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In this supplementary material, we present additional implementation details for the algorithm, proof
of theorems, and additional figures for simulations and real data analysis.

A Additional details for the algorithm

A.1 Estimation of the main effect

We briefly discuss how to obtain the estimation of the main effect function My(Z) based on the
weighted parametric regression or nonparametric regression models. By the identification condition
in model (1), we have

M _a
Mo(z) - 2= ER A g E )

For parametric models, we assume the linear main effect My(Z) = ZTn where n € RP. Then,
similar to [[] and [2], 1 can be estimated by the following /1 -penalized inverse-probability weighted

regression problem:
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where the tuning parameter Az, can be selected using cross validation.

For nonparametric regression, we follow [3] to divide the training data into M folds based on the
assigned treatment. Then E[Y|Z, A = a] is obtained from the regression forest [8] on Y ~ Z with
the dataset {(y;, z;) : a; = a}. Finally, ]\//_70(2) = D ucA E[Y|X,A = a]/M. We refer to [3] for
more discussions about the case of misspecifying the main effect, and the corresponding robust and
efficient method to solve the misspecification problem.
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A.2 Implementation details for the adaptive proximal gradient algorithm

Recall that U = diag(X1, Xs,...,Xya) € R"*MP where X, € R™*P is the submatrix of X and
the observations in X, are assigned to treatment a. Then we can rewrite L,,(3) = [ UB — g3
where 3 € R™ is the vector of calculated residual. The gradient of L,,(3) can be directed calculated
by VL, (3) = UT(UTB — §) with Lipschitz constant I,, = A\pax(UTU) where A\pax (UTU) is the
maximum eigenvalue of UTU. In addition, we follow [8] to approximately calculate the proximal
operator of P, by solving the dual problem of prox, p (8) := argming {P,(83) + %ﬂ 18— B3}
for any updated 3 and the step size s,, > 0, with the accelerated projected gradient algorithm.

We use ﬁ (1) to denote the estimation of 3 in the i-th iteration. Due to the usage of proximal gradient
descent algorithm, the time and space complexities for our algorithm are both O(n?), where n is the
training sample size. The main steps of the proposed algorithm for SCAF are summarized as below.
In particular, the experiments were run on a Linux-based computing server.

Algorithm 1: SCAF

Step 1: Sort the observations based on the assigned treatment order.
Step 2: Remove the main effect Mo (Z) and get residual 7.
Step 3: Implement group lasso to identify heterogeneous variables X from Z.
Step 4: Use adaptive fast proximal gradient algorithm to solve problem (6) of the main paper:
(1) Obtain the initial point B© from Step 2 and set the desired tolerance eg > 0;
(2) Compute the Lipschitz constant I, = Amax(UTU) and set the step-size s, = 1/l,, to = 1;
3) Let B3 := B and set “’L(,? := min{B.,, 1/HB§0> =B |1} for P (B) (1, € A);
@) Fori=0,1,...,%inax, do:
a. Compute B0+Y ~ Prox_ . (,@(i) — anLn(,@(i))) [8];
b. Update t;41 := (1 + 4/1 +721t?)/2;
c. Perform FISTA [6] with 80+1) := gli+1) 4 F= (BT - g
d. If | B¢ — B@|| < €, then end the loop;
e. Update wl(f;rl) := min{Be,, 1/|B"™ — B"V|1} for P (8) (1,t € A);
(5) End of the main loop.
Step 5: Obtain the estimated ITR D(z) € arg maxae @' Baoforxe X.




B Proof of theorems

B.1 Proof of Theorem 1

Note that under the true group structure, we have
Y= Ho' + €.
Since @°" = (HTH) 'HT%, we have
o’ —a® = (H'H) 'He.
So,
e —a®| < |HTH)Y|  [HTe|,, .
We will bound H(HTH)*HOO and |[HTe|, respectively.
First,
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where the inequality is given by Assumption 2. Hence, we have
(BTH) |, < /R |(HTH) ™, < /Koo G N

Second, for [HTe|,, denote Hj as the j-th column of H. We have
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where the second and third inequalities come from | H, |2 < 4/, Assumptions 1 and 3.

1/

Combining both parts and let C' = ¢; 2 complete the proof.

B.2 Proof of Theorem 2

We follow the proof framework of [Z]. Denote Mg < RM»Pn to be parameter space that has true
group structure, ie., Mg = {/6 € RI\/["p", S.t., ﬁl = ,Bj for Z,j € gkal <k < K} Define the
following two operators. (a) T : Mg — RE»Pn» and T(3) is the K,,p,,-dimensional vector whose
k-th p,,-dimensional vector is the common value of 3; for i € Gj,. (b) T* : RMnPrn — REnP» gpd

In particular, the operator 1" will extract the distinct values of 3 € Mg. For any given vector
B € RMnPn the operator T* will construct a corresponding vector 7% (3) that belongs to € Mg by
taking the averaging value among the treatments within the same group. Then we can check that for
Be Mg, T(B) = T*(B). Forany B € RM»Pn denote B* = T—1T%(3) € RM»P~ to be the vector
expanded from T*(3) according to the true group structure.

k=1

Consider the following neighborhood of 3°:
@n = {/6’ S't'a HIB 7ﬁ0Hm < ¢n}7



where ¢,, is defined in Theorem 1. From Theorem 1, we know that there exists an event F'; where

Pr(Ey) = 1 — 2K,p,/n, such that, conditional on E;, we have ﬁ‘” € ©,. Now we aim to prove
the following two arguments.

(1) For any 3 € ©,, such that 3* # ,@‘"’, we have Q,,(8*; \,) > QH(BOT; An)-

(2) There exists another event F5 where Pr(FE2) = 1 — 2M,,p,,/n, such that, conditional on the
event B N Es, we have Q,,(3; A\,) = Q. (8%; \,,) for any 8 € O,,.

If (1) and (2) hold, then we have, for any 3 € O,,, conditional on F; n Fs,
Qn(BiAn) = Qn(B*: An) > Qu(B; M),

In other words, the oracle estimator ﬁor is the strictly local minimizer of Q,,(3; A,,) in the neighbor-
hood ©,, with probability greater than 1 — 2(K,,p,, + M, p,)/n when n is sufficiently large. Then
the results follow.

Now, we start to prove (1) and (2).

Proof of (1): For any B € ©,, denote T-1T*(B8) = 8* = (B},... B3, )T € Mg and denote
T*(8) = a = (a1, -+ ,ak,,)T. Note that the oracle estimator is the unique minimizer of the Lo
loss, which is the first part of @,,(3; \,,). Hence, we can only prove that for any 3* € ©,, n Mg,
the penalty term

> e B =B = Y 1GklIGulpa, (lew — e ln),

1<i<t<M, 1<k<k’'<K,

is a constant. To prove that, based on Assumption 4, we can only show that |a, — apr|ly = § A, for
any k # k’. Note that

lok — el = e — apoo = 0] — ] — 2@ = |
Bi — Y
€0k |gk|

> Hag - ag/Hoo —2 sup sup Hﬁl - ﬁ?”w
1<k<Kn i€Gr

= Ha(,i - a,?,/Hoo —2 sup
1<k<K,

—

> e — e — 28 -8°,

= bn/pn —2¢y = aXp, — 2¢, » g/\n (By Assumption 5).
Hence, the result follows.
Proof of (2): Recall the definition of L,,(3) in (7) and recall that

X,
X,

X]W nxMp

For any 3 € ©,,, we have

Qn(BiAn) = Qn(B* M) = Lu(B) — Ln(B*)+ > pa (B =Bel)— D>, pa(I8F = BFlh)-
—_—

r 1<i<t<M, 1<i<t<M,
1

>

I
By Taylor expansion,
I =-[UTy - UTUB|"(8 - %),
where 8 = £8 + (1 — €)B* and € € (0, 1). For the gradient part, let
w = (wy,ws,...,wy, )T :=UTy - UTUB,
where w,, € RP» forany m = 1,..., M,,. Then

[ = —w'(8-p%)
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Note that based on the definition of w, we have
lwleo < [UTU(Bo — B)|co + [UT €0
< O(Kppntn) + [UTe| oo

Similar to the previous proof, we have Pr(|UTe|,, < O(y/nlogn)) =1 — 2M,,p,/n. Hence, we

have X«
3 O(vnlogn)|B; — Bil
==y > G J ,

k=11,jeG),i<j
with probability at least 1 — 2M,,p,,/n.

For I'y, note that for treatments 4, j that belong to two different groups Gy, and G/, we have
a
ngz - ﬁjHl = H/@z - /Bj ”OO = Hﬁ? - /3?”00 -2 H/@ - ﬁon = bn/pn - 2¢n = a)\n - 2¢n > 5)\n~

In addition, since 3 € ©,,, we have 3* € O,, as well. Hence, with similar derivations, we have
|1Bf — BFll1 » §A,. Based on Assumption 4,

> BBy - > e B - By =0
1€Gk,JEG s  k#K 1€Gy,jEG ) k#K!
Therefore, only the treatments that belong to the same group contribute to I's. According to the
same calculation in the proof of Theorem 2 from [[Z], we have

K, K
=Y Y o8-8 - Y w08 -8
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K,
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k=114,j€Gy,i<j
Combining the bound for I'; and I'y, we have

Qn(ﬁa /\n) - Qn(/@*y /\n) = Fl + FQ
KVL / _ _ O 1
Y - I

k=14,5€Gk,i<j |G|

Bi — B8 — Bil1-

Note that |8; — B;|1 < 8 — B + |18; — 891 < 2¢n. Hence, based on Assumption 4,
p’An(HBZ — Bjlli) = O(y/nlogn)/infi<k<k, |Gx|. This completes the proof. o

C Additional Figures

D PDX Data

The PDX data we used in real data analysis can be downloaded from https://www.tandfonline.
com/doi/suppl/10.1080/01621459.2020.18280917scroll=top.
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Figure C.1: Boxplots of misclassification rate based on the testing data in simulations.
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Figure C.2: Ratio of recovering the true group structure among 200 replications in simulations.

Comparison for Group-Lasso Step
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Figure C.3: Boxplots of empirical value for SCAF (with/without group-lasso step) in Scenario 1.
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Figure C.4: Path of empirical value on the testing data as A increases in PDX study. The red vertical dotted
lines show the best tuned A using cross-validation.
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