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In this supplementary material, we present additional implementation details for the algorithm, proof
of theorems, and additional figures for simulations and real data analysis.

A Additional details for the algorithm

A.1 Estimation of the main effect

We briefly discuss how to obtain the estimation of the main effect function M0pZq based on the
weighted parametric regression or nonparametric regression models. By the identification condition
in model (1), we have

M0pZq “

řM
a“1 ErY |Z,A “ as

M
“ Er

Y

MppA|Zq
|Zs.

For parametric models, we assume the linear main effect M0pZq “ Z⊺η where η P Rp. Then,
similar to [1] and [2], η can be estimated by the following ℓ1-penalized inverse-probability weighted
regression problem:

min
η

#

En

„ˆ

Y

MppA|Zq
´ Z⊺η

˙2ȷ

` λM0
}η}1

+

,

where the tuning parameter λM0
can be selected using cross validation.

For nonparametric regression, we follow [3] to divide the training data into M folds based on the
assigned treatment. Then pErY |Z,A “ as is obtained from the regression forest [4] on Y „ Z with
the dataset tpyi, ziq : ai “ au. Finally, xM0pZq “

ř

aPA
pErY |X,A “ as{M . We refer to [3] for

more discussions about the case of misspecifying the main effect, and the corresponding robust and
efficient method to solve the misspecification problem.
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A.2 Implementation details for the adaptive proximal gradient algorithm

Recall that U “ diagpX1,X2, . . . ,XM q P RnˆMp where Xa P Rnaˆp is the submatrix of X and
the observations in Xa are assigned to treatment a. Then we can rewrite Lnpβq “ 1

2}Uβ ´ ȳ}22
where ȳ P Rn is the vector of calculated residual. The gradient of Lnpβq can be directed calculated
by ∇Lnpβq “ U⊺pU⊺β ´ ȳq with Lipschitz constant ln “ λmaxpU⊺Uq where λmaxpU⊺Uq is the
maximum eigenvalue of U⊺U. In addition, we follow [5] to approximately calculate the proximal
operator of Pn by solving the dual problem of proxsnPn

pβq :“ argmin
sβ

␣

Pnpsβq ` 1
2sn

}sβ ´ β}22
(

for any updated β and the step size sn ą 0, with the accelerated projected gradient algorithm.

We use pβpiq to denote the estimation of β in the i-th iteration. Due to the usage of proximal gradient
descent algorithm, the time and space complexities for our algorithm are both Opn2q, where n is the
training sample size. The main steps of the proposed algorithm for SCAF are summarized as below.
In particular, the experiments were run on a Linux-based computing server.

Algorithm 1: SCAF

Step 1: Sort the observations based on the assigned treatment order.
Step 2: Remove the main effect M0pZq and get residual ȳ.
Step 3: Implement group lasso to identify heterogeneous variables X from Z.
Step 4: Use adaptive fast proximal gradient algorithm to solve problem (6) of the main paper:

(1) Obtain the initial point βp0q from Step 2 and set the desired tolerance ϵ0 ą 0;
(2) Compute the Lipschitz constant ln “ λmaxpU⊺Uq and set the step-size sn “ 1{ln, t0 “ 1;
(3) Let pβp0q :“ βp0q and set ωp0q

l,t :“ mintBω, 1{} pβ
p0q

l ´ pβ
p0q
t }1u for P p0q

n pβq pl, t P Aq;
(4) For i “ 0, 1, . . . , imax, do:

a. Compute βpi`1q « prox
snP

piq
n

`

pβpiq ´ sn∇Lnp pβpiqq
˘

[5];
b. Update ti`1 :“ p1 `

a

1 ` 4t2i q{2;
c. Perform FISTA [6] with pβpi`1q :“ βpi`1q `

ti´1
ti`1

pβpi`1q ´ βpiqq;

d. If } pβpi`1q ´ pβpiq} ď ϵ0, then end the loop;
e. Update ω

pi`1q

l,t :“ mintBω, 1{} pβ
pi`1q

l ´ pβ
pi`1q
t }1u for P pi`1q

n pβq pl, t P Aq;
(5) End of the main loop.

Step 5: Obtain the estimated ITR pDpxq P argmaxaPA x⊺
pβa for x P X .
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B Proof of theorems

B.1 Proof of Theorem 1

Note that under the true group structure, we have

sy “ Hα0 ` ϵ.

Since pαor “ pH⊺Hq´1H⊺
sy, we have

pαor ´ α0 “ pH⊺Hq´1H⊺ϵ.

So,
›

›

pαor ´ α0
›

›

8
ď
›

›pH⊺Hq´1
›

›

8
}H⊺ϵ}8 .

We will bound
›

›pH⊺Hq´1
›

›

8
and }H⊺ϵ}8 respectively.

First,
›

›pH⊺Hq´1
›

›

2
“

b

λ2
max

`

pH⊺Hq´1
˘

“
1

λmin
`

H⊺H
˘

ď C´1
1 N´1

min,

where the inequality is given by Assumption 2. Hence, we have
›

›pH⊺Hq´1
›

›

8
ď
a

Knpn
›

›pH⊺Hq´1
›

›

2
ď
a

KnpnC
´1
1 N´1

min.

Second, for }H⊺ϵ}8, denote Hj as the j-th column of H. We have

Pr
`

}H⊺ϵ}8 ą C
a

n log n
˘

ď

Knpn
ÿ

j“1

Prp|H⊺
j ϵ| ą C

a

n log nq

ď

Knpn
ÿ

j“1

Prp|H⊺
j ϵ| ą C}Hj}2

a

log nq

ď 2Knpn expp´c1C
2 log nq “ 2Knpnn

´c1C
2

,

where the second and third inequalities come from }Hj}2 ď
?
n, Assumptions 1 and 3.

Combining both parts and let C “ c
´1{2
1 complete the proof.

˝

B.2 Proof of Theorem 2

We follow the proof framework of [7]. Denote MG Ă RMnpn to be parameter space that has true
group structure, i.e., MG “

␣

β P RMnpn , s.t., βi “ βj for i, j P Gk, 1 ď k ď K
(

. Define the
following two operators. (a) T : MG Ñ RKnpn and T pβq is the Knpn-dimensional vector whose
k-th pn-dimensional vector is the common value of βi for i P Gk. (b) T˚ : RMnpn Ñ RKnpn and

T˚pβq “

"

ř

iPGk
βi

|Gk|

*Kn

k“1

.

In particular, the operator T will extract the distinct values of β P MG . For any given vector
β P RMnpn , the operator T˚ will construct a corresponding vector T˚pβq that belongs to P MG by
taking the averaging value among the treatments within the same group. Then we can check that for
β P MG , T pβq “ T˚pβq. For any β P RMnpn , denote β˚ “ T´1T˚pβq P RMnpn to be the vector
expanded from T˚pβq according to the true group structure.

Consider the following neighborhood of β0:

Θn “
␣

β, s.t.,
›

›β ´ β0
›

›

8
ď ϕn

(

,
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where ϕn is defined in Theorem 1. From Theorem 1, we know that there exists an event E1 where
PrpE1q ě 1 ´ 2Knpn{n, such that, conditional on E1, we have pβor P Θn. Now we aim to prove
the following two arguments.

(1) For any β P Θn such that β˚ ‰ pβor, we have Qnpβ˚;λnq ą Qnppβor;λnq.

(2) There exists another event E2 where PrpE2q ě 1 ´ 2Mnpn{n, such that, conditional on the
event E1 X E2, we have Qnpβ;λnq ě Qnpβ˚;λnq for any β P Θn.

If (1) and (2) hold, then we have, for any β P Θn, conditional on E1 X E2,

Qnpβ;λnq ě Qnpβ˚;λnq ą Qnppβor;λnq.

In other words, the oracle estimator pβor is the strictly local minimizer of Qnpβ;λnq in the neighbor-
hood Θn with probability greater than 1 ´ 2pKnpn ` Mnpnq{n when n is sufficiently large. Then
the results follow.

Now, we start to prove (1) and (2).

Proof of (1): For any β P Θn, denote T´1T˚pβq “ β˚ “ pβ˚
1 , . . . ,β

˚
Mn

q⊺ P MG and denote
T˚pβq “ α “ pα1, ¨ ¨ ¨ ,αKnq⊺. Note that the oracle estimator is the unique minimizer of the L2

loss, which is the first part of Qnpβ;λnq. Hence, we can only prove that for any β˚ P Θn X MG ,
the penalty term

ÿ

1ďlătďMn

pλn
p}β˚

l ´ β˚
t }1q “

ÿ

1ďkăk1ďKn

|Gk||Gk1 |pλn
p}αk ´ αk1 }1q,

is a constant. To prove that, based on Assumption 4, we can only show that }αk ´αk1 }1 ě a
2λn for

any k ‰ k1. Note that

}αk ´ αk1 }1 ě }αk ´ αk1 }8 ě }α0
k ´ α0

k1 }8 ´ 2
›

›α ´ α0
›

›

8

“ }α0
k ´ α0

k1 }8 ´ 2 sup
1ďkďKn

›

›

›

›

›

ÿ

iPGk

βi ´ β0
i

|Gk|

›

›

›

›

›

8

ě }α0
k ´ α0

k1 }8 ´ 2 sup
1ďkďKn

sup
iPGk

›

›βi ´ β0
i

›

›

8

ě }α0
k ´ α0

k1 }8 ´ 2
›

›β ´ β0
›

›

8

ě bn{pn ´ 2ϕn ě aλn ´ 2ϕn "
a

2
λn (By Assumption 5).

Hence, the result follows.

Proof of (2): Recall the definition of Lnpβq in (7) and recall that

U “

¨

˚

˚

˝

X1

X2

. . .
XM

˛

‹

‹

‚

nˆMp

.

For any β P Θn, we have

Qnpβ;λnq ´ Qnpβ˚;λnq “ Lnpβq ´ Lnpβ˚q
looooooooomooooooooon

Γ1

`
ÿ

1ďlătďMn

pλnp}βl ´ βt}1q ´
ÿ

1ďlătďMn

pλnp}β˚
l ´ β˚

t }1q

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Γ2

.

By Taylor expansion,
Γ1 “ ´

“

U⊺ȳ ´ U⊺Usβ
‰⊺

pβ ´ β˚q,

where sβ “ ξβ ` p1 ´ ξqβ˚ and ξ P p0, 1q. For the gradient part, let

w “ pw1,w2, . . . ,wMnq⊺ :“ U⊺ȳ ´ U⊺Usβ,

where wm P Rpn for any m “ 1, . . . ,Mn. Then

Γ1 “ ´w⊺pβ ´ β˚q
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“ ´

Kn
ÿ

k“1

ÿ

iPGk

ÿ

jPGk

w⊺
i pβi ´ βjq

|Gk|

“ ´

Kn
ÿ

k“1

ÿ

iPGk

ÿ

jPGk

pwj ´ wiq
⊺pβj ´ βiq

2|Gk|

“ ´

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

pwj ´ wiq
⊺pβj ´ βiq

|Gk|

ě ´

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

}wj ´ wi}8}βj ´ βi}1

|Gk|

ě ´

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

2}w}8}βj ´ βi}1

|Gk|
.

Note that based on the definition of w, we have
}w}8 ď }U⊺Upβ0 ´ sβq}8 ` }U⊺ϵ}8

ď OpKnpnϕnq ` }U⊺ϵ}8.

Similar to the previous proof, we have Pr
`

}U⊺ϵ}8 ď Op
?
n log nq

˘

ě 1 ´ 2Mnpn{n. Hence, we
have

Γ1 ě ´

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

Op
?
n log nq}βj ´ βi}1

|Gk|
,

with probability at least 1 ´ 2Mnpn{n.

For Γ2, note that for treatments i, j that belong to two different groups Gk and Gk1 , we have

}βi ´ βj}1 ě }βi ´ βj}
8

ě
›

›β0
i ´ β0

j

›

›

8
´ 2

›

›β ´ β0
›

›

8
ě bn{pn ´ 2ϕn ě aλn ´ 2ϕn "

a

2
λn.

In addition, since β P Θn, we have β˚ P Θn as well. Hence, with similar derivations, we have
}β˚

i ´ β˚
j }1 " a

2λn. Based on Assumption 4,
ÿ

iPGk,jPGk1 ,k‰k1

pλn
p}βi ´ βj}1q ´

ÿ

iPGk,jPGk1 ,k‰k1

pλn
p}β˚

i ´ β˚
j }1q “ 0

Therefore, only the treatments that belong to the same group contribute to Γ2. According to the
same calculation in the proof of Theorem 2 from [7], we have

Γ2 “

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

pλnp}βi ´ βj}1q ´

K
ÿ

k“1

ÿ

i,jPGk,iăj

pλnp}β˚
i ´ β˚

j }1q

ě

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

p1
λn

p}sβi ´ sβj}1q}βi ´ βj}1.

Combining the bound for Γ1 and Γ2, we have
Qnpβ;λnq ´ Qnpβ˚;λnq “ Γ1 ` Γ2

ě

Kn
ÿ

k“1

ÿ

i,jPGk,iăj

ˆ

p1
λn

p}sβi ´ sβj}1q ´
Op

?
n log nq

|Gk|

˙

}βi ´ βj}1.

Note that }sβi ´ sβj}1 ď }sβi ´ β0
i }1 ` }sβj ´ β0

j }1 ď 2ϕn. Hence, based on Assumption 4,
p1
λn

p}sβi ´ sβj}1q ě Op
?
n log nq{ inf1ďkďKn

|Gk|. This completes the proof. ˝

C Additional Figures

D PDX Data

The PDX data we used in real data analysis can be downloaded from https://www.tandfonline.
com/doi/suppl/10.1080/01621459.2020.1828091?scroll=top.
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Figure C.1: Boxplots of misclassification rate based on the testing data in simulations.
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Figure C.2: Ratio of recovering the true group structure among 200 replications in simulations.
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Figure C.3: Boxplots of empirical value for SCAF (with/without group-lasso step) in Scenario 1.
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Figure C.4: Path of empirical value on the testing data as λ increases in PDX study. The red vertical dotted
lines show the best tuned λ using cross-validation.
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