this experiment. We can observe the following:

• The expensive attack times out when Tc values are small. Here the expensive attack NES
gets time-out because a small Tc is used.

• The range and prior of attack parameters can affect the search. As we see cheap FGSM gets
time-out because the search space includes large repeat parameter.

• Different attack algorithms have different parameter sensitivity. For examples, PGD has a
large variance of scores, but APGD is very stable.

• TPE algorithm samples more attack algorithms with high scores. Here, there are 18 APGD
trials and only 7 NES trials. TPE favours promising attack configurations so that better attack
parameters can be selected during the SHA stage.

• The top attacks have similar performance, which means the searched attack should have
low variance in attack strength. In practice, the variance among the best searched attacks is
typically small (±0.2%).

H Analysis of A3 Confidence Interval

We evaluated A3 using three independent runs for models in Block A and B as reported in Table 10.
The result shows typically small variation across different runs (typically less than ±0.2%), which
means A3 is consistent for robustness evaluation.

Confidence varies across different models, and the typical reason is the variance of the attacks on the
same model. For examples, models A8, A9 are obfuscated and A5 is randomized, the attack has large
variance due to the nature of these defenses.

21

