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Abstract
We are often interested in decomposing complex, structured data into simple components that ex-
plain the data. The linear version of this problem is well-studied as dictionary learning and factor
analysis. In this work, we propose a combinatorial model in which to study this question, motivated
by the way objects occlude each other in a scene to form an image. First, we identify a property we
call “well-structuredness” of a set of low-dimensional components which ensures that no two com-
ponents in the set are too similar. We show how well-structuredness is sufficient for learning the set
of latent components comprising a set of sample instances. We then consider the problem: given a
set of components and an instance generated from some unknown subset of them, identify which
parts of the instance arise from which components. We consider two variants: (1) determine the
minimal number of components required to explain the instance; (2) determine the correct expla-
nation for as many locations as possible. For the latter goal, we also devise a version that is robust
to adversarial corruptions, with just a slightly stronger assumption on the components. Finally, we
show that the learning problem is computationally infeasible in the absence of any assumptions.
Keywords: dictionary learning, learning structure from data, semi-random model

1. Introduction

The explosion of machine learning and statistical techniques for high-dimensional data has been
met with the desire to find small but close-to comprehensive explanations for vast data. Indeed,
we are often interested in developing good representations for complex data as sparse combinations
of latent factors. Well-studied versions of this problem include matrix factorization, dictionary
learning, and topic modeling. Most of these assume that the sparse combination of factors occurs
linearly. However, in practice, many settings involve non-linear combinations of features. For
example, an image can be described by referring to the objects in it and their locations. However,
the objects are not combined linearly to produce the images. Rather, objects may be placed atop
one other, causing occlusions. Similarly, in a musical medley (or a collage of images), we cut up
pieces of the original objects (songs or images, respectively) and paste them together. These settings
motivate studying dictionary learning in combinatorial and non-linear settings.

In this work, we study one such setting, inspired by one-dimensional images. So-called “im-
ages” are generated by first choosing components we call “objects” (analogous to the atoms of the
dictionary in traditional dictionary learning) from a set, placing the chosen objects onto a canvas
at chosen locations, and allowing objects placed more recently (“in front”) to occlude those placed
earlier (“in the back”). We refer to the canvas at the end of this process as the “image.” Our goal is
to give algorithms and guarantees for discovering the underlying objects from a collection of sam-
ple images. Then, we also wish to explain the composition of an image based on the learned set of
objects, namely given an image, we would like to recover which objects are in it and where.
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While we refer to simple components as “objects” and composite instances as “images,” we
want to emphasize that our goal is not to precisely model real-world image generation but rather
to provide a combinatorial setup in which to theoretically study dictionary learning; images simply
prove a familiar case where such an abstraction applies.

Additionally, we investigate adversarial robustness: knowing that the data were generated from
fixed underlying factors through some process might help us better detect and correct adversarial
perturbations. Our model provides a controlled setting in which to investigate adversarial robustness
in this sense; we provide some results toward this.

Our main contributions are:

• we define a model for generating complex (“image”) data from a small set of factors (“ob-
jects”) combined in a non-linear way.

• we identify properties that suffice for learning in this model.
• we give algorithms to efficiently learn underlying factors (i.e., recover the dictionary) in var-

ious settings.
• we give algorithms to efficiently infer which objects out of a learned or otherwise specified

set comprise a new image (we call this task “segmentation”). As part of this, we also address
noise-tolerance, giving a few results about adversarial robustness in this model.

The rest of the paper is organized as follows. First, we summarize related work from the several
areas we draw on. Next, in Section 2, we set up notation and precisely define the model which
we study. Subsequently, we study how many samples are required to decompose “images” into
“objects” in Section 3. Finally, in Section 4 we consider the segmentation problem under both
the objective of determining a minimal explanation (Section 4.1) and the objective of getting a
correct explanation on most of the image (Sections 4.2, 4.3). The lattermost section considers an
adversarially noisy case.

Related Work We briefly describe work related to ours in several different fields. For a more
thorough discussion, please see Appendix A.

The issue of finding a small number of explanatory features for high-dimensional data is well-
studied. Some particular framings of this problem include matrix factorization, for which principal
components analysis (PCA) is often used (Karl Pearson, 1901; Hubert et al., 2000), dictionary learn-
ing, framed slightly more abstractly (Kreutz-Delgado et al., 2003), and factor analysis (Harman,
1960). While much of the work traditionally done in this area focuses on the linear case, there have
been several works that address non-linear settings (Balcan et al., 2015, 2020; Mairal et al., 2009;
Papyan et al., 2017). Several works have explored using the aforementioned methods to promote
adversarial robustness (Bhagoji et al., 2018; Gupte et al., 2022). While much of existing theory in
adversarial robustness is in classification, practical interest is often in segmentation.

Another line of work related to ours is that of factorial learning (e.g. Ghahramani, 1994) and
layered models (e.g. Wang and Adelson, 1994). These decompose realistic images via inference
over graphical models in contrast to our study of a stylized model where we prove guarantees.

Our work also draws heavily on problems studied in and techniques from computational biology.
A well-studied problem in gene sequencing is reconstructing a string based on having seen recurring
pieces of it (Motahari et al., 2013). We adapt such a shotgun sequencing algorithm for our use, as it
will be applicable throughout Section 3.
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2. Notation, Preliminaries, and Definitions

2.1. Notation

We study images that are produced on one-dimensional canvases of size d , which should be thought
of as large. Formally, a canvas is a vector of pixels, where a pixel is an element of [c] , where c is the
number of colors. In the universe, there are m objects, of which k appear in any given image. We
think of k << m . However, just because there are few objects in any image doesn’t mean we get
to easily see all of them. The size of object i , si , might be up to a constant fraction of the size of
the canvas, so placing multiple objects into the canvas risks occlusion of one object by potentially
several others. In particular, objects that tend to appear in the background would rarely be visible in
full. Thus, the challenge of the learning part will be finding a set of pieces sufficient to reconstruct
each object and then combining them correctly. We name the bounds on si as si ∈ [smin, s]. Object
i , is in {0, 1, . . . , c − 1}si . In general, we suppose the background is a color distinct from the set
of colors used for objects. When we refer to subsections of a string, we use the notation σ[i : j] to
denote the indices from i to j, inclusive, of string σ .

Assumptions In several sections, we specify lower bounds on the object size required in terms
of the number of pixels required to uniquely identify an object (formally defined in the following
section). The canvas size d is much bigger than the size of signatures of objects (defined more
formally later but essentially capture the shortest unique strings in the image) w: namely, d > 8w .
Further, for learning, it is sufficient if an object is at most half the size of the canvas, i.e., s < d/2 .
For ease of notation, we let d′ = d+ s− 2 . Also, in Section 3.2, m · d′ must be bigger than a fixed
constant, but in Section 3.3, we need a stronger condition, with d′ > O(mk 2k) .

2.2. Structural Properties and Object Generation

Next, we specify our setting further by identifying a property of objects that is useful for the learning
task. We then show that random, and even semi-random, objects satisfy this property with high
probability. This property (Defn. 1) helps guarantee that no two objects are “too similar,” similar
to incoherence assumptions in statistics, and so objects can be identified from signatures, pieces
large enough to be uniquely associated with them. The stronger version (Defn. 2) is useful when
adversarial corruptions are present.

Definition 1 (w-well-structured) We call a set of m objects over the colors {0, 1, . . . , c − 1}
w-well-structured if: (1) Each object oi has length at least w ; (2) No two objects have identical
substrings of length w ; and (3) No object has two identical substrings of length w .

Definition 2 (ϵ-strongly, w-well-structured) We call a set of m objects ϵ-strongly w-well-structured
if: (1) Each object oi has length at least w ; (2) No two objects have substrings of length w that
match in 1 − ϵ fraction of their pixels; (3) No object has two substrings of length w that match in
1− ϵ fraction of their pixels.

When it is clear from context what w is, we may elide it. These properties are natural, as objects
generated randomly or semi-randomly satisfy them. We give the statement for random objects; see
Appendix B.2 for the lemma for semi-random objects and proofs for both.
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Lemma 3 [Random Objects are w-Well-Structured whp] A set of m objects, each sampled uni-
formly at random from {0, 1, . . . , c− 1}si , and s := maxi si is w-well-structured with probability
at least 1−3m2s2/cw . In particular, w = O(logms) is sufficient so that the m objects are w-well-
structured with probability 1− o(1).

When the background is a single color, we define a b-padding of an object as an extension of
the object created by adding b pixels of background color on both left and right sides.

2.3. Image Generation

Next, we address how to generate images of size d from these objects. In particular, we follow the
following general high-level steps. In this section, we describe different models corresponding to
different ways to make the choices below.

1. Set background to a color distinct from the colors in the objects (Defintion 4)1.
2. Select k objects in the uniform model (Definition 6).
3. Select k indices randomly, representing locations in image for placing objects either according

to the closed room (Definition 7) or open room (Definition 8) model.
4. Select depth index as determined by the depth model (Definitions 9 and 10).
5. Generate image by scanning left to right and, for each location, set the color of this position

in the image to the color of the corresponding position in the topmost object. Equivalently,
compute the view operator of the scene S given by the above, both defined at the end of this
section.

In the first step above, we must choose how to set the background of an image.

Definition 4 (Distinct Background) In the distinct background model, the background of the im-
age is a value not in the alphabet [c] of which the objects are composed.

Definition 5 (w-Well-Structured Background) In the well-structured background model, no sub-
string of length w of the background matches a different substring of length w in the background or
in any of the m objects.

Next, we define a uniform model for how objects are chosen to be in the image.

Definition 6 (Uniform Model) In the uniform model, for each image, the set of objects in it is
chosen uniformly over the

(
m
k

)
sets of k-object subsets of the m total objects.

In the third step, we choose locations to place the objects on the canvas. Either all objects in the
frame must be within the frame, or objects in the frame are allowed to spill off the edges. Formally:

Definition 7 (Closed Room Model) In the closed room model, all objects begin and end within
the canvas of size d. Formally, the left endpoint of an object oi is uniformly distributed over 0 to
d− si .

1. We could also consider the background to be w-well-structured along with the set of objects (Defintion 5); where
results can be extended to this case, we note the differences in argument when they arise.
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We call it this because it is reminiscent of items being placed within a room that is fully pho-
tographed, so objects are limited to not bleeding out of the scope of the camera. On the other hand,
the canvas could be “open” at the boundaries:

Definition 8 (Open Room Model) In the open room model, objects can begin and end off the
canvas of size d and we only consider what is visible in those d locations. Formally, the left endpoint
of an object oi is uniformly distributed over −si + 1 to d.

Learning is similar in both models, so there we focus on the open room model, but in the
inference problem, the kind of room matters. Finally, we describe the ways in which we choose the
ordering of objects within the image. Locations are always chosen uniformly at random horizontally,
but the depth at which an object is placed could involve ordering rules.

Definition 9 (Fully Random Model: Random Horizontal; Random Depth) Objects are placed
in random depth order on the canvas, at uniformly random positions left-to-right.

Definition 10 (Partially Random Model: Random Horizontal; Arbitrary Depth) The depth of
objects placed on the canvas is given by arbitrary ordering constraints, but the horizontal placement
of the objects is uniformly random.

This more closely reflects what we might see in real life: certain objects may more consistently
appear in the background – such as mountains or tall buildings.

The motivation behind our generative model is to study a form of compression or dimensionality
reduction via sparse dictionary learning. Indeed, the image generation framework described here
imposes rich structure on the space of images: if the images were completely random, there would
be cd possible images, but here there are only

(
m
k

)
· k! · dk possibilities for a fixed set of objects.

Defining the “scene” and “view” To formally represent this procedure, we construct the matrix
S ∈ {[c] ∪ {b,⊥}}(k+1)×d , which will represent the scene comprised of the chosen objects. We
will then define a view operator that acts on a scene S to produce the image I that we study.

The matrix S is initialized with ⊥ everywhere and constructed as follows. Row k + 1 is filled
with the background chosen in step 1 above. Then, the objects are sorted based on the depths in
step 4 above. The object with highest depth is placed in row k , starting at its respective location as
chosen in step 3. This process is continued with the object with the lowest depth placed in the first
row of the matrix. This gives us the scene matrix S . Note that in the closed room model, each row
of the matrix S either has ⊥ at the start and end or the start or end of the object corresponding to
that row, whereas in the open room model, the first elements of a row of S might be from the middle
of an object, rather than ⊥ or the leftmost pixels of an object and likewise for the last elements of
the row.

Definition 11 For a sequence S = {(oi, li)}ki=1 where oi is the object, li is the location (left-
right), and the index in the sequence defines the depth, the operator scene(S) produces a matrix
by padding oi with ⊥ such that the string is d in length and oi begins at location li and places that
into the row i of the matrix.

With the matrix defined, we can now define the view operator. We scan the S by column. At
each column, we scan from top to bottom, picking out the first element that is not ⊥ and placing
that in the corresponding column of I .

5



BLUM RAVICHANDRAN

Figure 1: Object recovery from pieces: Due to objects obscuring each other, we cannot hope to
see all s pixels of the orange object at once, but so long as we see the blue pieces shown
in this figure, i.e., ones with at least w pixels overlap, we can reconstruct the object.

For instance, consider objects 10111 (at depth 1, at position 1) and 0001 (at depth 2, at position
4) and background b, b, b, b, b, b, b, b :

S =

1 0 1 1 1 ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 0 0 0 1 ⊥
b b b b b b b b


Now, we take view(S) =

(
1 0 1 1 1 0 1 b

)
.

2.4. Formal Statement of the Problem

Learning: Given a set of S images, generated independently according to the process described
in Section 2.3, reconstruct the set of m objects that generated them.

Inference: Given a set of m objects and a new image known to be generated according to the
process described in Section 2.3, recover an explanation for the image, i.e., identify which pixel of
which object produced each pixel of the image, subject to constraints of the generative process.

2.5. Sequencing

At a high level, our approach to learning objects from images will entail picking out pieces of images
we can be reasonably certain come from a single object (we will call each of these a “segment”)
and then stitching them together to recover that object. Reconstructing a string on the basis of
having seen pieces of it is a well-studied problem, particularly in gene sequencing (Motahari et al.
(2013)). We adapt such a shotgun sequencing algorithm for our use and present it here, as it will be
applicable throughout Section 3.

Assume our set of objects is w-well-structured. Suppose we are given a collection of segments,
each of length at least 2w such that each one is a substring of one of those objects and moreover, for
every object, every part of it has been seen by some segment in this set. We require adjacent pieces
from the image to have w pixels of overlap to uniquely identify which pieces to pair them with.
Thus, if the length of an object is s pixels, we require the specific s/w segments (see Figure 1).

Then we can use a greedy algorithm to stitch together pieces of length 2w arising from objects that
we find in the images to recover the full object. We search through the pieces we have collected to
find the two with the largest overlap. We join them and continue this repeatedly.
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The shotgun sequencing literature has shown that coverage is necessary and sufficient for re-
covery, i.e., seeing all pieces of the object with sufficient overlap between pieces suffices for recon-
structing the object from those pieces (Thm. 1 in Motahari et al. (2013)). The greedy algorithm
described above achieves this. Our proof of correctness relies on the sufficiency of coverage.

Algorithm 1 Sequence
1: Input: set of segments of objects, signature length w
2: objects stored← {}
3: while segments remain do
4: find two segments with longest overlap ≥ w pixels
5: merge them at the overlap and add to objects stored
6: end while
7: return objects stored

Proof of Correctness If the underlying objects are w-well-structured, and we have all required
pieces of size 2w to cover each object completely, then the sequencing algorithm will reconstruct
the objects exactly. This is because if w pixels are sufficient as a signature for the object, then any
set of ≥ w pixels that match between two strings must come from the same place in a single object.
Further, once exactly m pieces remain, we know that by well-structuredness, no two of them can
share more than w pixels and so no more merging will occur.

Sample Complexity By the argument above, it is clear that for well-structured objects, as long as
each object is covered, then this sequencing algorithm will recover the objects accurately. Thus, if
S samples suffice to cover the objects (and we will derive S for the various settings in the respective
sections), then S samples suffice for learning the objects.

3. Learning

In this section, we address learning. We start with a simplified setting, where the start and end of
objects are clearly marked, and we give an algorithm to learn the objects from a set of images and
analyze how big this set must be. Next, we show that we can get guarantees even without endpoint
markers when there are at most two objects in each image. Finally, having established much of the
necessary analysis, we extend this to a setting where there are up to k objects in each image, where
k is constant or grows sufficiently slowly with d (size of image). Here, we assume the background
is distinct. Further, we require that all objects in the set are of size at most s and at least O(w) . We
show in Appendix E that in the absence of any assumptions, the learning problem is NP-hard.

3.1. Learning in the presence of endpoint markers

Let us start by considering the case where every object comes with a clear and known left endpoint
and a clear, distinct, and known right endpoint marker. For example, if objects are fully composed of
red and blue, let each one have a yellow pixel appended to the left end and an orange pixel appended
to the right end.

Fully-Random Model As a warmup, we consider the Fully Random Model setting (Defn. 9)
where objects with endpoint markers are placed in random order front-to-back. In this case, we
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can be confident that at some point, each object will appear in the front. Since the left endpoint
and right endpoint are marked differently, seeing a left endpoint marker, followed by many pixels,
followed by a right endpoint marker implies we are seeing a full object. We simply wait to see all
objects whole. The probability of a fixed object appearing in front is k

m ·
1
k = 1/m , giving us that

in expectation, we require m samples to see it in the front. Using the coupon collector argument, if
we see Θ(m logm) samples, then with high probability, we will see each object in the front at least
once.

We see that solving the problem in the case where each object has endpoint markers and a non-
trivial chance of appearing at the front is actually quite simple. In the more general Partially Random
Model, when objects may not appear in the front at all, we may only ever see certain objects with
some amount of occlusion. Thus, one major part of the challenge arises from not seeing whole
objects at once, and the other will arise once we no longer have endpoint markers.

Partially-Random Model Next, we consider the Partially Random model (Defn. 10). Given
images, recovery of a list of objects essentially requires finding chunks that belong to a single object.
If a chunk is large enough, we can both uniquely identify it with an object (provided objects are well-
structured) and find overlap with a different chunk that belongs to the same object. Algorithm 2
orders and joins such chunks. In the following lemma (proven in Appendix C.1), we compute the
probability of seeing such a piece of interest.

Lemma 12 In the open room, uniform object selection, partially-random model, the probability of
seeing a given L-pixel segment of a given object (or even of an (L− 1)-padding of that object) in a
random image composed of k objects is at least

(
1− s+L−1

d′

)k−1 · d+1−L
d′ · k

m .

This lemma is central to analyzing how many samples we need for the learning problem. In
particular, we will use this lemma in the case where L = 2w , where w is the well-structuredness
parameter of the objects. In the following theorem, we analyze the number of samples required to
succeed in the reconstruction effort with high probability.

Algorithm 2 Recover Objects - With Endpoint Markers
1: Input: S samples, value L
2: chunks← split images at markers (keeping track of what came with what marker)
3: objects← items from chunks that start with a start marker and end with an end marker of

length ≥ L
4: object pieces← rest of the chunks
5: objects← objects∪SEQUENCE(object pieces) {SEQUENCE given in Algorithm 1}

6: return objects

Theorem 13 In the open room, uniform, partially-random model with endpoint markers and w-
well-structured objects, given S = Θ(ln(2ms/L)/a) samples, for a =

(
1− s+L−1

d′

)k−1·d+1−L
d′ ·

k
m

and L = 2w , Algorithm 2 reconstructs all objects accurately with probability 9/10 .

Proof Outline We show this theorem by first computing the probability of seeing a fixed L-pixel
string from an object in a fixed image (Lemma 12). Then, we compute the probability of seeing
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Figure 2: Process used to learn objects from images in the absence of endpoint markers: This
algorithm allows us to collect the pieces of length 4w that cover the orange object in
a redundant way. However, due to the risk of problematic overlaps we must discard a
length-w piece (blue) on either end. Even after this discard, the pieces (green) used for
sequencing must cover the object.

it in any image and apply a union bound. See Appendix C.2 for details. From Figure 1, we can
see that in this case, L = 2w suffices for both having sufficient overlap between pieces to run the
sequencing algorithm and each length-L segment being uniquely identified to an object.

Note that the quantity a drops exponentially with k, via the term (1 − (s + L − 1)/d′)k−1.
Therefore, if s + L is a constant fraction of d′, then the number of samples we need to observe ac-
cording to Theorem 13 will be exponential in k. Indeed, this exponential dependence is unavoidable
in the partially-random setting, because this is the sample size needed to see any given piece of an
object that only appears in the back of an image. This result would also extend to the case where
objects are ϵ, w-strongly-well-structured, and at most ϵ/2 fraction of the pixels are corrupted by an
adversary before an object is placed. Details are in Appendix C.2.1.

3.2. No endpoint markers: Two Objects per Image

In general, we might not have endpoint markers. To analyze the sample complexity in that case, we
first assume that there are at most two objects in an image. At a high level, our argument will be
that for an appropriate value of L, length-L strings that arise from a single object will occur much
more frequently than length-L strings that arise from pairs of overlapping objects when that overlap
occurs in the middle half of the string. Therefore, we can safely gather the frequently-occurring
length-L strings and use the middle L/2 portions of them in sequencing Algorithm 1 (Figure 2).

To aid in analysis of Algorithm 3, we define the notion of a problematic overlap:

Definition 14 (problematic overlap, 2 object case) A window of length L contains a problematic
overlap if it contains two objects and no background, and they overlap inside the middle L/2 pixels.
We call an L-pixel string a problematic overlap string if it can only arise via problematic overlaps.

9
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Algorithm 3 Learn Objects – No Endpoint Markers
1: Input: S samples, fraction τ , value L
2: object pieces← middle L/2 locations of every length-L string that appears at least τ · S

times and has no background
3: objects← SEQUENCE(object pieces) {SEQUENCE found in Algorithm 1}
4: for each object do
5: sleftend← leftmost w pixels
6: leftend← shortest string x in any image that has background to its left and sleftend

to its right
7: srightend← leftmost w pixels
8: rightend ← shortest string x in any image that has background to its right and

srightend to its left
9: append leftend to left of object and rightend to right of object

10: end for
11: return objects

Theorem 15 In the open room, uniform, partially-random model with w-well-structured objects,
each of length at most s and at least 4w, and 2 objects per image, Algorithm 3 with L = 4w recovers
all m objects with S = Ω(m ln(ms)) samples and τ = 1

16m with probability 9
10 .

Proof Outline To prove this, we must show three things.

1. Seeing a particular big chunk from one object in one image is likely. To argue about this,
we simply apply Lemma 12 to compute the probability of seeing a fixed string in a fixed
object, giving rise to Claim 25.

2. Seeing a particular big chunk consisting of two objects (i.e., problematic overlap string)
in a single image is unlikely. In order to reason about this, we define the notion of a prob-
lematic overlap (Definition 14). Further, we argue that any string that contains a problematic
overlap can only be generated in a small number of ways (Lemma 26). Finally, we use this
to bound the probability that a particular problematic overlap string appears in a particular
image, which we call pbad (Claim 27).

3. The separation between the aforementioned probabilities allows us to compute the sam-
ple complexity. In Claim 28, we define a quantity pmid , that upper bounds the probability
of seeing a problematic overlap string by a factor of 2 and lower bounds the probability of
seeing a good string, again by a factor of two. The Chernoff bound allows us to determine the
number of samples we require in order to see a sufficiently separation between the number of
copies of good strings (Lemma 29). Thus, we compute the total number of good strings (aris-
ing from one object, Claim 30) and bad strings (arising from two-object problematic overlaps,
Claim 31) and apply that lemma to get the theorem statement.

We need L to be large relative to w, since we must ignore the ends of the length-L string to
avoid including problematic overlap strings in the sequencing. Figure 2 justifies the use of L = 4w.
Finally, we also show that the set of samples contains all the information we need to recover the
ends and that the procedure in lines 4-10 of the algorithm recovers them. For the full proof, see
Appendix C.3.
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3.3. Extension of argument above for several objects in image

We now consider the more general case where we can have up to k objects in an image for some
given value k greater than 2. At a high level, our argument is as before. However, the major differ-
ence is that problematic-overlap strings (ones that were generated from combining two objects), can
now be generated by up to k objects. This increases our sample complexity. We once again assume
objects are at most s in size and w-well-structured, but now they must have length at least 6w k .

Theorem 16 In the open room, uniform, partially-random model with w-well-structured objects,
each of length at most s and at least 6wk , and k objects per image, Algorithm 3 with L = 8w k
and τ = k

O(m 2k)
recovers all m objects with S = Ω

(
2k m ln(ms)

)
samples with probability 9/10.

Proof Outline The first and third steps essentially carry over from the two object case, but analyz-
ing the influence of problematic overlap strings in this case is more involved. We start by extending
what it means to be a problematic overlap string to the many-object case:

Definition 17 (problematic overlap, general case) A window of length L contains a problematic
overlap if it contains no background and there is at least one overlap between two distinct objects
inside the middle L/2 pixels. We call an L-pixel string a problematic overlap string if the only ways
to generate it are via problematic overlaps.

Next, we show that any problematic overlap string of sufficient length must have at least two
objects in the same place as a reference version of that string (Lemma 33). Given this, we reason
about a sufficient event for seeing such a problematic overlap string in a fixed image in Claim 34.
This, in turn, allows us to apply the same Chernoff analysis as before, albeit with a slightly different
union bound this time, as there are more problematic overlap strings in this case, in order to get the
stated sample complexity. Full proof in Appendix C.4.

4. Inference

In this section, we discuss inference, providing algorithms for three different settings. Recall the
inference task: given the set of objects and given an image, we must determine which objects were
placed in what order and where on the canvas to generate this image. We consider two cases. First,
if the objects are arbitrary (i.e., not necessarily w-well structured), then there could be multiple
ways to generate any given image; we here will seek to reconstruct it with the fewest number of
objects (Section 4.1). In this case, we consider a noiseless image generation process. Second,
when we do have that objects are w-well-structured, we can aim for the stronger goal of getting
the correct explanation for all but a small number of pixels. Here, we consider both noiseless
(for which w-well-structuredness suffices, Section 4.2) and noisy (for which we need ϵ-strongly,
w-well-structuredness, Section 4.3) image generation. The problem of inference in these settings
mirrors that of segmentation, studied in computer vision: for each pixel, we must determine its
source object. Where the learning task corresponded to learning dictionary atoms, the inference task
corresponds to finding “weights” for how the atoms are combined to give rise to a given instance.

11
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4.1. Arbitrary Objects

Here, we consider the setting where the objects are (1) all of the same size, s, (2) known, and (3)
arbitrarily generated, and our goal is to find the fewest number of objects required to generate the
image. Formally, we want to find S solving the problem below:

min |S| s.t. view(scene(S)) = I .

Observe that there is a trivial solution that takes time O(dk ·mk): simply enumerate the different
images possible by placing one object, or two objects, or three objects, etc., into the canvas (or
extended canvas for open room) until the first match is found. However, if k ̸= O(1) , then this is
computationally prohibitive. We provide a dynamic programming algorithm to solve the inference
task in this setting in time O(d s2m2). Details can be found in Appendix D.1.

4.2. Well-Structured Objects

In this section, we consider our original image-generation model and objects that satisfy w-well-
structuredness. For inference in this model, we describe a greedy algorithm that considers identifi-
able objects in the image from objects with the most visible bits to those with the fewest visible bits
and thereby successfully recovers a correct explanation for most of the bits of the image. While this
algorithm makes more assumptions on the objects than the DP algorithm of Section 4.1 (namely,
it assumes well-structuredness of objects, though it does not assume they are all the same size), it
has several advantages. For instance, it will allow us to gain a tolerance to noise that we will show
in Section 4.3. In addition, the assumption of well-structuredness allows us to discuss correctness,
rather than minimality of an explanation. The background can be either distinct or well-structured.
For a set S as defined in Definition 11, we define Î := view(scene(S)) . Formally, we solve the
following problem where d(·, ·) is the Hamming distance: minS d(Î , I) .

Note that if there are k objects in the image, there are at most 2k “transition” points, where
a transition occurs when an object begins or ends. This means that in an image there are at most
2k+1 pure segments, where each pure segment is a contiguous block of pixels arising from a single
object or background. Our algorithm recovers an explanation for the image that for every pixel in
the image will either correctly assign it to the object (or background) that generated it or else will
output “I don’t know”, and moreover outputs “I don’t know” on at most 4k2w + 2k w locations.

Brief Description of Algorithm The algorithm first scans for large chunks (at least 2k w + 1) in
the image that match a single object (“signatures”) and chooses the largest one. Provided the image
is larger than (2k + 1) · (2k w) + 1 , by the Pigeonhole principle, at least one such signature, for
either an object or the background, must exist. Once the largest signature is identified, it is used to
explain most of those pixels, and then the same algorithm is run recursively on the rest of the image.
We keep running this algorithm on pieces that result until all pieces are too small to find a signature.

Theorem 18 Whether the image has a distinct background (Defn. 4) or a well-structured back-
ground Defn. 5), the algorithm given in Algorithm 4 recovers an explanation for the image that is
correct and explains at least d−Θ(wk2) pixels and runs in polynomial time.

Proof Overview The main thing we argue is that the only way for any indices istart to iend to
match a single object is if the region istart + k w to iend − k w arose from that object. Details are in
Appendix D.2.

12
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Algorithm 4 Inference – (ϵ-) Well-Structured Objects, (Noisy Copies), Greedy Algorithm
1: Input: d-pixel image, ⊥, a character not in the image
2: explanation = { }
3: while parts of the image remain unexplained do
4: istart, iend ← largest string that (α-approximately) matches a single object or background
5: if iend − istart ≤ 2 k w then
6: stop
7: else
8: associate istart + k w to iend − k w with the object
9: end if

10: Add the segment along with this object and relevant indices to explanation
11: Replace explained bits with ⊥
12: end while
13: return explanation

4.3. Noisy Image Generation

In this section, we explore what happens when the image generation process is noisy. We ask: if
an adversary can corrupt some number of pixels of the image, do we have any hope of solving the
segmentation problem? We first give an example that show how badly segmentation can go if an
algorithm seeks exact matches but gets noisy images. Then, we provide an algorithm that completes
the segmentation process and can correct noisy pixels under some assumptions.

Example where exact match fails Suppose we are in the open room model. We have two colors
and well-structured objects A and B (each length d), where object A starts with the first color and
object B with the second color. In order to generate the image, pick one of the objects and place it
on the canvas so it is fully visible. Next, pick a location i in the middle d/2 pixels of the image and
flip the bit in that location. This completes the adversarially-corrupted image. We can show that we
require at least d/(4w) objects to exactly explain this image, when in reality one object with one
corrupted pixel suffices. More details are in Appendix D.3.1.

Solving The Problem We assume objects are ϵϵϵ-strongly, w-well-structured. Further, if any win-
dow of length W in the image can have up to ααα-fraction of its pixels corrupted, we are able to use
a similar algorithm to before for recovery. We explore the regime where these small changes could
significantly confuse an inference algorithm. We require that all the objects are substantially bigger
than both the size of the signature and the size of segments the adversary can act on. The output
of Algorithm 4 with the modifications in color provides an explanation that specifies the correct
version of the image at those pixels, allowing us to also identify where the adversarial corruption
occurred.

Definition 19 We say that an adversary acting on an image I has strength (α,W ) if the adversary
can corrupt up to α fraction of the pixels in any window of size W in I. We call the image after
corruption Ĩ .

With this definition and objects that are ϵ-strongly, w-well-structured, we can use an algorithm
quite similar to Algorithm 4 to give an explanation for the image in terms of the objects, provided
α and ϵ are appropriately related and the algorithm considers appropriately sized segments.

13
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We require α < ϵ/4 because otherwise a corrupted segment of size max{w,W} could be closer
to a piece that is not its source (by triangle inequality; details in Lemma 43). When considering
adversaries as defined in Definition 19, our algorithm must use pieces large enough to ensure that
even after this kind of corruption, the piece can be uniquely identified with a single object. For this,
the algorithm must use walg := max {w,W} , where w is the well-structuredness parameter. Now,
the algorithm proceeds as before, except that it considers approximate matches.

Definition 20 A string σ from an image α-approximately matches a string σ⋆ from an object if
every window of length walg in σ requires at most α fraction of its pixels changed to exactly match
σ⋆ in the corresponding pixels, i.e. for every i , d(σ[i : i+walg− 1], σ⋆[i : i+walg− 1]) ≤ αwalg ,
where d(·, ·) is the Hamming distance between the two strings.

Theorem 21 Suppose an image is generated from ϵ-strongly, w-well-structured objects, and an
adversary of strength (α,W ), α < ϵ/4, acts on it. Then, Algorithm 4 with the modifications in
parentheses would recover in polynomial time an explanation for the unadulterated image that is
correct in d−Θ(walgk

2) pixels.

Proof Overview Our proof overall follows the same argument as before, with a couple added
subtleties. Signatures are different in this setting, since we must check for chunks of the image
that are approximate matches to the objects, i.e., if every contiguous block of walg matches up to ϵ
fraction of the pixels. Details can be found in Appendix D.3.

5. Discussion

In this work, we considered questions surrounding decomposition of complex but structured “im-
ages” into simpler, latent “objects,” via some combinatorial process. We started by defining the
setting we consider, including the property of being w-well-structured (similar to incoherence as-
sumptions in standard dictionary learning). This property is a natural one to consider, as it holds
with high probability for random, and even semi-random, objects. This property is powerful for both
learning objects from multiple images and segmenting images correctly into the relevant objects.

We then studied two problems, “learning” and “inference”: the learning problem asked how
to decompose a set of complex items that derive their structure from a combinatorial process over
latent components into a set of simple components. The inference problem asked, given the set of
latent objects, how to decompose a single complex item into its component objects under various
objectives: minimizing the number of objects required to explain and being confident of the source
of each pixel both with and without adversarial corruptions. In the lattermost case, our work is a
setting where the property of “having a simple explanation” can help protect against adversaries.

Some limitations of this work are the fact that we only study images and objects with one linear
dimension, and we only study quantized colors. Also, one could study broader models of the joint
distribution over the subset of objects that appears in the image. An additional model in which to
study these questions is one where instead of placing objects directly on the canvas, we have the
freedom to chop off the some parts of the ends, in a form of collaging. Elaborating on these factors
would be interesting directions for future work.

Even in one dimension, another interesting direction is to consider is complicating the model
by allowing different images to have different “views” or “lighting conditions” of any object. Now,
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we can no longer look for identical pieces. Instead, suppose we have an oracle that tells us whether
two strings arise from different views of the same underlying string or not. One complication that
arises is that a particular string could match two different strings under two different decodings, and
in this case, it is not immediately clear how to decode pieces consistently in order to ensure that the
pieces can be sequenced. An important question is how to formalize this kind of variation and solve
the problem.
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Appendix A. Related Work

Related Work The issue of finding a small number of explanatory features for high-dimensional
data is well-studied. Some particular framings of this problem include matrix factorization, for
which principal components analysis (PCA) is often used (Karl Pearson, 1901; Hubert et al., 2000),
dictionary learning, framed slightly more abstractly, (Kreutz-Delgado et al., 2003), and factor anal-
ysis (Harman, 1960). While much of the work traditionally done in this area focuses on the linear
case, there have been several works that address non-linear settings: Mairal et al. (2009) consider
a supervised dictionary learning problem which they solve by minimizing a risk function; Balcan
et al. (2015, 2020) study representations for lifelong learning and exploit shared structure in the
learning tasks to develop good summarized representations; Papyan et al. (2017) study a convolu-
tional version of the problem.

Several works have also studied the use of decomposing high-dimensional objects into low-
dimensional ones in the context of adversarial robustness (Bhagoji et al., 2018; Gupte et al., 2022).
Most theory regarding adversarial robustness in computer vision considers the problem of classifi-
cation (Cullina et al., 2018; Montasser et al., 2020, 2022). While this is an important setting to look
at, much practical interest is in segmentation (Hendrik Metzen et al., 2017; Yatsura et al., 2022; Xie
et al., 2017).

Another line of work related to this is that of factorial learning, studied extensively in the early
2000s. In this problem, any given object has a fixed ground truth appearance in 3d, but when
placed into an image, there are finitely many ways it might be visible based on lighting, angle,
etc. Thus, a fixed set of images are each available in an image, albeit in different configurations
in different images. The goal, then, given an image, is to determine the parameters that dictate in
which configuration each object in the image is. A common method to solve for the parameters is
to solve an maximum likelihood problem using expectation maximization (Ghahramani, 1994).

A similar formulation is that of layered models, which decompose images into layers based on
depth in order to then segment the image; here, too, the method is to model the image as a graphical
model and then run an inference algorithm (Wang and Adelson, 1994; Jojic and Frey, 2001; Yi
Yang et al., 2012). While this problem shares some characteristics with ours (learning what is in
an image from samples), in our work we focus on a setting where there are no rotations, camera
angles, or perspective shifts, and we instead focus on learning the set of objects from samples and
then determining whether and where the objects are in a new image.

Others have explored learning objects from images in an unsupervised manner. Titsias (2005)
does this by creating a probabilistic generative model that accounts for background generation, ob-
ject placement, and any translations of the objects. They provide a greedy algorithm proceeding by
“layer” (depth of object) that finds one object at a time. They then extend it to learning multiple ob-
jects in video data. This greedy algorithm learns the parameters of the aforementioned probabilistic
graphical model. Their work focuses on learning objects as best as possible in realistic settings,
while our work focuses on a controlled setting in which we can exactly learn the objects.

Another area of work on which we draw is computational biology. A well-studied problem in
gene sequencing is reconstructing a string based on having seen recurring pieces of it (Motahari
et al., 2013). We adapt such a shotgun sequencing algorithm for our use, as it will be applicable
throughout Section 3. An extension we mention in Section 5, the collage model, can also be moti-
vated by computational biology, where rather than having objects obscuring those they are in front
of, we have strings (DNA segment) from pieces of other strings (genes).
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Appendix B. Details of Preliminaries

B.1. Details of Models

In the following table, we summarize the places in which each of the models is considered in the
paper.

Section Object Selection Room Style Depth # objects in image endpoint markers
Section 3.1 uniform open room fully random up to m yes
Section 3.1 uniform open room partially-random k yes
Section 3.2 uniform open room partially-random 2 no
Section 3.3 uniform open room partially-random k no
Section 4.1 anything anything anything up to m no
Section 4.2 anything anything anything k no
Section 4.3 anything anything anything k no

B.2. Random and Semi-random Objects Are Well-Structured

In this section, we provide a proof for Lemma 3 and the state and prove Lemma 22, a similar result
albeit for semi-random objects.

Lemma 3 [Random Objects are w-Well-Structured whp] A set of m objects, each sampled uni-
formly at random from {0, 1, . . . , c− 1}si , and s := maxi si is w-well-structured with probability
at least 1−3m2s2/cw . In particular, w = O(logms) is sufficient so that the m objects are w-well-
structured with probability 1− o(1).

Proof In order to show this, we consider three cases:

1. Windows in different objects: Consider a window of size w in one object and compare it to
a window of size w in a different object. There is a 1/cw probability that they are the same.
There are at most

(
m
2

)
·s2 pairs of indices in this category. So the probability of collision here

is at most m2s2/cw .

2. Disjoint windows in a single object: For two disjoint windows of size w in the same object,
the same holds, and the probability that they are the same is 1/cw . There are at most m ·s(s−
w) pairs of indices in this category, so the probability of collision is at most m · s2/cw .

3. Overlapping windows in a single object: now for overlapping windows in a single object,
we consider the strings location-by-location. Suppose the offset is q ∈ {1, . . . w − 1} . Then
within object A , say we are interested in the probability that A[i : i + w − 1] = A[i + q :
i+q+w−1] . This is equivalent to the intersection of events that A[i] = A[i+q] , A[i+1] =
A[i+1+q] , . . . A[i+w] = A[i+q+w] . Since pixels of the object are generated independently
at random, the probability here is also 1/cw (in particular, if one considers the locations in
A being generated left to right, then A[i + q] has a 1/c chance of being equal to A[i], and
conditioned on that A[i + 1 + q] has a 1/c chance of being equal to A[i + 1], and so on).
There are at most m · s · w pairs of indices in this case, so the probability of collision is at
most m · s2/cw .
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Thus, adding these three cases together, the probability that two w-character strings are the same
for randomly-generated objects is at most:

m2s2

cw
+

ms2

cw
+

ms2

cw
≤ 3m2s2

cw
.

Lemma 22 [Semi-random Objects are w-Well-Structured whp] Suppose an adversary determines
what the objects look like. After all the adversary’s decisions are made, for each location in each
object, the color in that location is replaced by a random color with probability p. Then, a set of
m objects over {0, 1}s generated as described in this way is w-well-structured with probability at
least 1− 3m2s2(1− p(1− 1/c))w . In particular, w = O(1p log(ms)) suffices for the m objects to
be w-well-structured with probability 1− o(1) .

Proof
As before, we will compute the three cases: different objects, same object no overlap, same

object overlap. Now we focus on case 3 because the first two cases are easier due to independence.
We think about proceeding by tossing coins left to right and fixing colors to the left of the current
location. In this case, the probability that the color in the i+ wth location is different from color in
the (fixed) ith location is at least the probability that we change it from the original, p, multiplied by
the probability of landing on a different color, 1 − 1/c ≥ 1/2 . Thus, the probability that colors in
these two locations are the same is at most:

q := 1− p

2
.

Thus, the probability of two locations have the same color is at most q := 1− p
2 .

Now, we can consider the same three cases as above, and the same logic applies, though now
with probability qw rather than c−w . Then, the probability of w-pixel strings being the same is at
most:

m2s2qw +m · s2qw +m · s2qw ≤ 3m2s2qw ≤ 3m2s2(1− p(1− p))w ≤ 3m2s2 e−
p
2
w .

Thus, for the probability of two w length strings to be small, w = O(log(ms)/p)

B.3. Random Objects Are ϵ-strongly Well-Structured

Lemma 23 A set of m objects, each sampled uniformly at random from {0, 1, . . . c−1}si , and s :=
maxi si is ϵ-strongly, w-well structured with probability at least 1−3m2s2 ew((1−ϵ)−(1−ϵ) ln(1−ϵ)c−1/c).
For example, if c = 2 and ϵ = 1/10 then the set will be ϵ-strongly w-well-structured with probability
at least 1− 3m2s2e−0.129w; for c = 4 and ϵ = 1/10 the probability is at least 1− 3m2s2e−0.503w.
In particular, w = O( −1

(1−ϵ)−(1−ϵ) ln((1−ϵ)c)−1/c logms) is sufficient so that the m objects are ϵ-
strongly, w-well-structured with probability 1− o(1) .
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Proof As before, we must consider the same three cases. In each case, now, instead of considering
the probability that each pixel of the string matches, we consider the probability that more than a 1−ϵ
fraction of the pixels match. For this, let us first let Xi = I{pixel i of string 1 matches pixel i of string 2}.
Further, let X =

∑
iXi . Now, to argue that too many pixels don’t match, we consider what fraction

of pixels we expect to see matches in and then argue using tail bounds that with high probability,
we would not see more than (1 − ϵ)w of the pixels matching. To start, we formally state the tail
bound that we use, adapted from Theorem 4.4, Part 1 in Mitzenmacher and Upfal (2005):

Lemma 24 (Large Deviation Chernoff) Let X1, X2, . . . , Xn be independent Poisson trials such
that P [Xi] = pi . Let X =

∑n
i=1Xi and µ = E [X] . The following Chernoff bound holds: for any

δ > 0 ,

P [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

Since the colors are chosen independently at random, in expectation, in a w-pixel string we
expect w/c pixels to match. That is, E [X] = w/c . We wish to analyze the probability that more
than (1− ϵ)w pixels match. From the Large Deviation Chernoff bound, setting δ := (1− ϵ)c− 1,
we have that where δ > 0 , i.e., 1− ϵ > 1/c:

P
[
X ≥ (1 + δ)

w

c

]
≤

(
e(1−ϵ)c−1

((1− ϵ) c)(1−ϵ) c

)w
c

= e((1−ϵ)w−w/c)

(
1

(1− ϵ) c

)(1−ϵ)w

(1)

= e(1−ϵ)w−w/ce−(1−ϵ)w ln((1−ϵ)c) (2)

As before, we take the union bound over at most 3m2s2 strings, so the probability that any of
these strings fails is at most 3m2s2 e(1−ϵ)w−w/ce−(1−ϵ)w ln((1−ϵ)c) .

d

dw
((1− ϵ)w − w/c− (1− ϵ)w ln((1− ϵ)c)) = (1− ϵ)− 1

c
− (1− ϵ) ln ((1− ϵ)c) (3)

All that remains to be checked, then, is that in the regime of interest, this quantity is negative.
To do this, let us take the derivative with respect to ϵ , to show that for a fixed value of c , for

any value of ϵ , this quantity is negative

−1−
(
− 1− ϵ

(1− ϵ)c
+−1 ln((1− ϵ)c)

)
= −1 + 1

c
− ln((1− ϵ)c) < 0 . (4)

Finally, we confirm that the starting point is non-positive. When 1 − ϵ = 1/c , the derivative in
Eqn. 3 is 0. Thus, the exponent is negative and the probability is decreasing with increasing w .

Thus, we have that if w if sufficiently large, the failure probability can be very small. In partic-
ular, if w = O( −1

(1−ϵ)−(1−ϵ) ln((1−ϵ)c)−1/c logms) , then the failure probability is o(1) .

22



A MODEL FOR COMBINATORIAL DICTIONARY LEARNING AND INFERENCE

Appendix C. Proofs for Learning Algorithms

C.1. Proof of Lemma 12

Lemma 12 In the open room, uniform object selection, partially-random model, the probability of
seeing a given L-pixel segment of a given object (or even of an (L− 1)-padding of that object) in a
random image composed of k objects is at least

(
1− s+L−1

d′

)k−1 · d+1−L
d′ · k

m .

Proof There are three pieces to consider: (1) whether the object shows up in the image; (2) whether
the desired piece of the object shows up in the image given (1); (3) whether the desired section
remains unobscured given (1) and (2). Suppose the largest object in the set has size s . In the uniform
object selection model, the probability the object shows up in the image is k

m . The probability of
a fixed length-L piece (of the object or of a padding of the object) appearing on the canvas given
the object appears in the image is at least d+1−L

d′ . The probability of a fixed length-L string being
obscured by an object that appears in front of it is at most (s + L)/d′ . Since objects are placed
independently, even if the object of interest is in the back, the probability that none of the k − 1

other objects placed on the canvas obscures this is at least
(
1− s+L−1

d′

)k−1
. Thus, the probability

that the full L-pixel piece is visible in the image is:

P
[

no other objects obscure it
∣∣∣∣ desired object and section appear

]
· (5)

P
[

desired section visible
∣∣∣∣ object in image

]
· P [this object is in image] (6)

≥
(
1− s+ L− 1

d′

)k−1

· d+ 1− L

d′
· k
m

=: a . (7)

Padding is not relevant in this section, but it will become important when we no longer have
endpoint markers and therefore need to discard parts of strings to be confident they belong to a
single object (Section 3.2).

C.2. Several Objects per Image with Endpoint Makers (Theorem 13)

Proof
At a high level, we show this theorem by first computing the probability of seeing a fixed L-

pixel string from an object in a fixed image. Then, we compute the probability of seeing it in any
image and finally, take a union bound.

First, we recall Lemma 12, in which we compute a lower bound on the probability of seeing a
fixed L-pixel string in an image.

Then, as before, let a =
(
1− s+L−1

d′

)k−1 · d+1−L
d′ · k

m be the probability bound in Lemma 12.
The probability a given L-pixel string of a given object is visible in at least one of S independently
generated images is, therefore, at least 1− (1− a)S . The total number of pieces per object we need
to see is at most 2s

L , since we need to see pieces with enough overlap to align them (Figure 1). Then,
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the probability that at least one of the required pieces is obscured is given by the union bound:

P [not seeing at least one of the required pieces in any of the images] ≤ ((1− a)S)
2ms

L
(8)

⇔ P [seeing all required pieces] ≥ 1− ((1− a)S)
2ms

L
(9)

Next, to ensure this probability is small enough:

δ = ((1− a)S)
2ms

L
≤ e−aS 2ms

L
(10)

want this to be ≤ 1

10
(11)

⇔ e−aS ≤ L

20ms
(12)

⇔ 20ms

L
≤ eaS (13)

S ≥ ln(20ms/L)

a
(14)

(15)

Thus, we require S = Θ
(
ln(ms/L)

a

)
to see all the pieces required with high enough probability.

C.2.1. EXTENSION

This result would also extend to the case where objects are ϵ, w-strongly-well-structured, and at
most ϵ/2 fraction of the pixels are corrupted by an adversary before an object is placed. In that
case, when seeing an L-pixel piece, we would have identify what the uncorrupted version of it was
before feeding it into the sequencing algorithm. Since at most ϵ/2 fraction of pixels in an L-pixel
string are corrupted, this string is closer to the respective L pixel string from its source object than
any other object (see Lemma 43 for formal argument regarding this fact).

C.3. Two Objects per Image Case

In this section, we prove Theorem 15. To do so, we show that for an appropriate value of L, length-
L substrings of a single object will appear significantly more frequently in images than length-L
strings created by overlaps of multiple objects, and therefore we can use frequency of occurrence
to identify strings to be stitched together to reconstruct the objects. We first provide the building
blocks of this argument and then show how to combine them to prove the theorem.

We first bound the probability of seeing a fixed length-L segment in a random image. This
follows from Lemma 12.

Claim 25 Under the open room, uniform, partially-random model, the probability of seeing a
given L-pixel segment of a single object in a random image composed of two objects, is at least(
1− s+L−1

d′

)
· d+1−L

d′ · 2
m and at most d+1−L

d′ · 2
m .
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Figure 3: Consider the L-pixel problematic overlap string boxed in blue. There are 5 different
features that uniquely define it. The first is identity of the left object (darker orange),
followed by the index within it where the string of interest (boxed in blue) starts. Third,
we care about the identity of the right object (lighter orange) and the index within it at
which the string of interest ends. Note that these uniquely identify how much overlap
there must be, since the length L is fixed. Finally, we include a bit to make clear which
object is on top.

Proof As in Lemma 12, the probability the desired segment is visible is the probability the object is
in the image, times the probability the desired segment appears in the window given that the object
is in the image, times the probability no other objects obscure the segment given that the desired
object and segment appear. This is:{

≤ 1 · d+1−L
d′ · 2

m maximized if object is always in the front when it appears,
≥
(
1− s+L−1

d′

)
· d+1−L

d′ · 2
m minimized if object is always in the back when it appears .

Recall that a problematic overlap is a window of size L that contains two objects that overlap
inside the middle L/2 pixels, and no background. We call an L-pixel string a problematic overlap
string if the only ways to generate it are via problematic overlaps. We show that problematic overlap
strings that look identical must be (almost) identical. In particular, the only thing that could differ
between them is which object is on top. Consider the following tuple-based description of an L-
pixel string: (OBJL, STARTL, OBJR, ENDR, TOP-BIT) (see Figure 3).

Lemma 26 For a set of objects that are w-well-structured, an L-pixel problematic overlap string
can be generated via at most two different five-tuples as described above, provided L ≥ 4w. In
particular, any two five-tuples that generate the same problematic overlap string must agree in
OBJL, STARTL, OBJR, ENDR .

Proof Suppose, for contradiction, that they differ in the OBJL. That is, there are two different
objects, OBJL1 and OBJL2 that can produce that problematic overlap. Then, the leftmost L/4 = w
pixels must match between them, which is a violation of the well-structredness property. Likewise,
the OBJR cannot differ. Finally, if the objects remain the same but one or both of STARTL, ENDR
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differ, then an object must have L/4 = w pixels that are the same under shift. This, too, is a
violation of well-structuredness. Thus, the only possible difference is if the object on top changes,
in which case some small number of pixels would be shared between the end of the left object and
the start of the right object. With this, we have shown the Lemma.

Now that we know that there are certain fixed events that must occur for a particular problematic
overlap string to show up, we bound the probability of seeing such a string based on the probability
of those events.

Claim 27 Under the open room, uniform, partially-random model with w-well-structured objects,
where w ≤ L/4, the probability, pbad , that a particular problematic overlap string appears is at
most:

2(
m
2

) · d− L

d′2

and at least:
1(
m
2

) · d− L

d′2
.

Proof Let s be a particular problematic overlap string. From Lemma 26, there must be two objects
A and B that comprise it, which must be placed at a specific location relative to each other. The
lemma also tells us that either only one ordering of them works to generate it, or both do. Based on
this:

pbad := P [A,B in object] · P
[
A,B placed correctly

∣∣∣∣A,B in image
]
· (number of orderings that work)

(16)

=
1(
m
2

) · d− L

d′2
·

{
1 if only 1 ordering fine
2 if either ordering fine

(17)

We can show that the probability of seeing good strings and that of seeing bad strings is ade-
quately separated:

Claim 28 If s+ 2L < 3d/2 and md′ ≥ 128, then pgood is separated from pbad , with pmid := 1
16m

such that pgood > 2 pmid and pmid > 2 · pbad .

Proof We show first that pgood ≥ 2pmid . From Claim 25 :

pgood

2
≥
(
1− s+ L− 1

d′

)
· d+ 1− L

d′
· 2
m
· 1
2
=

(d′ − (s+ L− 1)) · (d+ 1− L)

d′2
· 1
m

(18)

=
(d+ s− L− 1)(d+ 1− L)

(d+ s− 2)2
· 1
m
≥ (d+ 1− L)2

(d+ s− 2)2
· 1
m

(19)

=

(
1− s− 3 + L

d+ s− 2

)2

· 1
m

(20)

≥ pmid if
s+ L

d+ s− 2
<

3

4
(21)
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Next, we must show that pbad ≤ pmid
2 , for which it suffices to show that the upper bound on pbad

from Claim 27 is bounded by this quantity.

2 · pbad ≤
8

m2
· d− L

d′2
=

8

m2
· d− L

d′2
(22)

=
1

16m

128(d− L)

md′2
≤ pmid if

128(d− L)

md′2
≤ 1 ⇐ md′ ≥ 128 . (23)

Thus we complete the proof of this claim.

Finally, we can use Chernoff’s inequality to bound the probability of success, once we know the
number of good strings, number of bad strings, and a probability pmid such that the probability of
seeing a fixed good string is at least twice as large and the probability of seeing a bad string is at
most half as much.

Lemma 29 (Use Chernoff to Get Sample Complexity) Suppose there exists pmid such that pbad ≤
pmid/2 , and pgood ≥ 2pmid . If there are npo problematic overlap strings and nsingle strings of
length L comprised of a single object that must be seen to reconstruct all objects, then S =

O
(
max

{
ln(nsingle)

pmid
,
ln(npo)
pmid

})
image samples suffice to see all the necessary strings for reconstruct-

ing the objects and discard problematic overlap strings with probability 9/10.

Proof We compute the probabilities of seeing too few copies of a good string or too many copies
of a bad string and control that. Recall that the probability of seeing a fixed good string in a given
image is pgood and an upper bound on the probability of seeing a fixed bad string in a given image is
pbad . Fix a good string σ of length L. If we draw S samples, in expectation, we should see pgood ·S
copies of σ. For sample j , let Xj = I(σ in sample j) . Since the images are independent, we may
use Chernoff bound:

P

 S∑
j=1

Xj ≤
(
1− 1

2

)
pgood · S

 ≤ exp

(
−pgood · S

8

)
(24)

≤ exp

(
−pmid · S

4

)
(25)

Similarly, for a bad string σ′, we expect to see pbad · S copies of it. For sample j , let Yj =
I(σ′ in sample j) . Since the images are independent, we may use Chernoff bound:

P

 S∑
j=1

Yj ≥ (1 + 1) pbad · S

 ≤ P

 S∑
j=1

Yj ≥ (1 + 1)
pmid

2
· S

 (26)

<
(e
4

) pmid·S
2

. (27)

Now that we know the probabilities of seeing a fixed string sufficiently many times, we wish to
now union bound over the respective nsingle good and npo bad strings. The probability that any of

the nsingle good strings does not appear at least pgoodS/2 times is at most nsingle · exp
(
−pmid·S

4

)
.
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Similarly, the probability that any of the npo bad strings appears more than 2pbadS times is at

most: npo
(
e
4

) pmid·S
2 .

In order to keep both of these probabilities small, we would require:

nsingle · exp
(
−pmid · S

4

)
≤ 1

10
⇔ −pmid · S

4
≤ ln

(
1

10nsingle

)
(28)

⇔ 4

pmid
ln
(
10nsingle

)
≤ S (29)

npo

(e
4

)pmid·S/2
≤ 1

10
⇔ pmid

2
· S · ln(e/4) ≤ ln

(
1

10npo

)
(30)

⇔
2 ln(10npo)

pmid ln(4/e)
≤ S . (31)

Thus, for some constant c, if S ≥ c · ln(nsingle)
pmid

, then we recover all necessary pieces of objects

correctly with high probability. Similarly, for some constant c′, if S ≥ c′ · ln(npo)
pmid

, then we don’t
see problematic overlap strings too frequently. From here, we can run the sequencing algorithm
given in Algorithm 1 to recover the objects themselves accurately with high probability. Thus,
S = O

(
max

{
ln(nsingle)

pmid
,
ln(npo)
pmid

})
is sufficient for recovering the objects from sampled images.

With this, we are equipped to prove the theorem statement.

Theorem 15 In the open room, uniform, partially-random model with w-well-structured objects,
each of length at most s and at least 4w, and 2 objects per image, Algorithm 3 with L = 4w
recovers all m objects with S = Ω(m ln(ms)) samples and τ = 1

16m with probability 9
10 .

Proof
The theorem follows from a direct application of Lemma 29 and argument that the ends are

indeed recovered correctly. At a high level, we determine how many samples are required to see
good strings frequently and see bad strings infrequently. Then, we argue that within such a set
of samples, we have all we need in order for the end recovery subroutine to succeed. To apply
Lemma 29, we need (1) pmid , (2) the number of strings arising from a single object we must see,
and (3) the number of problematic overlap strings which we need to not see too frequently. We have
pmid = 1/(16m) from Claim 28.

Next, we compute the number of good and bad strings:

Claim 30 Over m total objects, out of the m · (s − L + 1) good strings, there is a subset of size
4ms/L that is sufficient for reconstructing all of the objects.

Proof From a single object, there are: s
w distinct contiguous L-pixel portions that are sufficient for

reconstructing the object. This is because we take L = 4w-pixel strings and only use the middle
L/2 = 2w pixels of them. As a result, we require overlap of L/4 = w pixels in the used part,
meaning that the shift between two pieces used is L/4 = w (recall Figure 2). Then, there are m
objects for which we need all s/w = 4s/L strings.
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Claim 31 The total number of tuples generating problematic overlap strings is at most
(
m
2

)
·s2 ·2 ≤

2m2s2 .

Proof The number of two-object L-pixel strings that could be problematic is at most the total num-
ber of tuples of two objects, two indices, and a bit to specify which is on top that could generate
such a string.

Applying the result of Lemma 29 and incorporating Claims 28, 30, 31, we have that the number
of required samples is:

O

(
max

{
ln(nsingle)

pmid
,
ln(npo)

pmid

})
= O

(
max

{
ln(4ms/L)

pmid
,
ln(2m2 s2)

pmid

})
= O(m ln(ms)) .

Finally, we must show that the part of the algorithm that recovers the ends indeed does so
correctly. From the analysis above, we have that the first two lines of Algorithm 3 must recover all
of the objects except the leftmost and rightmost L/4 pixels of each. Thus, we must now argue that
the for loop correctly recovers the ends of the objects. To do so for the left ends, we argue two
things:

1. that the leftmost w pixels of an object seen in sequencing (i.e., sleftend) must be seen at
least once preceded by a segment with background and the true leftmost end of the object.

2. taking the shortest segment x sandwiched between background and sleftend contains no
problematic overlaps and therefore must be the true left end

The right ends follow symmetrically.

Lemma 32 The end recovery subroutine in Algorithm 3 correctly retrieves the ends of all objects.

Proof Since we collect any string that appears at least τ fraction of the time and send it to sequenc-
ing, we in particular must have included pixels L/4 to 3L/4 of the object. This is the furthest
right possible for sleftend. From the padded version of Lemma 12, we know that we must also
frequently see the string that is L/4 background, followed by 3L/4 pixels of object in the set of
images. This is furthest left possible. Thus there is sufficient overlap for us to be confident that we
will see a segment that looks like background followed by the start of the object, up to and including
the leftmost pixels seen in sequencing.

Now, we must show that the shortest segment x that lies between background and the signature
sleftend is indeed the true left end of the object. To this end, we observe that if we see back-
ground followed by non-background pixels, followed by a signature of an object, then that object
must have started somewhere in the middle, and any pixels of other objects must also arise from
the left ends of them. We immediately see, therefore, that no such string can be shorter than one
where background is immediately followed by the object whose end we are seeking. Likewise, if
other objects oi start in the middle, with bi > 0 pixels of each visible, then the length of the segment
between background and sleftend must be

∑
i bi , which is longer than if only the object of

interest is present. Thus, by selecting the shortest such segment, we are guaranteed to recover the
true end of the object.

Finally, recovery of the right ends is exactly symmetric.
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C.4. Small Number of Objects per Image Case (Thm. 16)

In this section, we set out to prove Theorem 16 by deriving the number of samples needed to
adequately reconstruct the objects. To do so, we show as before that for an appropriate value of L,
length-L substrings of a single object will appear more frequently in images than length-L strings
created by overlaps of multiple objects. In this section, the main difference from before is that these
overlap strings can comprise more than just 2 objects. We first provide the building blocks of this
argument and then show how to combine them to prove the theorem.

As before, we start by identifying what must occur each time we see a problematic overlap
string that matches a reference string. Recall that there are at most k objects per image and all of
the objects are larger than 6wk.

Lemma 33 Assume objects are w-well-structured. Suppose L ≥ 8w k and each object is of size
at least 3L/4 . Consider a reference problematic overlap string of length L pixels. Any other way
of generating this string with k objects must require that at least 2 objects are the same and in the
same place as in the reference.

Proof Consider a reference problematic overlap string of length L that consists of at most k object
instances. We know that there must be a point in the middle L/2 positions where the current object
changes, since it is a problematic overlap. We break the string up into the three regions: left (of size
L/4), middle (of size L/2), and right (of size L/4), where the left and right regions are the ones we
discard, and the middle is where the crossover occurs. Now, in the left region, we know all the pixels
align between the reference string and its duplicate. Mark each time the current object changes on
either the reference or the duplicate. Because objects have size greater than L/4, one that appears
cannot disappear before the left region completes. Thus, there are at most 2k such changes, and so
2k + 1 sections corresponding to these changes, in the left part of the string. The total number of
pixels is L/4 , so by Pigeonhole Principle, there is at least one object with at least L/(8k + 4) ≥ w
pixels visible. Since our set of objects is w-well-structured, there is only one such object, and it
must be in the same position. The exact same argument holds for the right end of the string. From
this, we know that there are segments of at least length w on both the left and right sides that match
the reference.

Now, we show that these segments must come from separate object instances. Consider two
cases: in case 1, if a new object starts in the middle, then as long as that new object has length
≥ 3L/4, then the left one will not reappear. In case 2, the object on the left ended in the middle, so
it does not account for the pixels on the right, and the object that showed up was not visible to the
left of this. This shows the reference can’t have same object on left and right. Then in the duplicate,
if the left and right end objects are the same, it must have happened in the reference. Thus, since
there is a crossover point in the middle, and the objects are all large enough, we know they must
be different object instances. Thus, we have that at least two object instances must be in the same
place regardless of the others in order to replicate a reference problematic overlap.

We use this lemma to compute the probability of seeing such a problematic overlap string, based
on considering the probabilities of the necessary events identified above.

Claim 34 Under the open room, uniform, partially-random model with w-well-structured objects,
the probability pbad that a particular problematic overlap string appears is at most:

k(k − 1)

2
· d− L

d′2
.

30



A MODEL FOR COMBINATORIAL DICTIONARY LEARNING AND INFERENCE

Proof
From Lemma 33, we know that for every version of a problematic overlap string, there are two

objects that must appear with a large number of pixels visible. Since every version has to agree with
reference in at least 2 objects, we can partition the versions into at most

(
k
2

)
categories, where each

category corresponds to a specific pair of signature objects. If a version corresponds to multiple
categories, we can arbitrarily assign it to one of them. For any fixed pair of signature objects, A,B,
we can upper bound the probability pA,B that A and B appear and are placed correctly as follows:

pA,B ≤ P
[

two identifying objects appear and are placed correctly
]

(32)

= P [2 identifying objects are in image] · P
[

both are placed correctly
∣∣∣∣ both are in image

]
(33)

≤ 1 · d− L

d′2
(34)

≤ 1 · d− L

d′2
(35)

Multiplying this by
(
k
2

)
, in order to union bound over the different categories, we get that the

total probability pbad is at most:

k(k − 1)

2
· d− L

d′2

Again, as before, we identify a pmid such that the probability of seeing good strings is at least
twice pmid and the probability of seeing bad strings is at most half pmid. Notably, now, pmid depends
on the number of objects, since that affects how often the object is visible (when we can make no
other assumptions about depth).

Claim 35 If d > 2L , d′ ≥ 16mk 2k then pgood is separated from pbad, with pmid := k/(16m 2k),
such that pgood > 2pmid and pmid > 2pbad .

Proof First, let us consider pbad . We have:

2 · pbad ≤ 2 · k
2

2
· d− L

d′2
≤ k2 · 1

d′
(36)

≤ 1

16m

k

2k
provided d′ ≥ 16mk 2k (37)

= pmid (38)
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Next, for the other side, we consider pgood , which is the probability computed in Lemma 12.
Namely:

pgood

2
≥ 1

2

(
1− s+ L− 1

d′

)k−1

· d+ s− L

d′
· k
m

(39)

≥ 1

2

(
d+ s− L− 1

d′

)k

· k
m

(40)

≥ 1

2

(
1

2

)k k

m
provided

d+ s− L− 1

d′
≥ 1

2
(41)

≥ 1

16m

k

2k
= pmid (42)

For d+s−L−1
d′ ≥ 1

2 , it suffices for L < d/2 . Thus, there is a separation between the two with
pmid := k/(16m 2k) .

With these pieces, we are ready to prove the following theorem, restated from before:

Theorem 16 In the open room, uniform, partially-random model with w-well-structured objects,
each of length at most s and at least 6wk , and k objects per image, Algorithm 3 with L = 8w k
and τ = k

O(m 2k)
recovers all m objects with S = Ω

(
2k m ln(ms)

)
samples with probability 9/10.

Proof
As before, in order to prove this lemma, we must compute (1) pmid, (2) the number of strings

arising from a single object that we need to see, and (3) the number of problematic overlap strings
we need to protect against. We have pmid = k/(16m 2k) from Claim 35.

From a single object, as before, there are: 4s/L required contiguous L-pixel portions. Over the
m total objects, then, there are 4ms/L strings of this type.

Similarly, the number of k-object L-pixel strings that could be problematic is the total number
of tuples of k objects, k indices, and the front-to-back ordering.

Claim 36 The total number of tuples generating problematic overlap strings with k objects is at
most

(
m
k

)
· sk · k! ≤ mksk .

Applying the result of Lemma 29 and incorporating Claims 30, 36, 35, we have that the number
of required samples is:

O

(
max

{
ln(nsingle)

pmid
,
ln(npo)

pmid

})
= O

(
max

{
ln(4ms/L)

pmid
,
ln(mk sk)

pmid

})
= O(2k m ln(ms)) .

Finally, as before, due to Lemma 32, the ends of the objects are correctly recovered.

Appendix D. Proofs for Inference Algorithms

D.1. Arbitrary Known Objects – DP Algorithm (Algorithm 5)

In this section we provide details of the dynamic programming algorithm that recovers a minimal
explanation for an image arising from a known set of objects.
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Algorithm Summary We scan the image left to right. At each location of the image, for each
potential source, where the “source” is either the background at appropriate location or the identity
of the object and the location of the pixel in that object, we record the fewest objects required so far
if we were to use that potential source. At any step, there are at most sm options for the source, so
the total size of the dynamic programming table is sm · d .

When scanning, we either continue in the object we already were on, switch to a new object,
switch to the background, or continue in the background. Upon switching, we either:

1. Start New Object We start at the beginning of a new object, cutting off the end of the object
we were just in. To be in this case, we must be at location 1 of the proposed new object.

2. End Current Object; Resume Object Underneath We start in the middle of new object
(behind), having finished the current one (on top). To be in this case, we must have just
finished pixel s of the object. We can start from any location of the new object.

Using this fact, the dynamic programming algorithm is going to behave as follows: assuming
we’ve already filled out column i , we will fill column i + 1 out by first filtering out all the object
locations that could match the i+1 bit in the image. Next, we check what happens if we try to start a
new object. Since we are starting anew, we do not worry about the location in the previous instance.
We pick the smallest number of objects needed so far out of any object/index combination at the
previous level, compare it to the minimum number of objects needed if we are using background,
choose the minimum of the two, and add 1 (since we are starting a new object). Otherwise, we take
the minimum of continuing the existing object instance or a object behind emerging after the current
object instance ends. Finally, we also update the background table by tracking how many objects
would be required to use this bit of the background, if it matches.

Theorem 37 In either the open or closed room model, suppose an image is generated from our
usual generative process except that objects all have the same length and are arbitrary. Then, given
the description of the image, objects, and background, Algorithm 5 finds an explanation for the
image, i.e., ascribes each pixel of the image to a pixel in an object, in a way that is (a) consistent
with the generative model; (b) uses the minimum number of objects required to describe this image
under our generative process. The size of the DP table is Θ(smd) and the run time is O(d s2m2).

Proof
First, in the base case, where we are at pixel 1 of the image, we trivially find an explanation

that only consists of 1 object instance. Thus, we solve the base case. Now, assume that at pixel
i in the image, for every object o and every position j in that object, we have stored the fewest
objects needed to get there (with∞meaning impossible). We are interested in whether the proposed
explanations we devise for the image up to the i+1st pixel give the fewest possible object instances
needed to produce the image so far conditioned on using a given source (a given location in a given
object, or the appropriate location in the background) to explain pixel i + 1 in the image. By the
inductive hypothesis, our table includes this information for pixel i. Any explanation for the first
i + 1 pixels of the image must either have an object (or the background) continue from pixel i to
pixel i + 1, have an object end at pixel i, or have a new object start at pixel i + 1. Each of these
cases is handled in lines 8, 9, and 11 in the DP algorithm and therefore the induction is maintained.
The final explanation step takes the solution of overall least cost at the last pixel (conditioned on
no object extending past the room boundary in the closed-room model). Thus, the solution our
algorithm finds must be one with a minimal number of objects.
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Algorithm 5 Inference – Arbitrary Objects, DP Algorithm
1: Input: image of size 1× d, description of objects and background
2: Result: explanation: source for each pixel of the image
3: T ← table of size (m+ 1) · s · d elements, set to∞
{T [o, j, i] represents the fewest number of objects needed to produce the image up to index i
subject to pixel i in the image being produced by pixel j of object o;∞ if not possible }

4: T [o, j, 0] ← 1 if the oth object’s jth position is the same as position 0 of the image. Do this ∀ j
if open room model, else just for j = 1

5: B ← table of size d elements (only one dimension), set to∞
{B[i] represents the fewest number of objects needed to produce the image up to index i subject
to pixel i being produced by pixel i of the background;∞ if it is not possible}

6: B[0]← 1 if the first pixel of the background matches the first pixel of the image
7:

8: for i = 1, 2, ..., d (pixel in image) do
9: for each o, j such that the oth object’s jth index is the same as img[i] do

10: if j == 1 then
11: T [o, j, i]← min{mino′,j′{T [o′, j′, i− 1]}, B[i− 1]}+ 1
12: else
13: T [o, j, i]← min

{
T [o, j − 1, i− 1] ,mino′{T [o′, s, i− 1]}+ 1

}
14: end if
15: end for
16: if B[i] matches current pixel of image then
17: B[i]← min{B[i− 1],mino{T [o, s, i− 1]}}
18: end if
19: end for
20: explanation← Backtrack starting at the minimum value v in the dth matrix, T [:, :, d]. Store

o and j having minimum v for each pixel of image – if closed room, the second index of the
start of the backtracking must be s, representing the end of the last image or it must come from
background, and for the beginning of the image, we must be at pixel 0 of some object. if open
room, there are no constraints

21: return explanation
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The runtime arises from d runs of outermost loop, then at most ms runs of inner loop, and at
most ms checks within the loops.

D.2. Well-Structured Known Objects (Theorem 18)

Theorem 18 Whether the image has a distinct background (Defn. 4) or a well-structured back-
ground Defn. 5), the algorithm given in Algorithm 4 recovers an explanation for the image that is
correct and explains at least d−Θ(wk2) pixels and runs in polynomial time.

Proof In order to prove this, we argue that for any indices istart to iend , that match a single object,
istart + k w to iend − k w must indeed arise from the object.

Definition 38 A pure segment is a block of contiguous pixels that in the ground truth image, comes
from a single object or the background.

Claim 39 There are at most 2k + 1 pure segments in an image.

Proof Each boundary between two pure segments is the beginning or end of an object. There are at
most 2k beginnings and ends, so there are at most 2k + 1 segments.

Lemma 40
Assuming objects are w-well-structured, then if the algorithm sees a segment of size ℓ ≥ 2wk+1

that matches a single object o, then the middle ℓ− 2(w − 1)(k − 1) pixels must be a pure segment
arising from object o .

Proof In this proof, we use the word “object” liberally, including in situations where the background
is well-structured and has a large visible chunk. Suppose we see an ℓ ≥ w pixel segment that
matches a single object o. Since we wish to be correct on any pixel that we ascribe to a particular
object, we need to account for the possibility that this ℓ-pixel segment contains overlaps.

Let us start by showing the following claim:

Claim 41 Suppose we have a segment s of size ℓ ≥ 2wk+1 that matches ℓ pixels of a single object
o. If in s , pixel i and pixel j indeed arise from the same instance of object o, then for all q ∈ [i, j],
pixel q of the image must also arise from the same instance of object o .

Proof We can use a stack to model the creation of the image. At the index at which an object begins,
we push the object onto the stack, and when it ends, we pop it from the stack. This corresponds
exactly to seeing a new object placed on top of the existing image. Then, when reading an image
left-to-right, the object on the top of the stack at that point is the object from which the current pixel
comes from. Thus, if two distinct pixels, pixel i and pixel j both come from the same object, then
there are two options for the configuration of the stack during that time:

1. i and j come from the same copy of object o and object o has been on the top of the stack
throughout.
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2. i and j come from the same copy of object o , object o was on top, then other objects were
added and removed before index j.

We show that (2) is not possible. In particular, suppose that for contradiction (2) occurred; let
o′ ̸= o be the object that was added and removed with no other object added on top. Such an o′ must
exist by the stack property. By the first property in the definition of well-structuredness, if an object
has come and gone, at least w pixels have transpired, so at least w pixels of that object coincide
with s , which matches ℓ pixels of a different object. This violates well-structuredness, so (2) is not
an option. Thus, it is clear that the claim holds.

Now, all that remains to be shown is that there exist these indices i and j . To show this, we
consider the possibility of having overlaps constituting the two ends of the string of length ℓ and
show that once ℓ is big enough, these indices i, j must exist.

By Pigeonhole principle, in the left half of the segment, there must be at least one object that
has at least w pixels visible. Likewise, in the right half of the segment, there must be at least one
object that has at least w pixels visible. Now since s exactly matches ℓ pixels of object o, and due to
well-structuredness, both these segments of at least w pixels must come from the same instance of
object o (because there is exactly 1 location in object o that would have these pixels). This implies
there are at least two indices i, j that arise from the same instance of o, and so the claim applies. By
well-structuredness, if the leftmost end starts with a different object o1, then at most w− 1 pixels at
the leftmost end that can be from o1 before it must switch to some other object o2. This can go on
at most k − 1 times if the background is distinct and k times if the background is well-structured,
so at most (k)(w − 1) pixels from the left end can be from other objects masquerading. The same
holds from the right. Therefore a segment of at least ℓ − 2(w − 1)(k) will be ascribed to o by the
algorithm.

Given this lemma, we know that for each pure segment we fail to assign at most 2wk visible
pixels. Thus, the total number of pixels for which the explanation is unassigned is at most 2wk(2k+
1) = Θ(k2w) .

Runtime Naively, this takes at most O(mds3) time: we consider each string of length z in the
image and see if it matches any of segments of length z in the m images. Thus, for each z = w...s ,
it takes (d − z + 1) · (s − z + 1) · m · z , assuming comparing whether two strings of length z
takes time z. If we run this procedure for each of the O(s) values of z, then the total cost is at most:
O(d s3m) . This can be improved by using better string matching. For example, using FM index as
described in Theorem 3 of Ferragina and Manzini (2000), with O(ms) preprocessing time, we can
look up a string of length z, z ∈ [w, s] in time z + 1 · logms. There are d− z + 1 strings of length
z in the image. Summing, we get:

s∑
z=w

(d− z + 1)(z + log2ms) ≤
s∑

z=w

dz + d log2ms ≤ O(ds2 + ds log2ms) .

Thus, including preprocessing, the total time is O(ms+ ds2 + ds log2ms) .

We can also solve this using O(k) instances of finding the longest common substring between
the remaining image and the set of objects. The fastest algorithm for longest common substring
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involves using suffix trees and would require time O(d+ms) , making the overall runtime O(kd+
msk) .

D.3. Noisy Images – Theorem 21

D.3.1. EXAMPLES THAT BREAK EXACT-MATCH ALGORITHMS

We present two examples, one that breaks the dynamic programming algorithm, and the other that
breaks any exact-match-based algorithm.

Example That Breaks Exact DP Suppose the three colors used are A,B,C . Let the background
be CBABABABABA... with objects BAAAA and ABBB . If we place the first object on the
background one pixel in, we will get the following image: CBAAAABABABA... . Now suppose
an adversary corrupts the second pixel of the image from a B to an A so the image now looks like
CAAAAABABABA... . Then, the exact DP algorithm would explain the image using a copy of
object 2 for each pixel that is an A and then placing one of the objects every two pixels to get the
AB sections. Thus, just corrupting one pixel will cause the dynamic programming algorithm to go
from giving an optimal solution to one that requires something like d/2+ 2 objects to explain the d
pixels.

A Family of Examples with Well-Structured Objects Suppose we are in the open room model.
We have two colors and well-structured objects A and B, where object A starts with the first color
and object B with the second color. Both objects are of length d. In this setup, we can create any
image of length d by simply placing object A on top when first color is present and object B on
top when the second color is present. In order to generate the image, pick one of the objects and
place it on the canvas so it is fully visible. Next, pick a location i in the middle d/2 pixels of the
image and flip the bit in that location. This completes the adversarially-corrupted image. We can
show that we will require at least d/(4w) objects to exactly explain this image. First, we know
that the first d/4 bits exactly match the chosen object, as do the last d/4 bits, and due to well-
structuredness they must each either arise from the exact same set of indices as they did originally
or from problematic overlaps. Suppose they did not arise from problematic overlaps but rather from
the same set of indices. Then, in order to get something in the middle that does not match that
object, a different object must have started and ended. However, since the only available objects
are of size d, this is not possible. Thus, at least one side must have been composed of problematic
overlaps. In particular, since no segment of length w can have arisen from the correct object unless
the indices match, it must be the case that there is a transition between objects at least once every
w pixels. Thus, there are at least d/(4w) objects required to explain that portion of the image, for a
total of at least d/(4w)+1 objects to explain an image that would require just 1 object if corruptions
could be accounted for.

D.3.2. THEOREM PROOF

Theorem 21 Suppose an image is generated from ϵ-strongly, w-well-structured objects, and an
adversary of strength (α,W ), α < ϵ/4, acts on it. Then, Algorithm 4 with the modifications in
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parentheses would recover in polynomial time an explanation for the unadulterated image that is
correct in d−Θ(walgk

2) pixels.

Proof
As before, our argument hinges on the algorithm’s ability to find and correctly identify signa-

tures. In this case, finding a signature requires a bit more work than looking for an exact match. To
show that our algorithm succeeds in identifying the source of a large number of pixels of the image,
we crucially argue that if a large chunk in the image seems most identical to a chunk from a single
object, a subset of it originally arose from that object (prior to corruptions). To get there, we first
show that an object that is ϵ-strongly, w-well-structured is also ϵ/2-strongly, walg well-structured.
Next, we show that for a range of α values (representing the strength of the adversary), the cor-
rect source object is identifiable even after corruptions. Finally, we argue the key lemma described
above.

Lemma 42 If a set of objects is ϵ-strongly, w-well-structured, then for any z > w , the set of
objects is ϵ/2-strongly, z-well-structured.

Proof
From the definition of ϵ-strongly w-well-structured, we know that there do not exist two strings

s1, s2 of length w such that 1−ϵ fraction of the pixels match. This implies that for all strings s1, s2 ,
of length w at most 1 − ϵ fraction of the pixels match, and so for all strings s1, s2 , of length w
at least ϵ fraction of the pixels differ. Now we consider strings s′1, s

′
2 from such objects of length

z > w . Write z = sw + j , where j < w and s ≥ 1 . Then we know that at least ϵsw pixels of s′1
differ from s′2 . Then, we have that the fraction of pixels that differ is at least:

ϵsw

sw + j
>

ϵsw

(s+ 1)w
≥ ϵ

2
.

And so, we have shown that for all z > w , a set of objects that is ϵ-strongly, w-well-structured is
ϵ/2-strongly, z-well-structured.

Lemma 43
Suppose objects are ϵ-strongly, w-well structured, and an adversary with strength (α,W ) where

α < ϵ/4 , acts on the image. Then if a segment in the image of length ℓ ≥ max{w,W} arises from
positions i through i+ ℓ− 1 of a single object, then it is closer to the substring from i to i+ ℓ− 1
of that object than it is to any other segment of length ℓ of that object or any other object. That is, if
a segment is α-approximately close to a segment of object o, it cannot be α-approximately close to
any segment from any other object o′ or any other segment from object o.

Proof
There are two cases for us to consider. In the first case, W > w . In this case, from the previous

lemma, we know that the objects are also ϵ/2-strongly, ℓ-well-structured.
Let the string in the image be s1 which is generated by corrupting α fraction of the pixels of a

string of length ℓ starting from index j of object A, which we call s⋆. Then, the Hamming distance
between s1 and s⋆ is at most α ℓ < ϵ

4 ℓ . The Hamming distance between any other substring of an
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object of length ℓ denoted sany and s⋆ is at least ϵ
2 ℓ . Thus, by the triangle inequality d(s1, sany) ≥

d(s⋆, sany)− d(s1, s⋆) >
ϵ
2ℓ−

ϵ
4ℓ =

ϵ
4ℓ .

In the other case, w > W . Then, at most αW < αw < ϵ
4w < ϵ

4ℓ pixels are corrupted and
the same argument using triangle inequality holds: any other string of length ℓ would be at least ϵ ℓ
pixels different from this one.

With this lemma, we have that any walg-pixel (with an appropriate fraction possibly corrupted)
string from an object will be closer to its source object than anything else. This allows us, in
analysis, to be able to uniquely identify the source of a large piece. This will be essential in arguing
that if enough pixels of an object are visible in the image, then the algorithm will recover part of
that object.

Lemma 44 Assume objects are w-well-structured and the adversary has strength (α,W ), where
α < ϵ/4. Let walg = max{w,W}. Then if the algorithm sees a segment of size ℓ ≥ 2walgk+1 that
approximately matches (as in Defn. 20) ℓ pixels of a single object o, then the middle ℓ − 2(walg −
1)(k − 1) pixels must be a pure segment arising from object o .

Proof Again, as before, we first analyze the possibility that problematic overlaps comprised this
image.

Claim 45 Suppose we have a segment s̃ in Ĩ of size ℓ ≥ 2walgk+1 that α-approximately matches
that many pixels of a single object o. If in s , the corresponding segment pre-corruption, pixel i and
pixel j indeed arise from the same instance of object o, then for all q ∈ [i, j] , pixel q in s of the
image I must also arise from the same instance of object o.

Proof This follows from the same argument as before, except now instead of applying well-structuredness
to argue that an object cannot have been added and removed to the stack described in the proof of
Claim 41, we apply ϵ-well-structuredness to argue it. Once again, we must consider the same two
potential explanations for the matching between object o and the corresponding locations in string s
described previously. Either i, j come from the same copy of object o and object o has been on the
top of the stack throughout, or i, j come from the same copy of object o, object o was on top, then
another object o′ was added and removed before index j. The latter would necessitate that at least
w pixels have come and gone. In the context of the original problem, in order to be in this case, we
would need that the string s̃ α-approximately matches o′. However, by Lemma 43, we know that
any object that isn’t o must be further away than α · w from the object in at least one window. This
concludes the proof of Claim 45.

Based on this, we may continue proving Lemma 44. By the Pigeonhole principle, in the left half
of the segment, there must be at least one object that has at least walg pixels visible. Likewise, in the
right half of the segment, there must be at least one object that has at least walg pixels visible. Now,
since s̃ approximately matches ℓ pixels of object o and due to ϵ/2-strongly well-structuredness, both
these segments of at least walg pixels must come from the same instance of object o. This implies
that there are at least two indices i, j in s that arise from the same instance of o. From Claim 45,
we know that if we have these pixels i, j in s, then all of the pixels of s in the middle arise from the
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same instance of that object, and so all of the pixels of s̃ must also arise from object o, albeit with a
limited number of corruptions.

Finally, we must analyze the length of the longest possible segment between i, j. We could lose
walg − 1 pixels k times on each end, which leads to the bound in the statement of Lemma 44.

From this lemma, we have that if a large enough segment of an object is seen, then all but
Θ(walgk) pixels of it are correctly identified with the source object. Since there are at most k
objects, the algorithm recovers a correct explanation for at least d−Θ(k2walg) pixels.

Runtime Naı̈vely, to look up whether a string of length z α-approximately matches any string in
the objects, we must look through up to (s−z+1) ·m strings and compare pixel-by-pixel, requiring
(d− z + 1) · z · (s− z + 1) ·m . Thus, summing over values for z , this takes at most O(d s3m) .

In order to improve this algorithm, we can improve the way we find the largest pure segment
still unexplained as follows. Consider the following dynamic programming table: it contains d× s
cells, and each cell contains walg entries. The entry i in cell j, h represents the number of corruptions
required in the last i pixels to make pixel h of the object the explanation for pixel j in the image. To
update entries in a cell in this table, we check the cell for the previous pixel in the same object and
the previous pixel in the image (i.e., cell j − 1, h − 1). Based on where the corruptions are in this
diagonally previous cell, we update the entry i in the current cell. In particular, if pixel h is not a
correct explanation for pixel j , then if there were x mistakes in the i−1 location in cell j−1, h−1,
there are x + 1 mistakes in the i location of cell j, h . If a stored value grows beyond αwalg , then
we may terminate that chain. In terms of initialization, for each cell in the first row and for each cell
in the first column, we fill in the entry asking how many pixels are incorrect in the last 1 pixel with
either a 0 or a 1, depending on whether that location can be explained by that pixel in the object or
not. From here, we can continue the procedure as described above. We choose the longest diagonal
chain that is never broken as the largest possible single object and continue with the algorithm.

This DP table has size O(dswalg logwalg) and each entry can be filled in constant time. We
need m copies of it per pure segment detection and then need to use to use up to 2k + 1 instances
of it, since that is an upper bound on the number of pure segments we have. Thus, the runtime is
O(dsmk walg).

This concludes the proof of Theorem 21.

Appendix E. Computational Hardness of the Learning Task

In this section, we define a related decision version of our problem and show that it is NP-hard via
reduction from set-splitting (also known as hypergraph 2-coloring) where the sets (hyperedges) are
of size 2 or 3. We start by formally defining the two problems. Then, we describe our reduction.

Object Learning Problem Definition Given an alphabet Σ, a background color b ∈ Σ, an integer
n, and a set S of m triples (Ii, li1, li2), where Ii ∈ Σd and li1, li2 ∈ Z, does there exist a set
T of n objects, i.e., strings oj ∈ (Σ \ {b})∗, such that for each string (image) Ii there exist two
objects oj1, oj2 ∈ T of length li1, li2 respectively such that Ii can be produced using oj1, oj2 in the
open-room model? (By “produced in the open room model” we mean through the process defined
in Section 2.3).
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Note: The above is essentially the decision-version of the problem of learning objects from images
with (exactly) two objects per image, with the added information of the lengths of the objects in each
image. Note that the algorithm of Section 3.2 for learning objects in the partially-random model with
well-structured objects is only helped if it is given the lengths of the objects since it finds the objects
exactly and can always ignore this information.

Set-Splitting Problem Definition Given a set of n items (variables) and a collection of m subsets
of these variables (clauses), where each clause is of size two or three, can we assign variables to 0
(false) or 1 (true) such that no clause has all its variables 0 or all 1? This problem is known to be
NP-hard (Garey and Johnson (1990), Appendix 3.1, [SP4], Comment).

Reduction Construction First, before getting to the instance of set-splitting, it will be helpful to
define the underlying n×O(n3) variable-clause incidence matrix M with one row for each of the n
variables, one column for each of the

(
n
2

)
+
(
n
3

)
possible clauses of size 2 or 3, and setting Mij = 1

if variable i belongs to clause j and Mij = 0 if it does not. Note that at this point we are considering
all possible clauses, not just the clauses in the given set-splitting instance.

The underlying indicator vector I(x) corresponding to variable x is simply the row of matrix M
corresponding to x prepended with a 0 at the start to make some bookkeeping easier later.

From this, we generate Ir(x) = I(x), and Il(x) which is the mirror of I(x); these are the right
and left indicator vectors respectively. With these indicator vectors, we can now generate the images
we need for casting the set-splitting problem as an object learning one.

To convert an instance of set-splitting, which we shall denote SS , to an instance of object
learning, we now generate three types of images over an alphabet of 6 different colors { 0, 1, T , F ,
b (background), g (grey)}.

Variable Images. First are what we call the “variable images.” For each variable x, we generate
two images:

• background (b), followed by indicator vector Il(x) , followed by T, followed by indicator
vector Ir(x) , followed by background (b).

• background (b), followed by indicator vector Il(x) , followed by F, followed by an indicator
vector Ir(x) , followed by background (b).

One pixel of background suffices on the left and right above. In future, wherever there are back-
ground pixels, we include enough of them to ensure the image has size 2 ·

(
n
2

)
·
(
n
3

)
+ 3 .

The sizes of each of the two objects in these images is
(
n
2

)
+
(
n
3

)
+ 2 = n3−n

6 + 2 .

Set Images. The second type of image is the “set image.” For each set in the problem instance,
suppose its index is k (i.e., it corresponds to column k in matrix M ). Then, we generate two images:

• 1, followed by k grey (g) pixels, followed by T followed by background.

• 1, followed by k grey (g) pixels, followed by F , followed by background.

The objects for these images are of size k and
(
n
2

)
+
(
n
3

)
+ 2 = n3−n

6 + 2 .
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Mask Images. The final kind of image is what we call “mask images.” For each value j from
2 to n3−n

6 , these images are background, followed by j pixels of grey, followed by background,
followed by 1 pixel of grey. The sizes of the objects are j and 1.

This completes the reduction. Let us call this instance of object learning, i.e., determining
whether there exists a set of 2n+

(
n
2

)
+
(
n
3

)
objects that can be used to generate the aforementioned

set of images, OL . We now claim this reduction is correct, that is, a solution to OL exists if and
only if a solution to SS exists.

Lemma 46 A solution to OL exists if and only if a solution to SS exists.

Proof We first describe how the existence of a solution to SS implies a solution to OL (⇐) by
constructing a sufficient set of objects that produce the desired images.

Given a solution to SS , we create a set of objects that solve OL as follows. If a variable xi is
true in the SS solution then the two associated objects are (1) the indicator vector Il(xi) followed by
T , and (2) F followed by the indicator vector Ir(xi). On the other hand, if the variable is false, then
the two objects are (1) indicator vector Il(xi) followed by F , and (2) T followed by the indicator
vector Ir(xi). Thus, whether T or F is associated with the left indicator vector depends on whether
the variable is true or false, respectively. Note that the object lengths also work out correctly. Next,
from the mask images, we create grey masks of size k and size 1 for the respective images. Finally,
no additional objects are required for the set objects: since the variable settings constitute a solution
to the set-splitting instance, we know that there must be at least one variable in the set that is true
and at least one that is false. As a result, for a given set, we create the two images associated with
it as follows: we can take object (1) for the true variable and mask of appropriate size to create the
first set image, and we take object (1) for the false variable and mask of appropriate size to create
the second set image. Therefore, we have a solution using the correct number of objects, 2n variable
objects and

(
n
2

)
+
(
n
3

)
mask objects and no additional objects for the set images.

For the reverse direction (⇒), we show that a solution to OL implies a solution to SS.
Consider a solution to OL. Observe that for variable images, the stipulation about object sizes

mandates that the left indicator vector for that variable followed by a single character is one object,
and the other object must be a single character followed by the right indicator vector for that variable.
Since the indicator vectors are different for each variable, this requires a total of at least 2n distinct
objects, and it can only be done with 2n objects if exactly two objects are used per variable. In
particular, requiring exactly two objects per image implies that if for some variable x, I(x) followed
by T is one object, we cannot have I(x) followed by F as another object and vice-versa, implying
that we will not generate objects that indicate both true and false for a particular variable. Likewise,
for each mask image, the two objects are the k grey pixel block and the single grey pixel, for a total
of
(
n
2

)
+
(
n
3

)
mask objects. Note that any solution toOL must not use any additional objects for the

set images.
Now, consider the two set images corresponding to set k. We can generate these using existing

variable and mask objects iff we have a variable object that has a 1 at distance k + 1 from a T , and
a variable object that has a 1 at distance k + 1 from an F . Since the only such variable objects are
those corresponding to variables in set k, this means that if we set variable x to true or false based
(respectively) on whether its indicator vector followed by T or F is one of the variable objects, we
will have a legal solution to the given set-splitting instance SS because every set will have at least
one variable in it set to true and at least one variable set to false (and no variable will be set to both
true and false since there are only 2n variable objects).
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