
A Interpretation of Objective in Equation 5535

We note that the ultimate goal of the defender is to obtain a clean model while the attacker wants536

the global model to be poisoned. In other words, the server (or attacker) wishes the attack success537

rate of the global model to be small (large). This objective is very challenging to directly achieve538

because 1) the server does not know the exact trigger and target class used by the attacker, and 2) the539

attacker needs to adapt its attack strategy based on the server’s strategy. To address the challenge,540

we consider an alternative goal (i.e., our objective in Equation 5, where we wish to assign small541

weights to compromised clients when performing a weighted average to update the global model.542

Our idea is that when the weights for compromised clients are very small, our global model is less543

likely to be affected by the attack. As a result, the attacker’s strategy is to maximize the genuine544

scores for compromised clients while ensuring their local models are backdoored to maximize the545

attack effectiveness for the global model. Thus, our objective in Equation 5 could translate to the546

ultimate goal. Our empirical results show the effectiveness of our defense.547

B Complete Proofs548

B.1 Proof of Lemma 5.3549

We first present some preliminary lemmas that will be invoked for proving Lemma 5.3.550

Lemma B.1. Suppose Di is the clean local training dataset of the client i. An attacker can inject551

the backdoor trigger to rti fraction of training examples in Di and relabel them as the target class.552

We use D′
i to denote the set of backdoored training examples where rti =

|D′
i|

|Di| . Given two arbitrary553

Θ and Θc, we let gi = 1
|Di∪D′

i|
∇Θ

∑
z∈Di∪D′

i
ℓ(z; Θ) and hi =

1
|Di|∇Θc

∑
z∈Di

ℓ(z; Θc). We then554

have that555

(Θ−Θc)
T (gi − hi) ≥ (0.5µ− rtiM) ∥Θ−Θc∥22 − rtiM, (12)

∥gi − hi∥2 ≤ L∥Θ−Θc∥2 + 2rtiM. (13)

Proof. We first prove Equation 12. We have the following relations:556

(Θ−Θc)
T (gi − hi)

=(Θ−Θc)
T (

1

|Di ∪ D′
i|

∑
z′∈Di∪D′

i

∇Θℓ(z
′; Θ)− 1

|Di|
∑
z∈Di

∇Θc
ℓ(z; Θc)) ▷ definition of gi and hi

(14)

=(Θ−Θc)
T (

1

(1 + rti)|Di|
∑

z′∈Di∪D′
i

∇Θℓ(z
′; Θ)− 1

|Di|
∑
z∈Di

∇Θc
ℓ(z; Θc)) ▷ rti =

|D′
i|

|Di|
(15)

=
1

|Di|(1 + rti)
(Θ−Θc)

T (
∑

z′∈Di∪D′
i

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θcℓ(z; Θc)) (16)

=
1

|Di|(1 + rti)
(Θ−Θc)

T (
∑

z′∈Di

∇Θℓ(z
′; Θ)−

∑
z∈Di

∇Θc
ℓ(z; Θc)

+
∑

z′∈D′
i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)) (17)

=
1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θcℓ(z; Θc))

+ (Θ−Θc)
T (

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θcℓ(z; Θc))) (18)

≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θc

ℓ(z; Θc))

− ∥(Θ−Θc)
T (

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc))∥1) ▷ ∀x, x ≥ −∥x∥1 (19)
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≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θc

ℓ(z; Θc))

− ∥Θ−Θc∥2 · ∥
∑

z′∈D′
i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2) ▷ Cauchy–Schwarz inequality

≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θcℓ(z; Θc))

− ∥Θ−Θc∥2 · (
∑

z′∈D′
i

∥∇Θℓ(z
′; Θ)∥2 + rti

∑
z∈Di

∥∇Θc
ℓ(z; Θc)∥2) ▷ triangle inequality

≥ 1

|Di|(1 + rti)
(µ|Di| ∥Θ−Θc∥22 − 2rti |Di|M ∥Θ−Θc∥2) ▷ Assumption 5.1 (20)

=
µ

1 + rti
∥Θ−Θc∥22 −

1

1 + rti
2rtiM ∥Θ−Θc∥2) (21)

≥0.5µ ∥Θ−Θc∥22 − 2rtiM ∥Θ−Θc∥2 ▷ rti ∈ [0, 1] (22)

≥0.5µ ∥Θ−Θc∥22 − rtiM ∥Θ−Θc∥22 − rtiM) (23)

=(0.5µ− rtiM) ∥Θ−Θc∥22 − rtiM, (24)

where Equation 23 holds based on the fact that −2rtiM ∥Θ−Θc∥2 ≥ −rtiM ∥Θ−Θc∥22 − rtiM for557

∀rti ≥ 0 and ∀M ≥ 0.558

In the following, we prove inequality 13. We have that559

∥gi − hi∥2

=
1

|Di|(1 + rti)
∥

∑
z′∈Di∪D′

i

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2 ▷ definition of gi and hi

(25)

=
1

|Di|(1 + rti)
∥

∑
z′∈D′

i

∇Θℓ(z
′; Θ) +

∑
z′∈Di

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2 (26)

≤ 1

|Di|(1 + rti)
∥

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2

+
1

|Di|(1 + rti)
∥

∑
z′∈Di

∇Θℓ(z
′; Θ)−

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2 ▷ triangle inequality (27)

≤ 1

1 + rti
(2rtiM + L∥Θ−Θc∥2) (28)

≤2rtiM + L∥Θ−Θc∥2 ▷ rti ∈ [0, 1] (29)

where Equation 28 is due to Assumption 5.1 and 5.2.560

Given Lemma B.1, we prove Lemma 5.3 as follows. Recall that we have αt
i =

pt
i∑

i∈S pt
i

and561

βt
i =

qti∑
i∈S qti

.562

∥Θt+1 −Θt+1
c ∥2 (30)

=∥Θt − η
∑
i∈S

αt
ig

t
i − (Θt

c − η
∑
i∈S

βt
ih

t
i)∥2 ▷ gradient descent for Θt+1 and Θt+1

c (31)

=∥Θt − η
∑
i∈S

αt
ig

t
i − (Θt

c − η
∑
i∈S

(αt
i + βt

i − αt
i)h

t
i)∥2 (32)

=∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i) + (η
∑
i∈S

(βt
i − αt

i)h
t
i)∥2 ▷ rearranging Equation 32 (33)
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≤∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥2 + ∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2. ▷ triangle inequality (34)

Next, we respectively derive an upper bound for the first and second terms in Equation 34. To derive563

the upper bound for the first term, we have that564

∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22

=∥Θt −Θt
c∥22 − 2η(Θt −Θt

c)
T (

∑
i∈S

αt
i(g

t
i − ht

i)) + η2∥
∑
i∈S

αt
i(g

t
i − ht

i)∥22 (35)

=S1 + S2 + S3, (36)

where S1 = ∥Θt −Θt
c∥

2
2, S2 = −2η(Θt − Θt

c)
T (

∑
i∈S αt

i(g
t
i − ht

i)), and S3 =565

η2
∥∥∑

i∈S αt
i(g

t
i − ht

i)
∥∥2
2
. Next, we will bound S2 and S3. We denote γt =

∑
i∈Sa

αt
ir

t
iM . Note566

that we have γt =
∑

i∈S αt
ir

t
iM since rti = 0 for ∀i ∈ S \ Sa. We bound S2 as follows.567

S2

=− 2η(Θt −Θt
c)

T (
∑
i∈S

αt
i(g

t
i − ht

i)) (37)

=− 2η
∑
i∈S

αt
i(Θ

t −Θt
c)

T (gti − ht
i) (38)

≤− 2η
∑
i∈S

αt
i((0.5µ− rtiM)

∥∥Θt −Θt
c

∥∥2
2
− rtiM) (39)

=− 2η((0.5µ−
∑
i∈S

αt
ir

t
iM)

∥∥Θt −Θt
c

∥∥2
2
−

∑
i∈Sa

αt
ir

t
iM) (40)

=(−ηµ+ 2ηγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt, ▷definition of γt (41)

where inequality 39 holds by Lemma B.1 and the fact that η, αt
i ≥ 0. We bound S3 as follows.568

S3

=η2∥
∑
i∈S

αt
i(g

t
i − ht

i)∥22 (42)

≤η2(
∑
i∈S

αt
i

∥∥(gti − ht
i)
∥∥
2
)2 (43)

≤η2(
∑
i∈S

αt
i(2r

t
iM + L∥Θ−Θc∥2)2 ▷ Lemma B.1 (44)

=η2(2γt + L∥Θ−Θc∥2)2 (45)

=η2(L2 ∥Θ−Θc∥22 + 4γtL ∥Θ−Θc∥2 + 4[γt]2) (46)

≤η2(L2 ∥Θ−Θc∥22 + 2γtL ∥Θ−Θc∥22 + 2Lγt + 4[γt]2) (47)

=η2 · ((L2 + 2Lγt) · ∥Θ−Θc∥22 + 2Lγt + 4[γt]2) (48)

where Equation 47 is based on the fact that 4γtL ∥Θ−Θc∥2 ≤ 2γtL ∥Θ−Θc∥22 + 2γtL when569

γtL ≥ 0.570

Given the upper bounds of S2 and S3, we can bound
∥∥Θt −Θt

c − η
∑

i∈S αt
i(g

t
i − ht

i)
∥∥2
2

as follows.571

∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22 (49)

=S1 + S2 + S3 (50)

≤∥Θ−Θc∥22 + (−ηµ+ 2ηγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt
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+ (η2L2 + η22Lγt)
∥∥Θt −Θt

c

∥∥2
2
+ η22Lγt + η24[γt]2 (51)

=(1− ηµ+ 2ηγt + η2L2 + 2η2Lγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt + 2η2Lγt + 4η2[γt]2 (52)

Next, we will derive an upper bound for
∥∥η∑i∈S(β

t
i − αt

i)h
t
i

∥∥
2
. We denote rt =

∑
i∈Sa

rti . Note572

that we have that rt =
∑

i∈S rti also holds since rti = 0 for ∀i ∈ S \ Sa. Given the assumption that573

(1− rt)αt
i ≤ βt

i ≤ (1 + rt)αt
i, we have574

∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2 ≤ η

∑
i∈S
|βt

i − αt
i|
∥∥ht

i

∥∥
2
≤ 2ηrtM, (53)

where the first inequality is due to triangle inequality and the second inequality is based on the575

assumption that ∥ht
i∥2 ≤M . Therefore, we have:576

∥Θ(t+1) −Θ(t+1)
c ∥2

≤∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22 + ∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2 ▷ Equation 30, 34 (54)

≤
√
(1− ηµ+ 2ηγt + η2L2 + 2η2Lγt) ∥Θt −Θt

c∥
2
2 + 2ηγt(1 + ηL+ 2ηγt) (55)

+ 2ηrtM ▷ Equation 49, 52, 53 (56)

≤
√
1− ηµ+ 2ηγt + η2L2 + 2η2Lγt

∥∥Θt −Θt
c

∥∥
2
+
√

2ηγt(1 + ηL+ 2ηγt) + 2ηrtM, (57)

where the last inequality holds due to the fact that
√
a+ b ≤

√
a+
√
b for ∀a ≥ 0 and ∀b ≥ 0, which577

completes our proof for Lemma 5.3.578

B.2 Proof of Theorem 5.4579

We denote At =
√

1− ηµ+ 2ηγt + η2L2 + 2η2Lγt, A =
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ,580

Bt =
√
2ηγt(1 + ηL+ 2ηγt) + 2ηrtM , and B =

√
2ηγ(1 + ηL+ 2ηγ) + 2ηrM . Since γt ≤ γ581

and rt ≤ r, we have At ≤ A and Bt ≤ B. Thus, based on Lemma 5.3, we have:582 ∥∥Θt −Θt
c

∥∥
2
≤ A

∥∥Θt−1 −Θt−1
c

∥∥
2
+B. (58)

Then, we can iteratively apply the above equation to prove our theorem. In particular, we have:583 ∥∥Θt −Θt
c

∥∥
2

≤A
∥∥Θt−1 −Θt−1

c

∥∥
2
+B (59)

≤A(A
∥∥Θt−2 −Θt−2

c

∥∥
2
+B) +B (60)

=A2
∥∥Θt−2 −Θt−2

c

∥∥
2
+ (A1 +A0)B (61)

≤At
∥∥Θ0 −Θ0

c

∥∥
2
+ (At−1 +At−2 + · · ·+A0)B (62)

=At
∥∥Θ0 −Θ0

c

∥∥
2
+

1−At

1−A
B (63)

=(
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ)t

∥∥Θ0 −Θ0
c

∥∥
2

+
1− (

√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ)t

1−
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ

(
√

2ηγ(1 + ηL+ 2ηγ) + 2ηrM), (64)

When the learning rate satisfies 0 < η < µ−2γ
L2+2Lγ , we have that 0 < 1−ηµ+2ηγ+η2L2+2η2Lγ < 1.584

Therefore, the upper bound becomes
√

2ηγ(1+ηL+2ηγ)+2ηrM

1−
√

1−ηµ+2ηγ+η2L2+2η2Lγ
as t→∞. Hence, we prove our585

Theorem 5.4.586

C Complete Algorithms587

C.1 Complete Algorithm of FedGame588

Algorithm 1 shows the complete algorithm of FedGame. In Line 3, we construct an auxiliary global589

model. In Line 4, the function REVERSEENGINEER is used to reverse engineer the backdoor trigger590
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and target class. In Line 6, we compute the local model of client i based on its local model update.591

In Line 7, we compute a genuine score for client i. In Line 9, we update the global model based on592

genuine scores and local model updates of clients.593

Algorithm 1 FLGAME
Input:Θt (global model in the tth communication round), gti , i ∈ S (local model updates of
clients), Ds (clean training dataset of server), η (learning rate of global model).
Output:Θt+1 (global model for the (t+ 1)th communication round)
Θt

a = Θt + 1
|S|

∑
i∈S gti

δre, y
tc
re = REVERSEENGINEER(Θt

a)
for i ∈ S do
Θt

i = Θt + gti
pti = 1− 1

|Ds|
∑

x∈Ds
I(G(x⊕ δre; Θ

t
i) = ytcre)

end for
Θt+1 = Θt + η 1∑

i∈S pt
i

∑
i∈S ptig

t
i

return Θt+1

C.2 Complete Algorithm for a Compromised Client594

Algorithm 2 shows the complete algorithm for a compromised client. In Line 3, we randomly595

subsample ρi fraction of training data from Di. In Line 7, the function CREATEBACKDOOREDDATA596

is used to generate backdoored training examples by embedding the backdoor trigger δ to ⌊min(j ∗597

ζ, 1)|Di \ Drev
i |⌋ training examples in Di \ Drev

i and relabel them as ytc, where | · | measures the598

number of elements in a set. In Line 8, the function TRAININGLOCALMODEL is used to train the599

local model on the training dataset D′
i ∪ Di \ Drev

i . In Line 9, we estimate a genuine score. In600

Line 15, we use the function CREATEBACKDOOREDDATA to generate backdoored training examples601

by embedding the backdoor trigger δ to ⌊min(o ∗ ζ, 1)|Di|⌋ training examples in Di and relabel them602

as ytc. In Line 16, we use the function TRAININGLOCALMODEL to train a local model and utilize603

existing state-of-the-art attacks to inject the backdoor based on the training dataset D′
i ∪ Di.604

Algorithm 2 ALGORITHM FOR A COMPROMISED CLIENT

1: Input: Θt (global model in the tth communication round), Di (local training dataset of client i),
ρi (fraction of reserved data to find optimal rti), ζ (granularity of searching for rti), δ (backdoor
trigger), ytc (target class), and λ (hyperparameter)

2: Output: gti (local model update)
3: Drev

i = RANDOMSAMPLING(Di, ρi)
4: count = ⌈ 1ζ ⌉
5: max_value, o← 0, 0
6: for j ← 0 to count do
7: D′

i = CREATEBACKDOOREDDATA(Di \ Drev
i , δ, ytc,min(j ∗ ζ, 1))

8: Θij = TRAININGLOCALMODEL(Θt,D′
i ∪ Di \ Drev

i )
9: pij = 1− 1

|Drev
i |

∑
x∈Drev

i
I(G(x⊕ δ; Θij) = ytc)

10: if pij + λmin(j ∗ ζ, 1) > max_value then
11: o = j
12: max_value = pij + λmin(j ∗ ζ, 1)
13: end if
14: end for
15: D′

i = CREATEBACKDOOREDDATA(Di, δ, y
tc,min(o ∗ ζ, 1))

16: Θt
i = TRAININGLOCALMODEL(Θt,D′

i ∪ Di)
17: return Θt

i −Θt
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D Additional Experimental Setup and Results605

D.1 Architecture of Global Model606

Table 2 shows the global model architecture on MNIST dataset.607

D.2 Parameter Setting for Compared Baselines608

Recall that we compare our defense with the following methods: FedAvg [24], Krum [5], Median [51],609

Norm-Clipping [35], Differential Privacy (DP) [35], DeepSight [32], and FLTrust [6]. FedAvg is610

non-robust while Krum and Median are two Byzantine-robust baselines. Norm-Clipping clips the611

L2-norm of local model updates to a given threshold TN . We set TN = 0.01 for MNIST and612

TN = 0.1 for CIFAR10. DP first clips the L2-norm of a local model update to a threshold TD and613

then adds Gaussian noise. We set TD = 0.05 for MNIST and TD = 0.5 for CIFAR10. We set the614

standard deviation of noise to be 0.01 for both datasets. In FLTrust, the server uses its clean dataset615

to compute a server model update and assigns a trust score to each client by leveraging the similarity616

between the server model update and the local model update. We set the clean training dataset of the617

server to be the same as FedGame in our comparison. Note that FLTrust is not applicable when the618

clean training dataset of the server is from a different domain from those of clients.619

Table 2: Architecture of the convolutional neural network for MNIST.

Type Parameters

Convolution 3× 3, stride=1, 16 kernels
Activation ReLU

Max Pooling 2× 2
Convolution 4× 4, stride=2, 32 kernels
Activation ReLU

Max Pooling 2× 2
Fully Connected 800× 500

Activation ReLU
Fully Connected 500× 10

D.3 Performance of FedGame against Neurotoxin620

In Table 3, we compare our FedGame with other defense baselines against Neurotoxin [54]. We can621

observe that our FedGame is consistently more effective than existing defenses. Our observation is622

consistent with the experimental results for Scaling attack and DBA attack in Table 1.623

Table 3: Comparison of FedGame with existing defenses against Neurotoxin on MNIST under IID setting. The
total number of clients is 10 with 60% compromised. The best results when respectively comparing FedGame in
each setting with existing defenses are bold.

Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP Deep-

Sight FLTrust
FedGame

In-
domain

Out-of-
domain

TA (%) 99.04 99.02 99.32 99.08 90.75 95.28 96.36 95.73 97.27 97.33

ASR (%) 9.69 99.97 99.98 99.99 99.36 99.27 89.02 13.02 9.93 10.03

D.4 Visualization of genuine score of FedGame and trust score of FLTrust [6]624

Our FedGame computes a genuine score for each client which quantifies the extent to which a client625

is benign in each communication round. Intuitively, our FedGame would be effective if the genuine626

score is small for a compromised client but is large for a benign one. FLTrust [6] computes a trust627

score for each client in each communication round. Similarly, FLTrust would be effective if the628

trust score is small for a compromised client but is large for a benign one. Figure 2 visualizes the629
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average genuine or trust scores for compromised and benign clients of FedGame and FLTrust on630

MNIST dataset. We have the following observations from the figures. First, the average genuine631

score computed by FedGame drops to 0 quickly for compromised clients. In contrast, the average632

trust score computed by FLTrust drops slowly. Second, the average genuine score computed by633

FedGame for benign clients first increases and then becomes stable. In contrast, the average genuine634

score computed by FLTrust for benign clients decreases as the number of iterations increases. As a635

result, our FedGame outperforms FLTrust.636
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(b) FLTrust (non-IID)
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Figure 2: (a)(b): Server-computed average trust scores for benign and compromised clients of FLTrust on
MNIST under Scaling attack. (c)(d): Average genuine scores computed by the server for benign and compromised
clients of FedGame on MNIST under Scaling attack. The clean sets of the server are the same for FLTrust and
FedGame.

D.5 FedGame Performance in FL Consisting of 30 Clients637

In Table 4, we report the performance of FedGame and baselines when the total number of clients638

is 30. The results also indicate that our FedGame outperforms all baselines in terms of ASR and639

achieves comparable TA with existing methods.640

Table 4: Comparison of FedGame with existing defenses under Scaling attack. The total number of clients is 30
with 60% compromised. The best results when respectively comparing FedGame in each setting with existing
defenses are bold.

Datasets Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP FLTrust

FedGame
In-

domain
Out-of-
domain

MNIST TA (%) 99.02 99.09 98.16 99.01 92.77 89.77 95.27 97.81 97.64

ASR (%) 9.74 99.98 99.98 99.98 98.20 98.83 11.04 9.95 9.95

CIFAR10 TA (%) 80.08 79.73 72.23 79.58 79.20 50.86 67.84 73.29 74.42

ASR (%) 9.14 99.82 99.97 99.85 99.87 96.53 99.28 10.44 9.15

D.6 Additional Ablation Studies641

Impact of the total number of clients. We study the impact of the total number of clients for our642

FedGame under the default setting. In particular, we consider the total number of clients to be 10, 30,643

50, 70, and 100, where the fraction of malicious clients is 60%. We show the experimental results in644

Table 5. Our experimental results show that our FedGame is effective for different number of clients645

on different datasets.646

Impact of the size of the clean data of the server. By default, we set the ratio between the number647

of clean examples of the server and the total number of examples of clients to be 0.1. We conduct648

experiments with different ratios: 0.01, 0.02, and 0.05 under the default setting. The corresponding649

ASRs are 9.71%, 12.38%, and 9.75%, indicating that FedGame is effective even when the server only650

has 1% clean data.651

Analysis of computation cost for the server. Our FedGame computes a genuine score for each652

client in each communication round. Here we demonstrate its computational efficiency. On average,653

it takes 0.148s to compute a genuine score for each client in each communication round on a single654
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Table 5: ASRs of FedGame under different total number of clients on MNIST and CIFAR10. The fraction of
compromised clients is 60%.

Dataset Total Number of Clients

10 30 50 70 100

MNIST 9.72 9.95 10.03 10.01 9.89
CIFAR10 8.92 10.44 10.62 9.79 10.82

NVIDIA 2080 Ti GPU. We note that the server could from a resourceful tech company (e.g., Google,655

Meta, Apple), which would have enough computation resources to compute it for millions of clients.656

Moreover, those local models can be evaluated in parallel.657

Results on Tiny-ImageNet dataset. Here we report the performance of our FedGame on the Tiny-658

ImageNet dataset that has 200 classes and 500 training images per class. We use ResNet-50 [15] as659

the global model architecture. We compare our FedGame with FLTrust against the scaling attack in660

the IID setting. The total number of clients is 10. We assume the server has in-domain clean data for661

fair comparison with FLTrust. The other hyperparameters are kept the same as the default setting. The662

ASRs for FLTrust and FedGame are 6.38% and 1.35%, respectively. We have two observations from663

the experimental results. First, our FedGame is effective for large dataset with more classes. Second,664

the results indicate that our FedGame consistently outperforms FLTrust under different datasets.665

Performance under static attacks. In our evaluation, we consider an attacker optimizing the fraction666

of backdoored training examples. We also evaluate FedGame under existing attacks where the667

attacker does not optimize it. Under the default setting, our FedGame can achieve an ASR of 9.75%,668

indicating that our defense is effective under static attack.669

Trigger optimization. We consider an attacker optimizes trigger pattern such that a backdoored670

input is more likely to be predicted as the target class. We perform experiments under the default671

setting. The ASR is 12.43%, which indicates that our FedGame is consistently effective for trigger672

optimization.673

D.7 Other Adaptive Attacks674

We note that an attacker can slightly manipulate the parameters of local models of compromised675

clients to inject a backdoor such that they are more similar to those of benign clients. However,676

FLGame does not rely on model parameters for detection. Instead, our FLGame leverages the model677

behaviors, i.e., whether the model predicts inputs with our reverse engineered trigger as the target678

class. As a result, our defense would be still effective even if the change in the model parameters is679

small as long as the model has backdoor behavior (this is required to make the attack effective). This680

is also the reason why our defense is better than existing methods such as FLTrust which leverages681

model parameters for defense.682
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