
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REWEIGHTING LOCAL MIMINA WITH TILTED SAM

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness-Aware Minimization (SAM) has been demonstrated to improve the gen-
eralization performance of overparameterized models by seeking flat minima on
the loss landscape through optimizing model parameters that incur the largest loss
within a neighborhood. Nevertheless, such min-max formulations are computation-
ally challenging especially when the problem is highly non-convex. Additionally,
focusing only on the worst-case local solution while ignoring potentially many
other local solutions may be suboptimal when searching for flat minima. In this
work, we propose Tilted SAM (TSAM), a generalization of SAM inspired by expo-
nential tilting that effectively assigns higher priority to local solutions that are flatter
and that incur larger losses. TSAM is parameterized by a tilt hyperparameter t and
reduces to SAM as t approaches infinity. We prove that (1) the TSAM objective is
smoother than SAM and thus easier to optimize; and (2) TSAM explicitly favors
flatter minima as t increases. This is desirable as flatter minima could have better
generalization properties for certain tasks. We develop algorithms motivated by
the discretization of Hamiltonian dynamics to solve TSAM. Empirically, TSAM
arrives at flatter local minima and results in superior test performance than the
baselines of SAM and ERM across a range of image and text tasks.

1 INTRODUCTION

Empirical risk minimization (ERM) is a classic framework for machine learning that optimizes for
the average performance of the observed samples. For n training samples txiuiPrns (which may also
contain label information), model parameters θ P Rd, and a loss function lp¨q, let ERM be defined as

min
θ

Lpθq :“
1

n

ÿ

iPrns

lpxi; θq. (1)

In overparameterized models, however, minimizing ERM may arrive at a bad local minimum. To
address this, one line of work focuses on minimizing the sharpness of final solutions, ensuring
that the losses of parameters around local minima are uniformly small. One popular formulation
is sharpness-aware minimization (SAM), that optimizes over the worst-case loss over perturbed
parameters. For a perturbing region }ϵ} ď ρ where ϵ P Rd, the SAM objective is defined as

min
θ

Lspθq :“ max
}ϵ}ďρ

Lpθ ` ϵq. (2)

Typically, SAM is optimized by alternating between running gradient ascent (to find the max loss)
and gradient descent steps (to minimize the max loss) on model parameters. However, it is difficult
for such updating steps (and its variants) to find the exact perturbation ϵ that incurs the true max loss,
as the loss landscape can be highly non-convex and potentially non-smooth. In addition, ignoring
potentially many other large-loss regions may still leave some areas of the loss surface sharp. For
instance, we have computed the average loss across the neighborhoods of SAM solutions, and find
that it is still higher than the ones obtained by our approach (Section 5.2).

To this end, we propose a generalized and smoothed variant of SAM inspired by exponential tilting
and its widespread usage in probability and statistics. In optimization literature, it has also been
used as an efficient min-max smoothing operator (Kort & Bertsekas, 1972). Tilted SAM (TSAM),
parameterized by a tilt scalar t ě 0, is defined as

min
θ

Ltpθq :“
1

t
log

ˆ
ż

etLpθ`ϵqdµpϵq

˙

“
1

t
log

´

Eµpϵq

”

etLpθ`ϵq
ı¯

, (3)
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where Lpθ ` ϵq is defined in Eq. (1), µpϵq denotes an uncertainty probability measure for ϵ that can
represent uniform balls such as }ϵ} ď ρ (but other measures are possible as well), and ϵ P Rd. When
t Ñ 8 and µpϵq takes }ϵ} ď ρ, Ltpθq reduces to the SAM objective Lspθq. When t “ 0, Ltpθq

reduces to the average loss over the perturbed neighborhood µpϵq, i.e., EµpϵqrLpθ ` ϵqs where the
expectation is taken with respect to the randomness of ϵ (formally proven in Appendix B). When both
t “ 0 and ρ “ 0, the loss is reduced just to the classic average empirical risk Lpθq. We use Eµpϵq, Eϵ,
and E interchangeably when the meaning is clear from the context.

TSAM provides a smooth transition between min-max optimization (Eq. (2)) and min-avg opti-
mization minθ EµpϵqrLpθ ` ϵqs. The min-avg optimization has appeared in prior works known as
average-perturbed sharpness (Wen et al., 2022), noise-perturbed loss (Zhang et al., 2024), or random
smoothing (Duchi et al., 2012). The smoothness parameter of the TSAM objective increases as
the value of t increases, which suggests that it is easier to optimize than SAM (Section 3). As
we formalize later, TSAM reweights gradients of neighboring solutions based on their loss values,
which can be viewed as a soft version of SAM which assigns all the weights to one single worst
minimum. In addition to the benefits in optimization, rigorously considering many, as opposed to
one, neighbourhood parameters that incur large losses results in improved generalization. We provide
both theoretical characterization and empirical evidence showing that TSAM solutions are flatter than
those of ERM and SAM. One line of the mostly related works have explored tilted risks to reweight
different data points (Li et al., 2023; Robey et al., 2022). In this work, we use the TSAM framework
to assign varying priority to local minima in the parameter space.

To solve TSAM, we need to estimate the integral over µpϵq (Eq. (3)), or equivalently, to estimate
the full gradient of the objective, which is a tilted aggregation of gradients evaluated at Lpθ ` ϵq.
Both require sampling the perturbation ϵ with probability proportional to etLpθ`ϵq for the integration.
Naively sampling ϵ at random to obtain Ltpθq would be inefficient, as it is likely that Lpθ ` ϵq under
the sampled ϵ is small and therefore we need many samples to converge to the true distribution. On
the other hand, methods based on Hamiltonian Monte Carlo (HMC) (Leimkuhler & Reich, 2004) are
more principled and guaranteed to arrive at the exact distribution. Inspired by the Euler’s rules for
HMC, we develop an algorithm to efficiently sample ϵ’s and estimate the true gradient of Ltpθq.

Contributions. We propose TSAM, a new optimization objective that reweights the parameters
around local minima via exponential tilting. We rigorously study several properties of TSAM,
showing that it always favors flatter solutions as t increases and achieves a tighter generalization
bound than SAM for modest values of t (Section 3). To optimize TSAM, we adapt a specific HMC
algorithm to efficiently sample the model perturbation ϵ (Section 4). We empirically demonstrate that
TSAM results in flatter solutions and superior generalization performance than SAM and its variants
for deep neural networks including transformers on both image and text datasets (Section 5).

2 RELATED WORK

Sharpness-Aware Minimization. SAM regularizes overparameterized models by considering
adversarial data points that have large training errors (Foret et al., 2020; Zheng et al., 2021). The
SAM variants, training dynamics, and applications in different models have been extensively studied
in prior work (Andriushchenko & Flammarion, 2022; Baek et al., 2024; Bartlett et al., 2023; Chen
et al., 2021; 2024; Du et al., 2022; Foret et al., 2020; Kwon et al., 2021; Liu et al., 2022b; Long &
Bartlett, 2023; Mi et al., 2022; Mueller et al., 2023; Xie et al., 2024; Zhao et al., 2022; Zhou et al.,
2021; Zhuang et al., 2022). Some work aim to improve efficiency of the SAM algorithm studying
different relaxations (Du et al., 2022; Liu et al., 2022a). Zhao et al. (2022) use a linear interpolation
between normal gradients and SAM outer gradients evaluated at the max-loss parameter, which does
not take into account the possibly many bad local minima for highly non-convex problems. Liu et al.
(2022b) improve the inner max optimization by adding a random perturbation to the gradient ascent
step to smoothen its trajectory. Li & Giannakis (2023) leverages a moving average of stochastic
gradients in the ascent direction to reduce the gradient variance1. Our goal is not to better approximate
the inner max or develop algorithms for solving the min-max SAM formulation, but rather, to solve
a different TSAM objective that reweights many local minima to seek flat solutions. Nevertheless,

1Note that the notion of ‘variance’ in VASSO (Li & Giannakis, 2023) refers to the variance of stochastic
gradients compared with full gradients; whereas in TSAM, we examine the loss variance around the neighborhood
regions, where the randomness in Definition 2 comes from the perturbation ϵ.
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we still compare with more advanced algorithms for the SAM objective (Section 5) and show the
superiority of TSAM solutions. Zhou et al. (2021) perform sample-wise reweighting for SAM, as
opposed to parameter-wise reweighting proposed herein. As TSAM is a new objective, in principle,
we can readily apply many existing optimization techniques (that can be potentially applied to SAM
as well) such as variance reduction (Johnson & Zhang, 2013), acceleration (Nesterov, 1983), or
adaptivity (Duchi et al., 2011; Kingma & Ba, 2014; Streeter & McMahan, 2010) on top of the tilted
stochastic gradients to gain further improvement.

There is also work attempting to understand why SAM leads to better generalization or theoretically
characterize what SAM (and its implementation) is effectively minimizing (Andriushchenko &
Flammarion, 2022; Chen et al., 2024; Long & Bartlett, 2023; Wen et al., 2022). In this work,
we prove that TSAM (and SAM) encourages flatter models for a class of problems including
generalized linear models, where flatness (or sharpness) by the variance of the losses around the
minima (Definition 3). Our proposed TSAM framework is particularly suitable for problems where
flatness helps generalization. The various notions of sharpness, along with theoretical relations
between sharpness and generalization still remain an open problem (Andriushchenko et al., 2023;
Ding et al., 2024; Wen et al., 2024), which is outside the scope of our paper.

Tilting in Machine Learning. Exponential tilting, used to shift parametric distributions, has appeared
in previous literature in importance sampling, optimization, and information theory (e.g., Aminian
et al., 2024; Dembo, 2009; Kort & Bertsekas, 1972; Siegmund, 1976). Recently, the idea of tilted
risk minimization (which exponentially reweights different training samples) has been explored
in machine learning applications such as enforcing fairness and robustness, image segmentation,
and noisy label correction (Aminian et al., 2024; Li et al., 2023; Robey et al., 2022; Szabó et al.,
2021; Zhou et al., 2020). A closely-related LogSumExp operator is often used to as an smooth
approximation to the max, which is always considered more computationally favorable (Calafiore
& El Ghaoui, 2014; Kort & Bertsekas, 1972; Li et al., 2023; Shen & Li, 2010). One application
of tilted risks applied to the adversarial training problem is to balance worst-case robustness (i.e.,
adversarial robustness) and average-case robustness in the data space (Robey et al., 2022), among
other approaches that can also achieve a transition between worst-case and average-case errors (Rice
et al., 2021). Our work is similar conceptually, but we consider reweighting adversarial model
parameters, instead of adversarial data points. Compared with SAM (optimizing the largest loss),
the TSAM framework offers additional flexibility of optimizing over quantiles of losses given the
connections between tilting and quantile approaches (Li et al., 2023; Rockafellar et al., 2000).

3 PROPERTIES OF TSAM

In this section, we discuss properties of the TSAM objective. We first state the convexity and
smoothness of TSAM (Section 3.1). We then show that as t increases, the gap between less-flat
and more-flat solutions measured in terms of the TSAM objective becomes larger. In other words,
optimizing TSAM would give a flatter solution as t increases (Section 3.2). Finally, we discuss the
generalization behavior of TSAM and prove that there exists t P p0,8q that result in the tightest
generalization bound (Section 3.3). All properties discussed in this section hold regardless of the
distributions of ϵ (i.e., choice of µpϵq), unless otherwise specified.

3.1 CONVEXITY AND SMOOTHNESS

In this part, we connect the convexity and smoothness of TSAM with the convexity and smoothness
of the ERM loss. We provide complete proofs in Appendix B. We first define a useful quantity (tilted
weights) that will be used throughout this section.

Definition 1 (t-tilted weights). For a perturbed model parameter θ ` ϵ, we define its corresponding
t-tilted weight as wtpθ ` ϵq :“ etLpθ`ϵq

EretLpθ`ϵqs
.

This is exponentially proportional to the loss evaluated at parameter values θ ` ϵ. The expectation is
with respect to the randomness of ϵ constrained by µpϵq. When t “ 0, 0-tilted weights are uniform.
When t Ñ 8, wtpθ ` ϵq focuses on the max loss among all possible tθ ` ϵu. Such weights have
appeared in previous literature on importance sampling (Siegmund, 1976), but they are only applied
to reweight sample-specific losses, as opposed to perturbation-specific parameters. Given tilted
weights in Definition 1, we can present the TSAM gradients and Hessian as follows.
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Lemma 1 (Gradient and Hessian for TSAM). Assume Lp¨q is continuously differentiable. The full
gradient of TSAM (Objective (3)) is

∇Ltpθq “
EretLpθ`ϵq∇Lpθ ` ϵqs

EretLpθ`ϵqs
“ Erwtpθ ` ϵq∇Lpθ ` ϵqs. (4)

The Hessian of TSAM ∇2Ltpθq is

t
´

E
“

wtpθ ` ϵq∇Lpθ ` ϵqJ∇Lpθ ` ϵq
‰

´ E
“

wtpθ ` ϵq∇Lpθ ` ϵq
‰J E

“

wtpθ ` ϵq∇Lpθ ` ϵq
‰

¯

` E
“

wtpθ ` ϵq∇2Lpθ ` ϵq
‰

. (5)

The gradient of TSAM can be viewed as reweighting the gradients of ∇Lpθ ` ϵq by the loss values
etLpθ`ϵq. Examining the Hessian, we note that the first term is t multiplied by a positive semi-definite
matrix, and the second term can be viewed as a reweighting of the Hessian of the original loss L.

It is not difficult to observe that if Lpθq is p-Lipschitz with respect to θ, then Ltpθq is p-Lipschitz with
respect to θ. If L is µ-strongly convex, then Lt is also µ-strongly convex (proved in Appendix B).
Next, we show that the smoothness of TSAM scales linearly with t.
Lemma 2 (Smoothness of TSAM). Let Lp¨q be β-smooth and β is bounded. Then Ltpθq is βptq-
smooth, where βptq satisfies 0 ă limtÑ8

βptq
t ă `8.

That is, βptq “ Optq. The proof is deferred to Appendix B. In Lemma 2, we connect the smoothness
of the tilted objective with the smoothness of the original ERM objective. We see that for any bounded
t, the smoothness parameter is bounded. As t increases, TSAM becomes more difficult to optimize
as the loss becomes more and more non-smooth. When t Ñ 8, βptq Ñ 8. If we have access to
unbiased gradient estimates at each round, it directly follows that the convergence of SAM (TSAM
with t Ñ 8) objective is slower than that of tilted SAM following standard arguments (Nesterov,
2013). To further visualize this, we create a one-dimensional toy problem in Appendix A where we
obtain the globally optimal solutions for each objective. We show that both SAM and TSAM are able
to arrive at a flat solution; but the SAM objective is non-smooth, hence more difficult to optimize.

3.2 TSAM PREFERS FLATTER MODELS AS t INCREASES

In this subsection, we focus on a specific class of models including generalized linear models (GLMs),
where the loss function lpxi; θq carries the form of

lpxi; θq “ Apθq ´ θJT pxiq, Lpθq “ Apθq ´ θJ

¨

˝

1

n

ÿ

iPrns

T pxiq

˛

‚:“ Apθq ´ θJT pxq. (6)

For GLMs, Apθq is a convex function, and
ř

iPrns T pxiqT pxiq
J ą 0 (Wainwright & Jordan, 2008).

Our results in this section apply to loss functions defined in Eq. (6), which subsume linear models.
Before introducing the main theorem, we define two important quantities that will be used throughout
this section, and in the experiments.
Definition 2 (t-weighted mean and variance). We define t-weighted mean of a random variable X
EretXXs

EretX s
. Similarly, we define t-weighted variance of a random variable X as EretXX2

s

EretX s
´

´

EretXXs

EretX s

¯2

.

When t “ 0, these definitions reduce to standard mean ErXs and variance ErX2s´pErXsq2. Similar
tilted statistics definitions have also appeared in prior work (Li et al., 2023). We leverage weighted
variance to define sharpness below.
Definition 3 (t-sharpness). We say that a model parameter is θ1 is t-sharper than θ2 if the t-weighted
variance of Lpθ1 ` ϵq (which is a random variable for loss distribution under model parameters
perturbed by ϵ) is larger than the t-weighted variance of Lpθ2 ` ϵq.

Given the definition of sharpness above based on weighted variance, we are ready to prove that
TSAM encourages flatter local minima as the increase of t. Empirically, in Section 5, we also plot
the 0-sharpness of the solutions obtained from different objectives, and observe that TSAM achieves
smaller sharpness values (measured in terms of standard variance) than ERM and SAM. Proper
definitions of sharpness is generally still an open problem, and other options are possible such as the
trace of Hessian and gradient norms (Wen et al., 2022).
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Figure 1: Optimization trajectories of different objectives (orange) with final solutions marked in star. The
local minima get flatter from left to right in each subfigure. We see that TSAM favors flat minima as t increases.
ERM solution by gradient descent converges to a sharp minimal. We solve TSAM on this one-dimensional
problem by sampling thousands of ϵ’s to estimate the gradient of Lt

pθq (Eq. (4)) at each step. This is not
feasible for real problems.

Theorem 1 (TSAM prefers flatter models as t increases). Assume Lpθq is given by Eq. (6) and
Lpθq is continuously differentiable. For any θ1, θ2 P Rd, let gtpθ1, θ2q :“ Ltpθ1q ´ Ltpθ2q. If θ1 is
t-sharper than θ2, then Bgt

pθ1,θ2q

Bt ě 0.

For some θ1 sharper than θ2, it is possible that Lpθ1q “ Lpθ2q, which implies that ERM is not
able to distinguish between the two solutions, while TSAM can. Furthermore, Theorem 1 indicates
that as t increases, the TSAM objective favors θ2 more aggressively, as the gap between Ltpθ1q

and Ltpθq grows larger. We explore a one-dimensional toy problem with many local minima:
Lpθq “ 2 sinp4πθq{p2θq ` 0.005pθ ´ 1q2, and focus on the area θ P p0.2, 2.5q to visualize this
behavior. We take ρ “ 0.2 and a fixed learning rate 0.005 for all objectives. Each run starts from the
same initialization θ “ 0.5. In Figure 1, we see that as t increases, TSAM leads to flatter solutions,
despite having larger objective values measured by Lpθq. As a side note, we prove that for any θ, the
objective value of Ltpθq is monotonically increasing as t increases (Appendix B). Next, we discuss a
special case when t is close to 0, where we provide another perspective on the TSAM behavior.

Discussions for t Ñ 0. All the results above hold for the small-t regime, where sharpness reduces to
standard variance when t Ñ 0 (Definition 2). It still follows that Bgt

pθ1,θ2q

Bt

ˇ

ˇ

ˇ

tÑ0
ě 0 if θ1 is sharper

than θ2. Here, we provide another interpretation of TSAM when t is close to zero. Similar statements
have also appeared in prior works in a different context (e.g., Li et al., 2023; Liu & Theodorou, 2019).
For a very small t, it holds that 1

t log
`

E
“

etLpθ`ϵq
‰˘

« ErLpθ ` ϵqs ` t
2var pLpθ ` ϵqq ` opt2q. We

provide a proof in Appendix B. Hence, optimizing TSAM is approximately equivalent to optimizing
for the mean plus variance of the losses under the perturbed parameters. When t “ 0, it reduces to
only optimizing for ErLpθ ` ϵqs. In other words, TSAM with t close to 0 is directly minimizing
0-sharpness (standard variance). For any θ1 and θ2 such that θ1 is sharper than θ2, we have

gtpθ1, θ2q « ErLpθ1 ` ϵqs `
t

2
var pLpθ1 ` ϵqq ´ ErLpθ2 ` ϵqs ´

t

2
var pLpθ2 ` ϵqq , (7)

Bgtpθ1, θ2q

Bt
«

1

2
pvar pLpθ1 ` ϵqq ´ var pLpθ2 ` ϵqqq ě 0. (8)

This is a special case of Theorem 1 for t Ñ 0. It suggests that as we increase t from 0 for a small
amount, the standard variance of neighborhood loss would reduce. Note that some recent works
propose a noise-injected loss similar to TSAM with t Ñ 0 (Zhang et al., 2024). The proposed
algorithm therein explicitly minimizes the trace of Hessian, which aligns with our arguments that the
TSAM objective can lead to flatter solutions.

So far, we study properties of TSAM regarding convexity, smoothness of the objective, and sharpness
of the resulting solutions. We note that these properties of the objective are independent of the actual
optimization algorithms used to optimize TSAM. Though Theorem 1 implies similar benefits of both
TSAM and SAM relative to ERM (assuming we optimize TSAM and SAM perfectly), Lemma 2
shows the superiority of the TSAM objective over SAM with unbounded smoothness parameters, as
TSAM is easier to optimize. The performance of practical applications depends on both the properties
of the objectives and the approximation algorithms used to solve them.

3.3 GENERALIZATION OF TSAM

In this section, we give a uniform bound on the generalization error of our TSAM objective. By solving
the tilted objective empirically, during test time, we are ultimately interested in evaluating the linear

5
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population risk EZrlpθ;Zqs where Z denotes the underlying data distribution and txiuiPrns „ Z.
We define generalization error as the difference between population risk and our empirical objective
value EZrlpθ;Zqs ´ 1

t logEϵre
tLpθ`ϵqs, bounded as follows.

Theorem 2 (Generalization of TSAM). Assume losses are bounded as 0 ď Lp¨q ď M . Suppose we
have n training data points. For any θ P Θ and t ě 0, with probability 1 ´ δ, the difference between
population risk and empirical TSAM risk satisfies

EZrlpθ;Zqs ´
1

t
logEϵre

tLpθ`ϵqs ď M

c

logp2{δq

2n
´

varϵpetLpθ`ϵqq

2te2tM
` c, (9)

where c :“ Lpθq ´ EϵrLpθ ` ϵqs is a constant independent of t.

In other words, we have for any θ, with probability 1 ´ δ,

EZrlpθ;Zqs ď
1

t
logEϵre

tLpθ`ϵqs ` M

c

logp2{δq

2n
´

varϵpetLpθ`ϵqq

2te2tM
` c. (10)

We defer the proof to Appendix B, where we build upon existing generalization results of a related
objective (Aminian et al., 2024). From Theorem 2, we see that when the sample space of ϵ is

empty, our result reduces to EZrlpθ, Zqs ď Lpθq ` M
b

logp2{δq

2n , scaling at a rate of 1?
n

consistent
with standard uniform bound on the average risk (Shalev-Shwartz & Ben-David, 2014). When
t Ñ 8 and we define µpϵq to be }ϵ} ď ρ over some distribution, the result gives an upper bound

on the generalization of SAM: EZrlpθ, Zqs ´ max}ϵ}ďρ Lpθ ` ϵq ď M
b

logp2{δq

2n ` c. For the most
interesting case of t P p0,8q, we give a remark on the tightness of the bound below.
Remark 1. Denote θTSAM and θERM as optimal solutions for TSAM (Eq. (3)) and ERM (Eq. (1)),
respectively. For modest values of t, due to the negativity of ´

varϵpetLpθ`ϵq
q

2te2tM
, the upper bound of the

linear population risk EZrlpθTSAM, Zqs (right-hend side of Eq. (10)) can be smaller than that of the

linear risk EZrlpθERM, Zqs, as long as 1
t logEϵre

tLpθTSAM
`ϵqs ´

varϵpetLpθTSAM`ϵq
q

2te2tM
ď LpθERMq. This

implies that by solving TSAM, we can obtain a solution that results in a smaller upper bound of the
linear population error than that of ERM.

4 ALGORITHMS

In this section, we describe the algorithms we use to solve TSAM. The main challenge in solving
TSAM is to sample ϵ to get a good estimator of Ltpθq, or equivalently, ∇Ltpθq. We first describe a
general approach where we use estimated tilted gradients (given sampled ϵ’s) to update the model
(Section 4.1). Then, we discuss how to sample ϵ’s via a specific Hamiltonian Monte Carlo algorithm
and present our method and implementation (Section 4.2).

4.1 GENERAL ALGORITHM

To solve TSAM, the primary challenge is to estimate the integral 1
t log

`ş

etLpθ`ϵqdµpϵq
˘

, or its full

gradient EretLpθ`ϵq∇Lpθ`ϵqs

EretLpθ`ϵqs
, assuming gradient-based methods and the differentiable loss L. A naive

way is to first sample ϵ from µpϵq following the pre-defined distribution (e.g., Gaussian or uniform)
over µpϵq, and then perform tilted aggregation with weights proportional to etLpθ`ϵq. However, this
approach may be extremely inefficient, as there could be an infinite set of perturbed model parameters
with relatively small losses, which are not informative. In Figure 8 in the appendix, we empirically
show that even when we sample a much larger number of ϵ’s, the resulting accuracy is still worse
than our proposed method. Instead, we propose to sample s number of ϵ’s from distribution eδLpθ`ϵq

(denoted as tϵjujPrss), where 0 ď δ ď t. We then use these tϵjujPrss to obtain an empirical gradient
estimation with weights proportional to tept´δqLpθ`ϵjqujPrss, as the full gradient is a tilted average
of the original gradient on Lp¨q. To improve sample efficiency, we use gradient-based methods
such as Hamiltonian Monte Carlo (HMC) that simulates Hamiltonian dynamics (Leimkuhler &
Reich, 2004). The structure of our proposed method is in Algorithm 1. Note that in principle, after
estimating the tilted stochastic gradients, we can further apply existing optimization techniques such
as variance reduction (Johnson & Zhang, 2013), acceleration (Nesterov), or adaptivity (Duchi et al.,
2011; Streeter & McMahan, 2010) to gain further improvement, which we leave for future work.
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Algorithm 1: Tilted SAM Solver
Input: t, θ0, learning rate η, total iterations T , total number of samples s
for i “ 0, ¨ ¨ ¨ , T ´ 1 do

Sample s random perturbations tϵjujPrss from distribution eδLpθi
`ϵq under the constraint

characterized by µpϵq via some HMC algorithm (Algorithm 2)
Update θi with the estimated gradient evaluated on the mini-batch:

θi`1 Ð θi ´ η

ř

jPrss e
pt´δqLpθi

`ϵjq∇Lpθi ` ϵjq
ř

jPrss e
pt´δqLpθi`ϵjq

end
return θT

4.2 SAMPLING ϵ

There could be potentially different algorithms for sampling ϵ where ppϵq 9 eδLpθ`ϵq. Here we
propose an approximate and cheap sampler based on discretization of Hamiltonian dynamics. Our
method is inspired by one of the best-known way to approximate the solution to a system of differential
equations, i.e., Euler’s method or its modification (Neal et al., 2011). A more accurate solver like the
leap-frog method might be more popular for HMC, but these come at an increased expense (Neal
et al., 2011). As our goal to minimize computational cost, we stick with the cheaper Euler’s approach
as follows. We first initialize ϵ0 from an L2 ball that satisfies }ϵ} ď ρ, and initialize the momentum
p0 P Rd from some Gaussian distribution, i.e., p0 „ N p0, σ2Iq. Note that the negative log probability
density of the energy function Upϵq is ´ logpeδLpθ`ϵqq “ ´δLpθ ` ϵq. At each sampling step, we
run the following steps for N iterations with a small step-size β to obtain a candidate ϵ:

p Ð p ` βδ∇ϵLpθ ` ϵq, ϵ Ð ϵ ` βp{σ2. (11)

After obtaining a candidate ϵ, we accept ϵ with probability mint1, eδLpθ`ϵq´
}p}2

2σ2 {eδLpθ`ϵ0q´
}p0}2

2σ2 u.
If the candidate ϵ is not accepted, we set pp, ϵq to the initial point before the N iterations. Repeating
the above for enough times would give us a sample ϵ from the exact distribution.

Algorithm 2: Sampling from eδLpθi
`ϵq under the constraint }ϵ} ď ρ

Input: θ0, total samples s, uncertainty ball radius ρ
for j “ 0, ¨ ¨ ¨ , s do

Perturb θi with a random δj sampled from Gaussian or uniform distribution: θij Ð θi ` δj

Run normalized SGD on the mini-batch data at θij : θ̂ij Ð θij ` ρ
∇Lpθi

jq

}∇Lpθi
jq}

; ϵj Ð θ̂ij ´ θi

end
return tϵjujPrss

Generating one ϵ via HMC requires at least 2N gradient evaluations, which is infeasible for large-
scale problems. Hence, we set N “ 1 in all the main experiments, and meanwhile accept the
generated ϵ with probability 1. For completeness, we evaluate the effects of increasing N in HMC in
Appendix C. We observe that using N ą 1 does not significantly improve the performance. Running
equations in Eq. (11) for one step, if p is initialized as p “ 0, we have ϵ Ð ϵ ` β1∇Lpθ ` ϵq, where
β1 is a constant. We adapt this updating rule to our problem, and run the aforementioned procedure in
parallel for s times to get s samples. Our method is presented in Algorithm 2. Though Algorithm 2
does not guarantee the ϵj’s result in a consistent estimator of the TSAM integral, we empirically
showcase its effectiveness on non-convex models including transformers in the next section.

5 EXPERIMENTS

In this section, we first describe our setup. Then we present our main results, comparing TSAM
with the baselines of ERM (Eq. (1)), SAM (Eq. (2)), and SAM variants on both image and text data
(Section 5.1). We explain TSAM’s superior performance by empirically examining the flatness of
local minima in Section 5.2. In Section 5.3, we discuss the effects of hyperparameters.
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Tasks and Datasets. We consider image tasks involving convolutional neural networks and trans-
formers and the GLUE benchmark of language modeling (Wang, 2018). First, we explore standard
training of ResNet18 (He et al., 2016) and WideResNet16-8 (Zagoruyko, 2016) on classification
over CIFAR100 (Krizhevsky et al., 2009). Since vision transformers (ViTs) (Dosovitskiy et al.,
2020) have been shown to have much sharper local minima than CNNs (Chen et al., 2021), we
study the performance on TSAM finetuning ViTs (pretrained on ImageNet (Deng et al., 2009)) on
an out-of-distribution Describable Texture Dataset (DTD) (Cimpoi et al., 2014), where the task is
47-class classification. Additionally, previous works show that SAM is robust to label noise (Baek
et al., 2024; Foret et al., 2020); and we evaluate in the setting of training ResNet18 on CIFAR100
with uniform label noise generated by substituting 20% of the true labels uniformly at random to
other labels. We also use WideResNet to train DTD and noisy CIFAR100 datasets from scratch.
Lastly, we study finetuning a pretrained DistilBert (Sanh, 2019) model on the GLUE benchmark
including both classification and regression problems on text data. All the experiments are conducted
on V100, L40S, or A100 GPUs.

Hyperparameter Tuning. We take µpϵq to be }ϵ} ď ρ for all TSAM experiments, and tune the
ρ parameters separately from t0.05, 0.1, 0.2u for relevant methods. For TSAM, we tune t from
t0, 1, 5, 20, 100u and select the best one based on the validation set. We also report the performance
for all t’s in the next sections. We use s=3 or s=5 sampled ϵ’s for all datasets and find that it works
well. For some SAM variants that introduce additional hyperparameters, we tune those via grid search
as well. We fix the batch size to be 64 for all the datasets and methods, and use constant learning
rates tuned from t0.0003, 0.001, 0.003, 0.01, 0.03, 0.1u for each algorithm. Despite the existence of
adaptive methods for SGD and SAM (Kingma & Ba, 2014; Kwon et al., 2021), we do not incorporate
adaptivity for any algorithm for a fair comparison. See Appendix C for details on hyperparameter
tuning.

5.1 TSAM LEADS TO BETTER TEST PERFORMANCE

We compare the performance of various objectives and algorithms in Table 1. ERM denotes mini-
mizing the empirical average loss with mini-batch SGD. SAM is the vanilla SAM implementation
with one step of gradient ascent and one step of gradient descent at each iteration (Foret et al., 2020).
Note that TSAM requires more gradient evaluations per iteration. Hence, we include two additional
baselines of SAM under the same computational budget as TSAM runs. (1) We simply run the
vanilla SAM algorithm for more iterations until it reaches the same runtime as TSAM. (2) We try
another SAM approximation by exploring different step sizes along the gradient ascent directions
and pick the one incurring the biggest loss. Then we evaluate the gradient under that step size to
be applied to the original model parameters. We call these expansive SAM baselines ESAM1, and
ESAM2, respectively. We also evaluate two more advanced sharpness-aware optimization methods:
PGN that combines normal gradients and SAM gradients (Zhao et al., 2022), and Ramdom SAM
(RSAM) which adds random perturbations before finding the adversarial directions (Liu et al., 2022b).
We let PGN and RSAM run the same amount of time as TSAM on the same computing platform. On
all the datasets, we tuned t values via grid search from t0, 1, 5, 20, 100u.

Our results are shown in Table 1 below. The performance for all t’s on three image datasets and
different model architectures are reported in Section 5.3. For the GLUE benchmark, we report the
standard metrics for each dataset in GLUE. TSAM consistently achieves higher test performance
than ERM and variants of SAM. We provide corresponding convergence plots of ERM, vanilla SAM,
and TSAM in Appendix C.

5.2 FLATNESS OF TSAM SOLUTIONS

In this part, we take a more detailed look into the properties of TSAM solutions compared with the
ones of ERM and SAM on the CIFAR100 dataset trained by ResNet18 from scratch. In Figure 2,
we plot the loss mean and variance over the neighborhood areas around local minima obtained by
different objectives, i.e., ErLpθ˚ ` ϵqs and varrLpθ˚ ` ϵqs, where ϵ „ N p0, δ2q, and θ˚ denotes
the different solutions of any objective (with a slight abuse of notation). These measurements have
appeared in prior works named average-loss sharpness (Chen et al., 2021; Wen et al., 2024), and are
consistent with our sharpness definition (Definition 3) mentioned before. In Figure 2, for all δ values,
we see that TSAM consistently result in flatter local minima than ERM and SAM measured by both
the mean and variance of losses around the minima. In addition, we evaluate sharpness following
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Table 1: TSAM achieves higher test performance relative to ERM and different variants of SAM across
image datasets and the GLUE benchmark with both CNNs and transformer-based models. TSAM (or SAM)
is particularly suitable for applications with distribution shifts (DTD and noisy CIFAR100 datasets), which is
also consistent with observations in prior works (Baek et al., 2024; Foret et al., 2020). Convergence plots are
shown in Figure 7 in the appendix. TSAM also results in lower test loss, discussed in detail in the next section.
Additional Tiny Imagenet results and results with standard deviation are given in Appendix C.

datasets models ERM SAM ESAM1 ESAM2 PGN RSAM TSAM

CIFAR100 ResNet18 0.7139 0.7652 0.7740 0.7752 0.7745 0.7735 0.7778
WideResNet16-8 0.7322 0.7844 0.8022 0.7903 0.7858 0.7902 0.8085

DTD ViT finetuning 0.6638 0.6787 0.6818 0.6835 0.6776 0.6835 0.6882
WideResNet16-8 0.1697 0.1745 0.1767 0.1771 0.1823 0.1766 0.1863

Noisy CIFAR100 ResNet18 0.6101 0.6900 0.6920 0.6727 0.6568 0.6931 0.6998
WideResNet16-8 0.5703 0.6802 0.6979 0.6683 0.6402 0.6593 0.7026

objectives CoLA WNLI SST-2 MNLI QNLI RTE MRPC QQP STSB AVG
ERM 0.52/0.8034 0.5493 0.9048 0.796 0.8772 0.6065 0.8382 0.8632 0.866/0.863 0.7715
SAM 0.52/0.8048 0.5634 0.9174 0.811 0.8642 0.5884 0.8529 0.8771 0.870/0.865 0.7756
TSAM1 0.52/0.8044 0.5634 0.9163 0.811 0.8618 0.5902 0.8531 0.8769 0.871/0.867 0.7759
TSAM2 0.52/0.8053 0.5634 0.9163 0.812 0.8629 0.5925 0.8580 0.8747 0.868/0.865 0.7762
TSAM 0.52/0.8081 0.5634 0.9186 0.811 0.8781 0.6065 0.8505 0.8877 0.871/0.866 0.7801

other common notions by investigating the top-5 eigen values of Hessian (e.g., Foret et al., 2020).
Under the same model setup, the top-5 eigenvalues are {342.11, 304.72, 260.71, 252.92, 210.88}
for ERM, {232.60, 198.35, 182.61, 153.74, 145.76} for SAM, and {140.91, 113.38, 105.90, 92.94,
89.55} for TSAM (t=20). We see that TSAM achieves the smallest max eigenvalues among the three.
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Figure 2: Sharpness of the solutions found by ERM, SAM, and
TSAM on CIFAR100 with ResNet18. We empirically measure sharp-
ness by both ErLpθ˚

` ϵqs and varrLpθ˚
` ϵqs where ϵ „ N p0, δ2q.

θ˚ denotes different optimal model parameters obtained from the
three objectives. These metrics (especially variance) are also consis-
tent with Definition 3 with t “ 0. We see that TSAM solutions have
a flatter neighborhood compared with the other two.

We further report the training and
test performance of best-tuned ERM,
SAM, and TSAM in Table 3 in the ap-
pendix. We show that ERM solutions
have lower training losses but higher
test losses than SAM and TSAM
when evaluated on the average test
performance (i.e., the ‘ERM’ column
in the right table). This is due to the
fact that ERM does not generalize
as well as SAM or TSAM, and there
exist bad sharp local minima around
ERM solutions. On the other hand,
while TSAM’s average training loss
is the highest (which is expected be-
cause it does not directly optimize
over ERM), the test losses of TSAM
evaluated by both the average-case performance and worst-case performance are lower than the other
two baselines. While we show better generalization of TSAM empirically, rigorous understandings
between generalization and flatness is still an open area of research.

5.3 SENSITIVITY TO HYPERPARAMETERS

Effects of the Tilting Hyperparameter t. One critical hyperparameter in TSAM is t. When
t “ 0, TSAM objective reduces to the average-case perturbed objective. When t Ñ 8, the TSAM
objective (Eq. (3)) recovers SAM (Eq. 2). But the TSAM algorithm (Algorithm 2) do not exactly
recover SAM’s alternating updating approximation when t Ñ 8. See Section 4 for a detailed
discussion. Here, we report the test accuracies as the training proceeds under multiple values of t’s
for all the three tasks. Results are plotted in Figure 3. We see that there are a range of t’s that result
in faster convergence or higher accuracies than SAM. There also exists an optimal t that leads to
the best test performance. This is consistent with our previous generalization bound (Section 3.3).
Though Theorem 1 captures the benefits of both SAM and TSAM, we note that the final empirical
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performance does not only depend on the properties of the objectives. But rather, it also relies on the
choice of approximation algorithms. Results in Theorem 1 assume that the objectives are optimized
perfectly, which is infeasible in high-dimensional settings.

0 2 4 6 8 10
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0.00
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1.00

SAM t=0 t=1 t=5 t=20 t=100

Figure 3: Test accuracies of SAM and TSAM for various values of t when the number of sampled ϵ’s is 3 for
each dataset. We select the best SAM and TSAM runs based on the final accuracies on validation data. The
results suggest that (1) there are multiple t values that give superior performance than SAM; and (2) we typically
need to manually tune a best t via grid search. The empirical performance under different values of t relies on
tradeoffs between optimization efficiency (Section 3.1, Section 4), flatness (Section 3.2), and generalization
(Section 3.3), and it is difficult to determine an optimal t prior to training. Note that in the label noise regime
(left subfigure), one might think that SAM performance could be further improved via a smaller learning rate or
early stopping; however, we observe that SAM with a smaller learning rate does not give better accuracy. With
early stopping, SAM accuracy is 0.6918, which is still 0.4% lower than that of TSAM without early stopping.

Effects of Scheduling t. We report all results on TSAM where we fix t values during optimization.
Here, we empirically study the effects of scheduling t. Increasing t from 0 to a fixed value effectively
switches from weighting local minima uniformly to rewighting them based on the loss values, and
vice versa. We experiment with two options: linearly decreasing t and linearly increasing t on the
noisy CIFAR100 dataset trained by ResNet18. The convergence curves are shown in Figure 4. We
see that using a fixed t throughout training does not have significant difference from scheduling t.
Hence, we stick to fixed t’s for our TSAM experiments.
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Figure 4: Linearly decreasing or increasing the
tilting hyperparameter t with the epochs does not
differ from the results of a fixed t.

Table 2: Test accuracies of SAM and TSAM with differ-
ent number of sampled ϵ’s (denoted as s; see Algorithm 2).
Both s “ 3 and s “ 5 leads to improvements over SAM.
Empirically, we do not need many samples from the tilted
distribution. TSAM performance reported in Table 1 are
based on s “ 5, 3, 5 for the three tasks.

CIFAR100 DTD noisy CIFAR100

SAM 0.7652 0.6787 0.6900
TSAM, s=3 0.7740 0.6882 0.6955
TSAM, s=5 0.7778 0.6870 0.6998

Effects of the Number of ϵ’s. One may wonder whether we need to sample a large number of
perturbations for the algorithm to be effective. In Table 2, we show that we usually only need s “ 3
or 5 number of ϵ’s to achieve significant improvements relative to SAM.

6 CONCLUSION

In this work, we have proposed a tilted sharpness-aware minimization (TSAM) objective, which
leverages exponential tilting (parameterized by t) to reweight potentially many local minima in the
neighborhoods, as opposed to the worst-case minima SAM targets at. We have proved TSAM is a
more smooth problem relative to SAM with a bounded t, and that TSAM explicitly encourages flatter
solutions as t increases for a class of problems including generalized linear models. We have proposed
a practical algorithm motivated by HMC to sample from the tilted distribution etLpθ`ϵq. Through
experiments on different models and datasets including label-noise settings, we have demonstrated
that TSAM consistently outperforms SAM and its variants on both image and text datasets.
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A ADDITIONAL TOY PROBLEMS

In Figure 1 in Section 1, we present a specific toy problem where TSAM arrives at more flat solutions
as t increases. Though the TSAM objective will recover SAM when t Ñ 8, we note that TSAM can
be easier to solve due to smoothness. To illustrate this, we create another toy problem in Figure 5
and 6 below. We see that SAM always leads to a non-smooth optimization problem for ρ ą 0.
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Figure 5: SAM losses as ρ increases. The original loss function (shown in the blue lines across all figures) is a
one-dimensional problem Lpθq “ |θ ´ 1| ´ 0.01 if θ ď 2, and Lpθq “ pθ ´ 3q

2 otherwise. Note that θ “ 3 is
a more flat solution than θ “ 1, though Lp1q ă Lp3q. The SAM objective is minθ max|ϵ|ďρ Lpθ ` ϵq, shown
in the red lines, where the values of ρ’s increase from 0 to 0.8. When ρ “ 0, the objective reduces to ERM. For
ρ ą 0, the SAM objectives (red lines) are non-smooth, and the global minima (marked in orange) are achieved
at a flat region in Lp¨q. The SAM objective visualization holds regardless of the usage of any existing SAM
algorithms or implementation.
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Figure 6: TSAM (t=0.01) losses as ρ increases. The TSAM objective (red lines) is 1
t
log

´

Eµpϵq

”

etLpθ`ϵq
ı¯

,
where µpϵq :“ Up|ϵ| ď ρq defines a uniform distribution of ϵ’s constrained in a ball with radius ρ. The larger ρ
is, the darker the redness becomes. TSAM with a small t is able to find flat solutions.
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B COMPLETE PROOFS

B.1 PROOFS FOR SECTION 3.1

Proof for the Case of t Ñ 0, Ltpθ ` ϵq Ñ ErLpθ ` ϵqs. Note that if Lp¨q is continuously
differentiable, then etLpθ`ϵq is continuous w.r.t. ϵ P Rd. It is also continuous w.r.t. t P R. When
t Ñ 0,

lim
tÑ0

Ltpθq “ lim
tÑ0

1

t
log

ˆ
ż

etLpθ`ϵqdµpϵq

˙

(12)

“
1

ş

etLpθ`ϵqdµpϵq

ż

etLpθ`ϵqLpθ ` ϵqdµpϵq (13)

“

ż

Lpθ ` ϵqdµpϵq (14)

“ ErLpθ ` ϵqs. (15)

Proof for Lipschitzness. First observe that if Lpθq is p-Lipschitz with respect to θ, then Ltpθq is
p-Lipschitz with respect to θ. This follows from

ˇ

ˇLtpθ1q ´ Ltpθ2q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

1

t
logE

”

etLpθ1`ϵq
ı

´
1

t
logE

”

etLpθ2`ϵq
ı

ˇ

ˇ

ˇ

ˇ

(16)

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

t
log

E
“

etLpθ1`ϵq
‰

E
“

etLpθ2`ϵq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

(17)

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

t
log etp}θ1´θ2}

E
“

etLpθ2`ϵq
‰

E
“

etLpθ2`ϵq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

(18)

“ p}θ1 ´ θ2}. (19)

Proof for Strong Convexity. Assume L is continuously differentiable. If L is µ-strongly convex,
then Lt is also µ-strongly convex. This is because of the Hessian in Eq. (20), which can be written as

∇2Ltpθq “ t ¨ M ` E
„

etLpθ`ϵq

EretLpθ`ϵqs
∇2Lpθ ` ϵq

ȷ

, (20)

where M is a positive semi-definite matrix. We note that due to the µ-strong convexity of L, the
second term satisfies E

”

etLpθ`ϵq

EretLpθ`ϵqs
∇2Lpθ ` ϵq

ı

ě µI. Hence, ∇2Ltpθq ě µI.

Proof for Smoothness. From Eq. (20), we know that

1

t
∇2Ltpθq “ M `

1

t
E

„

etLpθ`ϵq

EretLpθ`ϵqs
∇2Lpθ ` ϵq

ȷ

. (21)

As E
”

etLpθ`ϵq

EretLpθ`ϵqs

ı

“ 1, and the max eigenvalue λmaxp∇2Lpθ ` ϵqq ď β, we have

0 ă min
tÑ8

1

t
λmaxp∇2Lpθ ` ϵqq ă `8. (22)

B.2 PROOFS FOR SECTION 3.2

In the following, we use E to denote Eϵ. Define gptq as

gptq :“ Ltpθ1q ´ Ltpθ2q (23)

“
1

t
log

ˆ
ż

etLpθ1`ϵqdµpϵq

˙

´
1

t
log

ˆ
ż

etLpθ2`ϵqdµpϵq

˙

. (24)
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Assume l has the specific form of

lpxi; θq “ Apθq ´ θJT pxiq, (25)

Lpθq “ Apθq ´ θJ

˜

1

n

n
ÿ

i“1

T pxiq

¸

:“ Apθq ´ θJT pxq. (26)

Under this form, we have that

Ltpθq “
1

t
log

ˆ
ż

etpApθ`ϵq´pθ`ϵq
JT pxqqppϵqdϵ

˙

(27)

“
1

t
log

ˆ

e´tθJT pxq

ż

etpApθ`ϵq´ϵJT pxqqppϵqdϵ

˙

(28)

“ ´θJT pxq `
1

t
log

ˆ
ż

etpApθ`ϵq´ϵJT pxqqppϵqdϵ

˙

(29)

Define

Γtpθq :“ log
´

E
”

etApθ`ϵq´tϵJT pxq
ı¯

. (30)

Then we have

Ltpθq “
1

t
log

´

E
”

etpApθ`ϵq´pθ`ϵq
JT pxqq

ı¯

“ ´θJT pxq `
1

t
Γtpθq. (31)

Define

ntpθq :“ etApθ`ϵq´tϵJT pxq, (32)

htpθq :“
E

“

ntpθqpApθ ` ϵq ´ ϵJT pxq
‰

E rntpθqs
, (33)

mtpθq :“ ´
1

t2
Γtpθq `

1

t
htpθq. (34)

We have that

Bntpθq

Bt
“ ntpθqpApθ ` ϵq ´ ϵJT pxqq. (35)

We know

BΓtpθq

Bt
“

E
”

etApθ`ϵq´tϵJT pxqpApθ ` ϵq ´ ϵJT pxqq

ı

E
“

etApθ`ϵq´tϵJT pxq
‰ “ htpθq, (36)

BLtpθq

Bt
“ ´

1

t2
Γtpθq `

1

t

BΓtpθq

Bt
“ ´

1

t2
Γtpθq `

1

t
htpθq “ mtpθq. (37)

B.3 Ltpθq IS MONOTONICALLY NON-INCREASING AS t

We would like to prove the sign of BLt
pθq

Bt , or mtpθq, is non-negative. The sign of mtpθq is the same
as the sign of t2mtpθq. We have

t2mtpθq “ ´Γtpθq ` thtpθq, (38)

Bpt2mtpθqq

Bt
“ ´htpθq ` htpθq ` t

Bhtpθq

Bt
“ t

Bhtpθq

Bt
, (39)

and

Bhtpθq

Bt
“

ErntpθqpApθ ` ϵq ´ ϵJT pxqq2sErntpθqs

pE rntpθqsq
2 (40)

´
ErntpθqpApθ ` ϵq ´ ϵJT pxqqsErntpθqpApθ ` ϵq ´ ϵJT pxqqs

pE rntpθqsq
2 . (41)
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Let random variables X “
a

ntpθqpApθ ` ϵq ´ ϵJT pxqq, and Y “
a

ntpθq. Following the fact
ErX2sErY 2s ´ pErXY sq2 ě 0 gives

Bhtpθq

Bt
“

ErX2sErY 2s ´ ErXY sErXY s

pE rntpθqsq
2 ě 0. (42)

Therefore

Bpt2mtpθqq

Bt
ě 0. (43)

We note that limtÑ0 t
2mtpθq “ limtÑ0 t

2 ´ Γtpθq ` thtpθq “ 0. Hence t2mtpθq ě 0. Therefore,
mtpθq ě 0. we have shown that the tilted SAM loss Ltpθq is monotonically non-decreasing as the
increase of t, for any θ.

B.4 t-SAM PREFERS FLATTER MODELS AS t INCREASES

Next, we examine gtpθ1, θ2q :“ Ltpθ1q ´ Ltpθ2q.

Bgtpθ1, θ2q

Bt
“

BLtpθ1q

Bt
´

BLtpθ2q

Bt
(44)

“ ´
1

t2
Γtpθ1q `

1

t
htpθ1q `

1

t2
Γtpθ2q ´

1

t
htpθ2q (45)

“ mtpθ1q ´ mtpθ2q (46)

Similarly,

Bpt2mtpθ1qq

Bt
´

Bpt2mtpθ2qq

Bt
“ t

Bhtpθ1q

Bt
´ t

Bhtpθ2q

Bt
. (47)

For t ě 0,

sign
ˆ

Bhtpθ1q

Bt
´

Bhtpθ2q

Bt

˙

“ sign
ˆ

Bpt2mtpθ1qq

Bt
´

Bpt2mtpθ2qq

Bt

˙

, (48)

sign
`

mtpθ1q ´ mtpθ2q
˘

“ sign
`

t2mtpθ1q ´ t2mtpθ2q
˘

. (49)

Let the random variable L1 denote Apθ1 ` ϵq ´ ϵJT pxq, and random variable L2 denote Apθ2 `

ϵq ´ ϵJT pxq. Then

Bhtpθ1q

Bt
“

E
“

etL1L2
1

‰

E
“

etL1
‰

´
`

E
“

etL1L1

‰˘2

pE retL1sq
2 “

E
“

etL1L2
1

‰

E retL1s
´

ˆ

EretL1L1s

EretL1s

˙2

, (50)

Bhtpθ1q

Bt
´

Bhtpθ2q

Bt
“

E
“

etL1L2
1

‰

E retL1s
´

ˆ

EretL1L1s

EretL1s

˙2

´

˜

E
“

etL2L2
2

‰

E retL2s
´

ˆ

EretL2L2s

EretL2s

˙2
¸

.

(51)

Given random variables L1 and L2, the exponentially reweighted losses can be defined as etL1L1 and

etL2L2. The t-weighted second moment is
EretL1L2

1s
EretL1 s

, and the t-weighted mean is EretL1L1s

EretL1 s
. Hence,

EretL1L2
1s

EretL1 s
´

´

EretL1L1s

EretL1 s

¯2

can be viewed as t-weighted variance. As θ1 is t-sharper than θ2, we have
Bht

pθ1q

Bt ´
Bht

pθ2q

Bt ě 0. Therefore t2mtpθ1q ´ t2mtpθ2q is non-decreasing as t increases. It takes

value of 0 when t “ 0, which implies that t2mtpθ1q ´ t2mtpθ2q “
Bgt

pθ1,θ2q

Bt ě 0.

Proof for the Discussions on t Ñ 0. Recall that exp and log functions can be expanded as

exppxq “ 1 `

8
ÿ

k“1

xk

k!
« 1 ` x `

1

2
x2, (52)

logpx ` 1q “

8
ÿ

k“1

p´1qk´1x
k

k!
« x ´

x2

2
`

x3

6
. (53)
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For very small t ď 1,

1

t
log

´

E
”

etLpθ`ϵq
ı¯

(54)

«
1

t
log

ˆ

E
„

1 ` tLpθ ` ϵq `
t2

2
L2pθ ` ϵq

ȷ˙

(55)

«
1

t

ˆ

E
„

tLpθ ` ϵq `
t2

2
L2pθ ` ϵq

ȷ

´
1

2
E2

„

tLpθ ` ϵq `
t2

2
L2pθ ` ϵq

ȷ˙

(56)

“
1

t

ˆ

tErLpθ ` ϵqs `
t2

2
E

“

L2pθ ` ϵq
‰

´
t2

2
E2rLpθ ` ϵqs ` Opt3q ` Opt4q

˙

(57)

“ ErLpθ ` ϵqs `
t

2

`

E
“

L2pθ ` ϵq
‰

´ E2 rLpθ ` ϵqs
˘

` Opt2q (58)

« ErLpθ ` ϵqs `
t

2
var pLpθ ` ϵqq (59)

Hence, our proposed objective can be viewed as optimizing for the mean plus variance of the losses
in the neighborhood regions when t is very close to 0. When t “ 0, it reduces to only optimizing for
ErLpθ ` ϵqs for ϵ P µpϵq. For any θ1 and θ2 such that θ1 is sharper than θ2,

gptq « ErLpθ1 ` ϵqs `
t

2
var pLpθ1 ` ϵqq ´ ErLpθ2 ` ϵqs ´

t

2
var pLpθ2 ` ϵqq , (60)

g1ptq «
1

2
pvar pLpθ1 ` ϵqq ´ var pLpθ2 ` ϵqqq (61)

Sharpness is defined as standard variance when t Ñ 0 (Definition 3), and we have that g1ptq ě 0.

B.5 PROOF FOR THEOREM 2

We first state some useful lemmas.

Lemma 3 (Aminian et al. (2024)). Let X be a random variable. Suppose 0 ă a ă X ă b ă `8,
we have

varpXq

2b2
ď logpErXsq ´ ErlogpXqs ď

varpXq

2a2
. (62)

The Lemma directly follows from existing results in Aminian et al. (2024). For completeness, we
include the proof here.

Proof. As d2

dx2

`

logpxq ` βx2
˘

“ ´1
x2 ` 2β, the function logpxq ` βx2 is concave for β “ 1

2b2 and
convex for β “ 1

2a2 . Hence, by Jensen’s inequality,

ErlogpXqs “ E
”

logpXq `
X2

2b2
´

X2

2b2

ı

ď logpErXsq `
1

2b2
ErXs2 ´

1

2b2
ErX2s (63)

“ logpErXsq ´
1

2b2
varpXq, (64)

which completes the proof of the lower bound. A similar approach can be applied to derive the upper
bound.

Proof for Theorem 2. We can now proceed with the detailed proof below.

Proof. Examine the following decomposition of the generalization error

EZrlpθ, Zqs ´
1

t
logEϵre

tLpθ`ϵqs (65)

“ EZrlpθ, Zqs ´ EϵrLpθ ` ϵqs ` EϵrLpθ ` ϵqs ´
1

t
logEϵre

tLpθ`ϵqs (66)
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Based on Lemma 3, let X be etLpθ`ϵq and 1 ď etLpθ`ϵq ď etM (assuming positive and bounded
losses and non-negative t), we have that

varpetLpθ`ϵqq

2te2tM
ď

1

t
logpEϵre

tLpθ`ϵqsq ´ ErLpθ ` ϵqs ď
varpetLpθ`ϵqq

2t
, (67)

and

´
varpetLpθ`ϵqq

2te2tM
ě EϵrLpθ ` ϵqs ´

1

t
logpEϵre

tLpθ`ϵqsq ě ´
varpetLpθ`ϵqq

2t
. (68)

For the term EZrlpθ, Zqs ´ EϵrLpθ ` ϵqs, we further decompose it into

EZrlpθ, Zqs ´ EϵrLpθ ` ϵqs “ EZrlpθ, Zqs ´ Lpθq ` Lpθq ´ EϵrLpθ ` ϵqs. (69)

Recall that Lp¨q denote the empirical average loss based on n training samples (Eq. (1)), applying
Hoeffding Inequality (Boucheron et al., 2013) gives

EZrlpθ, Zqs ´ Lpθq ď M

c

logp2{δq

2n
. (70)

Combining Eq.(68), (69), and (70), we have the desired bound

EZrlpθ, Zqs ´
1

t
logEϵre

tLpθ`ϵqs (71)

ď M

c

logp2{δq

2n
´

varpetLpθ`ϵqq

2te2tM
` Lpθq ´ EϵrLpθ ` ϵqs. (72)

To investigate the impacts of t on the generalization bound, we can leave the last term Lpθq ´

EϵrLpθ ` ϵqs as it is since it is independent of t.

Additionally, to bound Lpθq ´ EϵrLpθ ` ϵqs (the gap between empirical average losses and its
randomly-smoothed version) we note that it is related to the curvature of Lpθq. If we further assume
that the loss is µ-strongly convex, then it holds that

Lpθq ´ ErLpθ ` ϵqs ď Lpθq ´ Lpθq ´ Er∇LpθqJϵs ´
µ

2
}ϵ}2 ď ´

µ

2
Er}ϵ}2s. (73)

Combining all the above results gives

EZrlpθ, Zqs ´
1

t
logEϵre

tLpθ`ϵqs ď M

c

logp2{δq

2n
´

varpetLpθ`ϵqq

2te2tM
´

µ

2
Er}ϵ}2s. (74)
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HYPERPARAMTER TUNING

We use momentum with a parameter 0.9 for all algorithms. For all the three datasets and all methods,
we tune learning rates from t0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1u. We use a fixed batch size
of 64, label smoothing of 0.1 (for smooth cross-entropy loss), momentum with a parameter 0.9, and
L2 weight decay 0.0005 for all runs. For vanilla SAM, we tune ρ from t0.05, 0.1, 0.5, 1, 5, 15u and
found that the best values are 0.05, 0.1, 0.1 for CIFAR100, DTD, noisy CIFAR100, respectively. For
SAM variants, we tune ρ parameters in the same way. The PGN baseline (Zhao et al., 2022) introduces
another hyperparameter—the coefficients for the linear combination between normal gradients and
SAM gradients, and we tune that from t0.3, 0.5, 0.7, 0.9u. We follow the recommendations of λ and
γ hyperparameters in the original Random SAM paper (Liu et al., 2022b). For TSAM, we set δ “ t

2
in Algorithm 1, set ρ to be 20, and α in Algorithm 2 to be 0.995 across all datasets. We tune t from
t0, 1, 5, 20, 100u, and the best t’s are 20, 5, 1 for the three image datasets. The number of sampled
ϵ’s (the s hyperparameter in Algorithm 1) are chosen from t3, 5u. We show the effects of t and s in
detail in Section 5.3 in the main text.

C.2 ADDITIONAL RESULTS

Convergence Curves. In Table 1, we present the final test accuracies of TSAM and the baseline. In
Figure 7, we show the convergence of these methods on three datasets. We see that TSAM achieves
the fastest convergence, and arrives at a better solution. This is consistent with our argument that
TSAM with a bounded t is a more smooth objective than the original SAM formulation (Section 3).
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Figure 7: Convergence curves on three image datasets showing test accuracies.

Training and Test Loss Comparisons under Different Objectives. In Table 3, we show that
TSAM generates better than ERM and SAM by comparing training and test losses.

Table 3: To further understand TSAM behavior, we report the losses of models trained by {ERM, SAM, TSAM}
and evaluated on {ERM, SAM, TSAM} objectives, respectively. The left table shows training losses and the
right one shows test losses. We see that (1) every objective achieves the smallest training loss if directly being
optimized (diagonal entries, left table). (2) Though SAM and TSAM incurs larger training losses than ERM
(last two rows, left table), they lead to smaller test losses (last two rows, right table), i.e., better generalization.
(3) Optimizing TSAM results in the smallest test loss across all the three metrics (last row, right table).

trained on
evaluated on ERM SAM TSAM

training loss
ERM 0.1283 1.35 3.48
SAM 0.1489 0.22 0.60

TSAM 0.1763 0.27 0.46

trained on
evaluated on ERM SAM TSAM

test loss
ERM 0.9302 2.05 3.54
SAM 0.7414 0.91 1.34

TSAM 0.7163 0.90 1.08

Additional results on Tiny Imagenet. Tiny imagenet dataset is a subset of imagenet with 200
classes (Deng et al., 2009). In the table below, we report the results on finetuning on tiny imagenet
with ResNet18 starting from a pre-trained model. For TSAM, we sample s=3 perturbations. Note
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that ESAM1 is simply the vanilla SAM update but running 3x more iterations. We see that TSAM
again outperforms the baselines on this dataset.

metric ERM ESAM1 PGN TSAM

top-1 accuracy 0.711 (.0009) 0.7324 (.0007) 0.7318 (.001) 0.7355 (.0008)

Table 4: Results on the tiny imagenet dataset.

Effects of N in HMC. Recall that Algorithm 2 follows HMC updates in Eq. (11) by running it
for N “ 1 step. In principle, we can run Eq. (11) for more than 1 step to generate each candidate
perturbation ϵ. This require additional gradient evaluations, which can be very expensive. We report
results of N “ 2 and N “ 3 in Table 5 below.

configurations CIFAR100 DTD

N “ 1 ps “ 3q 0.7740 0.6882
N “ 1 ps “ 5q 0.7778 0.6870
N “ 2 ps “ 3q 0.7745 0.6883
N “ 3 ps “ 3q 0.7752 0.6880

Table 5: N ą 1 requires N times more gradient evaluations to generate a single perturbation ϵ (Eq.
(11), without resulting in significantly better model accuracies.

Results with Standard Deviation. We show the standard deviation of our main results on the
image datasets in Table 6 below.

datasets ERM SAM ESAM1 ESAM2 PGN RSAM TSAM

CIFAR100 71.39 (.17) 76.52 (.10) 77.40 (.14) 77.52 (.07) 77.45 (.06) 77.35 (.13) 77.78 (.11)
DTD 66.38 (.14) 67.87 (.15) 68.18 (.15) 68.35 (.12) 67.76 (.12) 68.35 (.21) 68.82 (.11)
Noisy CIFAR100 61.01 (.25) 69.00 (.12) 69.20 (.09) 67.27 (.07) 65.68 (.14) 69.31 (.09) 69.98 (.12)

Table 6: Full Results (corresponding to Table 1 (top) in the main text) with mean and standard
deviation across three runs with different random seeds.

Runtime Comparisons. We report the runtime of TSAM and other baselines in Table 7 below.

Table 7: Runtime comparisons (in minutes) averaged over different hyperparameter sets. ERM and SAM run
the same numbers of epochs as TSAM. All baselines are explained in Section 5. ESAM1 denotes the baseline of
letting SAM run longer until it reaches the same computation budget as TSAM.

datasets ERM SAM ESAM1 ESAM2 PGN RSAM TSAM

CIFAR100 32 65 325 310 333 320 333
DTD 5 6 18 17 15 16 15
Noisy CIFAR100 45 92 350 315 302 312 337
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C.3 NAIVE SAMPLING

As discussed in Section 4, one naive approach to estimate EretLpθ`ϵq∇Lpθ`ϵqs

EretLpθ`ϵqs
for ϵ in uniformly

distributed over µpϵq is to first uniformly sample s ϵ’s over µpϵq, and then perform tilted aggregation,
as follows:

ĝ Ð

ř

iPrss e
tLpθ`ϵiq∇Lpθ ` ϵiq

ř

iPrss e
Lpθ`ϵiq

, tϵiuiPrss „ µpϵq. (75)

We demonstrate convergence as a function of s on the CIFAR100 dataset in the figure below. We see
that as s increases, the performance increases. However, when s “ 10, which means that we need 10
gradient evaluations per model updates, the accuracy is lower than that of TSAM with the proposed
algorithm.
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Figure 8: TSAM (t “ 20) with the proposed Algorithm 1 and 2 and compared with the strategy of uniformly
sampling ϵ and performing tilted aggregation over them.

22


	Introduction
	Related Work
	Properties of TSAM
	Convexity and Smoothness
	TSAM prefers flatter models as t increases
	Generalization of TSAM

	Algorithms
	General Algorithm
	Sampling 

	Experiments
	TSAM Leads to Better Test Performance
	Flatness of TSAM solutions
	Sensitivity to Hyperparameters

	Conclusion
	Additional Toy Problems
	Complete Proofs
	Proofs for Section 3.1
	Proofs for Section 3.2
	Lt() is monotonically non-increasing as t
	t-SAM prefers flatter models as t increases
	Proof for Theorem 2

	Additional Experimental Details
	Hyperparamter Tuning
	Additional Results
	Naive Sampling


