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A EXPERIMENT SETTINGS

This section provides a detailed dataset description, baseline description, and training details.

Dataset details. Following Task Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023),
we study multi-task model merging on eight image classification datasets below.

• SUN397 (Xiao et al., 2016) is a scene classification dataset, which contains images in 397
classes, with a total of 108,754 images, and each class has at least 100 images.

• Stanford Cars (Cars) (Krause et al., 2013) is a car classification dataset, which contains
196 classes of cars and a total of 16,185 images. Each class in the training set and test set is
divided at a ratio of 1:1.

• RESISC45 (Cheng et al., 2017) is a remote sensing image scene classification data set. It
contains 45 classes of scenes and a total of 31,500 images, of which there are approximately
700 images in each class.

• EuroSAT (Helber et al., 2019) is a satellite image classification dataset containing 27,000
labeled and geo-referenced images in 10 classes.

• SVHN (Yuval, 2011) is a real-world digital classification data set extracted from house
numbers in Google Street View images. There are 10 classes in total. The training set
contains 73,257 samples, the test set contains 26,032 samples, and 531,131 additional simple
samples can be used as additional training data.

• GTSRB (Stallkamp et al., 2011) is a traffic sign classification dataset, which contains 43
classes of traffic signs with a total sample size of more than 50,000.

• MNIST (LeCun, 1998) is a benchmark dataset for image classification. It contains grayscale
images of handwritten digits in 10 classes. The number of images in the training and test
sets is 60,000 and 10,000 respectively. The number of images in each class is balanced.

• DTD (Cimpoi et al., 2014) is a texture classification data set, which contains 47 classes, a
total of 5,640 images, and each class has approximately 120 images.

Baseline details. Our experiments involve the following seven comparison methods and four
variations of our method.

• Individual means that each task uses an independent fine-tuned model, which has no
interference between tasks, but cannot perform multiple tasks simultaneously.

• Traditional MTL collects the original training data of all tasks together to train a multi-task
model. It can be used as a reference upper bound for model merging work.

• Weight Averaging is the simplest method of model merging, which directly averages the
parameters of multiple models. It can be used as a lower bound for model merging.

• Fisher Merging (Matena & Raffel, 2022) calculates the Fisher information matrix (Fisher,
1922) to measure the importance of each parameter when merging models, and model
merging is performed according to the guidance of this importance.

• RegMean (Jin et al., 2023) imposes a constraint when merging models, that is, the L2

distance between the merged model and a single model is required to be as small as possible.
• Task Arithmetic (Ilharco et al., 2023) first defines the concept of “task vectors” and merges

task vectors into a pre-trained model to execute multi-task learning.
• Ties-Merging (Yadav et al., 2023) further solves the task conflict problem in Task Arith-

metic (Ilharco et al., 2023). It eliminates redundant parameters and resolves symbol conflicts
through three steps: Trim, Elect Sign, and Disjoint Merge.

• Task-wise AdaMerging (Ours) is based on Task Arithmetic (Ilharco et al., 2023), which
uses an unsupervised method to automatically learn the merging coefficient of the task
vector in Task Arithmetic.

• Task-wise AdaMergign++ (Ours) is based on Ties-Merging (Yadav et al., 2023), which
uses an unsupervised approach to learn a merging coefficient for each task vector in Ties-
Merging.

• Layer-wise AdaMerging (Ours) automatically learns a merging coefficient for each layer
of each task vector in Task Arithmetic (Ilharco et al., 2023).

• Layer-wise AdaMergign++ (Ours) uses an unsupervised approach to learn a merging
coefficient for each layer of each task vector in Ties-Merging (Yadav et al., 2023).

Implementation details. For the seven baseline methods, we follow the experimental settings in
Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023). In our experiments,
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the merging coefficient � of Task Arithmetic and Ties-Merging is set to 0.3 by default. For our four
variants, we initialize all coefficients {�k}Kk=1 (or {�l

k}
K,L
k=1,l=1) to 0.3 by default before learning

and then update them unsupervised. We use an Adam optimizer (Kingma & Ba, 2014) to update the
merging coefficients, with the learning rate set to 0.001, the momentum to (0.9, 0.999), and the batch
size to 16. Pre-trained models ViT-B/32, ViT-B/16 and ViT-L/14 from CLIP (Radford et al., 2021).

B EXPERIMENT RESULTS

B.1 PERFORMANCE, GENERALIZATION, ROBUSTNESS

Performance. Tab. 5 shows the average accuracy of merging ViT-B/16 on eight tasks. We can
observe that: (i) Ties-Merging alleviates the conflict problem of task vectors in Task Arithmetic,
thus achieving a 3.2% performance improvement compared to Task Arithmetic. (ii) Our Task-wise
AdaMerging and AdaMerging++ automatically learn a merging coefficient for each task vector in
Task Arithmetic and Ties-Merging, thus bringing about 2.2% and 1.0% performance improvements,
respectively. (iii) Our Layer-wise AdaMerging and AdaMerging++ further adaptively learn a merging
coefficient for each layer of each task vector in Task Arithmetic and Ties-Merging, ultimately
achieving performance improvements of 11.1% and 8.7%. These results further demonstrate the
effectiveness of our AdaMerging scheme in multi-task model merging.

Table 5: Multi-task performance when merging ViT-B/16 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic (Ilharco et al., 2023) 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging (Yadav et al., 2023) 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0

Task-wise AdaMerging (Ours) 64.4 64.2 75.4 86.7 86.3 86.7 97.6 46.9 76.0
Task-wise AdaMerging++ (Ours) 67.8 70.2 79.9 89.2 87.5 79.2 98.3 51.9 78.0
Layer-wise AdaMerging (Ours) 70.2 80.7 81.6 94.8 91.6 95.8 98.5 66.2 84.9
Layer-wise AdaMerging++ (Ours) 71.8 80.8 84.1 94.3 91.9 94.5 98.7 69.8 85.7

Generalization. As shown in Tab. 6, we demonstrate the generalization of Layer-wise AdaMerging
under the ViT-B/16 architecture. In the two unseen test tasks of EuroSAT and MNIST (their
corresponding task vectors are not merged), our AdaMerging improved the average accuracy by 2.3%
compared to Task Arithmetic. On two unseen tasks, RESISC45 and SVHN, the average accuracy
increased by 1.1%. This shows that AdaMerging has better generalization properties.

Table 6: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

Seen Tasks Unseen Tasks

Method SUN397 Cars RESISC45 DTD SVHN GTSRB Avg Acc EuroSAT MNIST Avg Acc
Task Arithmetic 68.1 73.0 81.6 59.1 89.1 83.8 75.8 43.9 87.5 65.7
AdaMerging (Ours) 69.1 79.3 90.0 66.2 95.2 94.4 82.4 45.9 90.1 68.0

Method SUN397 Cars GTSRB EuroSAT DTD MNIST Average RESISC45 SVHN Average

Task Arithmetic 69.0 73.8 81.1 87.6 58.2 98.4 78.0 56.0 67.7 61.8
AdaMerging (Ours) 72.9 81.0 97.1 96.4 66.5 99.2 85.5 52.3 75.6 63.9

Robustness. Tab. 7 shows the robustness test of AdaMerging and Task Arithmetic based on ViT-B/16
on seven corruption test datasets. Fig. 6 shows an example of corruption. We can observe that in
the test datasets Motion Blur, Impulse Noise, Gaussian Noise, Pixelate, Spatter, Contrast and JPEG
Compression where the distribution drifts, the average accuracy of AdaMerging is 9.9%, 8.2%, 7.8%,
6.8%, 12.4%, 9.5% and 9.7% higher than that of Task Arithmetic, respectively. This shows that our
AdaMerging is more robust to test data distribution shifts than Task Arithmetic.

B.2 ANALYSIS EXPERIMENT

Merging Coefficients Visualization. Fig. 7 and Fig. 8 show the merging coefficients of eight task
vectors learned by Layer-wise AdaMerging and AdaMerging++ on ViT-B/16 respectively. In addition,
Fig. 9 and Fig. 10 show the coefficients learned under Vit-L/14. We can clearly observe that in
different layers of different task vectors, the learned merging coefficients are different. Finding the
merging coefficients of so many layers through grid search is almost impossible.
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Table 7: Robustness results when merging ViT-B/16 models on four tasks.

Clean Test Set Corruption Test Set (Motion Blur)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 75.3 96.3 85.3 80.5 84.3 73.5 70.9 83.9 72.2 75.1
AdaMerging (Ours) 83.4 97.2 88.6 97.5 91.7 81.3 75.9 87.4 95.6 85.0

Corruption Test Set (Impulse Noise) Corruption Test Set (Gaussian Noise)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 70.4 59.5 75.2 54.0 64.8 72.2 60.8 78.5 51.0 65.6
AdaMerging (Ours) 77.6 42.1 81.9 90.2 73.0 79.1 58.9 81.2 74.5 73.4

Corruption Test Set (Pixelate) Corruption Test Set (Spatter)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 03.8 38.0 24.8 71.3 34.5 72.1 58.4 79.9 60.1 67.6
AdaMerging (Ours) 04.1 46.4 23.6 91.3 41.3 79.3 60.9 85.8 93.7 80.0

Corruption Test Set (Contrast) Corruption Test Set (JPEG Compression)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 73.4 62.5 81.3 76.9 73.5 75.1 73.1 84.8 64.7 74.4
AdaMerging (Ours) 81.4 68.1 85.8 96.8 83.0 81.9 76.0 87.3 91.0 84.1

Clean Motion Blur Contrast JPEG Compression

Spatter Pixelate Impulse Noise Gaussian Noise

Figure 6: An example of corruption data visualization, in which the corruption image generation
method refers to Hendrycks & Dietterich (2019).

Visualization of Correlation between Entropy and Loss. As shown in Fig. 11, we analyze the
correlation between the entropy and the model’s prediction loss for eight tasks (or datasets). As
described in Sec. 3.2.2, in each dataset, we sort the entropy on the test samples from small to large
into eleven groups and observe the average loss of sample prediction within each group. We observe
that groups with smaller entropy generally have smaller average losses. Therefore, it is reasonable to
take entropy minimization as an optimization surrogate objective for loss minimization.
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Figure 7: Learned model merging coefficients of Layer-wise AdaMerging on ViT-B/16. The k-th
row represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point
represents the coefficient �l

k.

Figure 8: Learned model merging coefficients of Layer-wise AdaMerging++ on ViT-B/16. The
k-th row represents the k-th task vector, the l-th column represents the l-th layer, and the intersection
point represents the coefficient �l

k.

Figure 9: Learned model merging coefficients of Layer-wise AdaMerging on ViT-L/14. The k-th
row represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point
represents the coefficient �l

k.

Figure 10: Learned model merging coefficients of Layer-wise AdaMerging++ on ViT-L/14. The
k-th row represents the k-th task vector, the l-th column represents the l-th layer, and the intersection
point represents the coefficient �l

k.
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Figure 11: Correlation analysis of entropy and average loss on eight tasks (or datasets). We can
observe that there is a high positive correlation between entropy and prediction loss on each dataset.
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