
Published as a conference paper at ICLR 2022

A LARGE LANGUAGE MODELS STILL NEED PARAMETER UPDATES

Few-shot learning, or prompt engineering, is very advantageous when we only have a handful of
training samples. However, in practice, we can often afford to curate a few thousand or more training
examples for performance-sensitive applications. As shown in Table 5, fine-tuning improves the
model performance drastically compared to few-shot learning on datasets large and small. We take
the GPT-3 few-shot result on RTE from the GPT-3 paper (Brown et al., 2020). For MNLI-matched,
we use two demonstrations per class and six in-context examples in total.

Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0
GPT-3 Fine-Tuned 89.5 85.4

Table 5: Fine-tuning significantly outperforms few-shot learning on GPT-3 (Brown et al., 2020).

B UNDERSTANDING THE LOW-RANK UPDATES

Given the empirical advantage of LoRA, we hope to further explain the properties of the low-rank
adaptation learned from downstream tasks. Note that the low-rank structure not only lowers the
hardware barrier to entry which allows us to run multiple experiments in parallel, but also gives
better interpretability of how the update weights are correlated with the pre-trained weights. We
focus our study on GPT-3 175B, where we achieved the largest reduction of trainable parameters
(up to 10,000×) without adversely affecting task performances.

We perform a sequence of empirical studies to answer the following questions: 1) Given a parameter
budget constraint, which subset of weight matrices in a pre-trained Transformer should we adapt
to maximize downstream performance? 2) Is the “optimal” adaptation matrix ∆W really rank-
deficient? If so, what is a good rank to use in practice? 3) What is the connection between ∆W and
W ? Does ∆W highly correlate with W ? How large is ∆W comparing to W ?

We believe that our answers to question (2) and (3) shed light on the fundamental principles of using
pre-trained language models for downstream tasks, which is a critical topic in NLP.

B.1 WHICH WEIGHT MATRICES IN TRANSFORMER SHOULD WE APPLY LORA TO?

Given a limited parameter budget, which types of weights should we adapt with LoRA to obtain
the best performance on downstream tasks? As mentioned in Section 4.2, we only consider weight
matrices in the self-attention module. We set a parameter budget of 18M (roughly 35MB if stored
in FP16) on GPT-3 175B, which corresponds to r = 8 if we adapt one type of attention weights or
r = 4 if we adapt two types, for all 96 layers. The result is presented in Table 6.

of Trainable Parameters = 18M

Weight Type Wq Wk Wv Wo Wq,Wk Wq,Wv Wq,Wk,Wv,Wo

Rank r 8 8 8 8 4 4 2

WikiSQL (±0.5%) 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (±0.1%) 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 6: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both Wq and
Wv gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

Note that putting all the parameters in ∆Wq or ∆Wk results in significantly lower performance,
while adapting both Wq and Wv yields the best result. This suggests that even a rank of four
captures enough information in ∆W such that it is preferable to adapt more weight matrices than
adapting a single type of weights with a larger rank.

14

Published as a conference paper at ICLR 2022

B.2 WHAT IS THE OPTIMAL RANK r FOR LORA?

We turn our attention to the effect of rank r on model performance. We adapt {Wq,Wv},
{Wq,Wk,Wv,Wc}, and just Wq for a comparison.

Weight Type r = 1 r = 2 r = 4 r = 8 r = 64

WikiSQL(±0.5%) Wq 68.8 69.6 70.5 70.4 70.0
Wq,Wv 73.4 73.3 73.7 73.8 73.5

Wq,Wk,Wv,Wo 74.1 73.7 74.0 74.0 73.9

MultiNLI (±0.1%)
Wq 90.7 90.9 91.1 90.7 90.7

Wq,Wv 91.3 91.4 91.3 91.6 91.4
Wq,Wk,Wv,Wo 91.2 91.7 91.7 91.5 91.4

Table 7: Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a
rank as small as one suffices for adapting bothWq andWv on these datasets while trainingWq alone
needs a larger r. We conduct a similar experiment on GPT-2 in Section K.2.

Table 7 shows that, surprisingly, LoRA already performs competitively with a very small r (more
so for {Wq,Wv} than just Wq). This suggests the update matrix ∆W could have a very small
“intrinsic rank”.6 To further support this finding, we check the overlap of the subspaces learned by
different choices of r and by different random seeds. We argue that increasing r does not cover a
more meaningful subspace, which suggests that a low-rank adaptation matrix is sufficient.

Subspace similarity between different r. Given Ar=8 and Ar=64 which are the learned adapta-
tion matrices with rank r = 8 and 64 using the same pre-trained model, we perform singular value
decomposition and obtain the right-singular unitary matrices UAr=8

and UAr=64
.7 We hope to an-

swer: how much of the subspace spanned by the top i singular vectors in UAr=8
(for 1 ≤ i ≤ 8) is

contained in the subspace spanned by top j singular vectors of UAr=64
(for 1 ≤ j ≤ 64)? We mea-

sure this quantity with a normalized subspace similarity based on the Grassmann distance (See Ap-
pendix J for a more formal discussion)

φ(Ar=8, Ar=64, i, j) =
||U i>Ar=8

U jAr=64
||2F

min(i, j)
∈ [0, 1] (4)

where U iAr=8
represents the columns of UAr=8

corresponding to the top-i singular vectors.

φ(·) has a range of [0, 1], where 1 represents a complete overlap of subspaces and 0 a complete
separation. See Figure 3 for how φ changes as we vary i and j. We only look at the 48th layer
(out of 96) due to space constraint, but the conclusion holds for other layers as well, as shown
in Section K.1.

We make an important observation from Figure 3.

Directions corresponding to the top singular vector overlap significantly between
Ar=8 and Ar=64, while others do not. Specifically, ∆Wv (resp. ∆Wq) of Ar=8

and ∆Wv (resp. ∆Wq) of Ar=64 share a subspace of dimension 1 with normalized
similarity > 0.5, providing an explanation of why r = 1 performs quite well in our
downstream tasks for GPT-3.

Since both Ar=8 and Ar=64 are learned using the same pre-trained model, Figure 3 indicates that
the top singular-vector directions of Ar=8 and Ar=64 are the most useful, while other directions
potentially contain mostly random noises accumulated during training. Hence, the adaptation matrix
can indeed have a very low rank.

6However, we do not expect a small r to work for every task or dataset. Consider the following thought
experiment: if the downstream task were in a different language than the one used for pre-training, retraining
the entire model (similar to LoRA with r = dmodel) could certainly outperform LoRA with a small r.

7Note that a similar analysis can be carried out withB and the left-singular unitary matrices – we stick with
A for our experiments.

15

Published as a conference paper at ICLR 2022

0.0

0.2

0.4

0.6

0.8

1.0

1 6 12 18 23 29 35 40 46 52 58
j

1
2

3
4

5
6

7
8

i

Wq

1 6 12 18 23 29 35 40 46 52 58

j

Wv

1 2 3 4 5 6 7 8
j

Wq

1 2 3 4 5 6 7 8
j

Wv

(Ar = 64, Ar = 8, i, j)

Figure 3: Subspace similarity between column vectors ofAr=8 andAr=64 for both ∆Wq and ∆Wv .
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in r = 8 are included in r = 64, and vice versa.

0.0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20 25 30 34 39 44 49 54 59

j

1
8

16
24
32
40
48
56

i

Wq

1 5 10 15 20 25 30 34 39 44 49 54 59

j

(Ar = 64, A ′
r = 64, i, j)

Wv

1 5 10 15 20 25 30 34 39 44 49 54 59

j

Random Gaussian

Figure 4: Left and Middle: Normalized subspace similarity between the column vectors of Ar=64

from two random seeds, for both ∆Wq and ∆Wv in the 48-th layer. Right: the same heat-map
between the column vectors of two random Gaussian matrices. See Section K.1 for other layers.

Subspace similarity between different random seeds. We further confirm this by plotting the
normalized subspace similarity between two randomly seeded runs with r = 64, shown in Figure 4.
∆Wq appears to have a higher “intrinsic rank” than ∆Wv , since more common singular value direc-
tions are learned by both runs for ∆Wq , which is in line with our empirical observation in Table 7.
As a comparison, we also plot two random Gaussian matrices, which do not share any common
singular value directions with each other.

B.3 HOW DOES THE ADAPTATION MATRIX ∆W COMPARE TO W ?

We further investigate the relationship between ∆W andW . In particular, does ∆W highly correlate
with W ? (Or mathematically, is ∆W mostly contained in the top singular directions of W ?) Also,
how “large” is ∆W comparing to its corresponding directions in W ? This can shed light on the
underlying mechanism for adapting pre-trained language models.

To answer these questions, we project W onto the r-dimensional subspace of ∆W by comput-
ing U>WV >, with U /V being the left/right singular-vector matrix of ∆W . Then, we com-
pare the Frobenius norm between ‖U>WV >‖F and ‖W‖F . As a comparison, we also compute
‖U>WV >‖F by replacing U, V with the top r singular vectors of W or a random matrix.

We draw several conclusions from Table 8. First, ∆W has a stronger correlation with W compared
to a random matrix, indicating that ∆W amplifies some features that are already in W . Second,
instead of repeating the top singular directions of W , ∆W only amplifies directions that are not
emphasized in W . Third, the amplification factor is rather huge: 21.5 ≈ 6.91/0.32 for r = 4.
See Section K.4 for why r = 64 has a smaller amplification factor. We also provide a visualization
in Section K.3 for how the correlation changes as we include more top singular directions from Wq .

16

Published as a conference paper at ICLR 2022

r = 4 r = 64
∆Wq Wq Random ∆Wq Wq Random

||U>WqV
>||F = 0.32 21.67 0.02 1.90 37.71 0.33

||Wq||F = 61.95 ||∆Wq||F = 6.91 ||∆Wq||F = 3.57

Table 8: The Frobenius norm of U>WqV
> where U and V are the left/right top r singular vector

directions of either (1) ∆Wq , (2) Wq , or (3) a random matrix. The weight matrices are taken from
the 48th layer of GPT-3.

This suggests that the low-rank adaptation matrix potentially amplifies the important features for
specific downstream tasks that were learned but not emphasized in the general pre-training model.

C INFERENCE LATENCY INTRODUCED BY ADAPTER LAYERS

Adapter layers are external modules added to a pre-trained model in a sequential manner, whereas
our proposal, LoRA, can be seen as external modules added in a parallel manner. Consequently,
adapter layers must be computed in addition to the base model, inevitably introducing additional
latency. While as pointed out in Rücklé et al. (2020), the latency introduced by adapter layers can
be mitigated when the model batch size and/or sequence length is large enough to full utilize the
hardware parallelism. We confirm their observation with a similar latency study on GPT-2 medium
and point out that there are scenarios, notably online inference where the batch size is small, where
the added latency can be significant.

We measure the latency of a single forward pass on an NVIDIA Quadro RTX8000 by averaging
over 100 trials. We vary the input batch size, sequence length, and the adapter bottleneck dimension
r. We test two adapter designs: the original one by Houlsby et al. (2019), which we call AdapterH,
and a recent, more efficient variant by Lin et al. (2020), which we call AdapterL. See Section 5.1
for more details on the designs. We plot the slow-down in percentage compared to the no-adapter
baseline in Figure 5.

0

5

10

15

20

25

30

35

0
10

10
0

25
0

Ad
ap

te
rH

 r

Seq Len = 128 Seq Len = 256 Seq Len = 512

1 2 4 8 16 32
Batch Size

0
10

10
0

25
0

Ad
ap

te
rL r

1 2 4 8 16 32
Batch Size

1 2 4 8 16 32
Batch Size

Figure 5: Percentage slow-down of inference latency compared to the no-adapter (r = 0) baseline.
The top row shows the result for AdapterH and the bottom row AdapterL. Larger batch size and
sequence length help to mitigate the latency, but the slow-down can be as high as over 30% in an
online, short-sequence-length scenario. We tweak the colormap for better visibility.

17

Published as a conference paper at ICLR 2022

D DESCRIPTION OF DATASETS

GLUE Benchmark is a wide-ranging collection of natural language understanding tasks. It includes
MNLI (inference, Williams et al. (2018)), SST-2 (sentiment analysis, Socher et al. (2013)), MRPC
(paraphrase detection, Dolan & Brockett (2005)), CoLA (linguistic acceptability, Warstadt et al.
(2018)), QNLI (inference, Rajpurkar et al. (2018)), QQP8 (question-answering), RTE (inference),
and STS-B (textual similarity, Cer et al. (2017)). The broad coverage makes GLUE benchmark a
standard metric to evaluate NLU models such as RoBERTa and DeBERTa. The individual datasets
are released under different permissive licenses.

WikiSQL is introduced in Zhong et al. (2017) and contains 56, 355/8, 421 training/validation ex-
amples. The task is to generate SQL queries from natural language questions and table schemata.
We encode context as x = {table schema, query} and target as y = {SQL}. The dataset is release
under the BSD 3-Clause License.

SAMSum is introduced in Gliwa et al. (2019) and contains 14, 732/819 training/test examples. It
consists of staged chat conversations between two people and corresponding abstractive summaries
written by linguists. We encode context as ”\n” concatenated utterances followed by a ”\n\n”,
and target as y = {summary}. The dataset is released under the non-commercial licence: Creative
Commons BY-NC-ND 4.0.

E2E NLG Challenge was first introduced in Novikova et al. (2017) as a dataset for training end-to-
end, data-driven natural language generation systems and is commonly used for data-to-text evalua-
tion. The E2E dataset consists of roughly 42, 000 training, 4, 600 validation, and 4, 600 test exam-
ples from the restaurant domain. Each source table used as input can have multiple references. Each
sample input (x, y) consists of a sequence of slot-value pairs, along with a corresponding natural
language reference text. The dataset is released under Creative Commons BY-NC-SA 4.0.

DART is an open-domain data-to-text dataset described in Nan et al. (2020). DART inputs are
structured as sequences of ENTITY — RELATION — ENTITY triples. With 82K examples in
total, DART is a significantly larger and more complex data-to-text task compared to E2E. The
dataset is released under the MIT license.

WebNLG is another commonly used dataset for data-to-text evaluation (Gardent et al., 2017). With
22K examples in total WebNLG comprises 14 distinct categories, nine of which are seen during
training. Since five of the 14 total categories are not seen during training, but are represented in
the test set, evaluation is typically broken out by “seen” categories (S), “unseen” categories (U)
and “all” (A). Each input example is represented by a sequence of SUBJECT — PROPERTY —
OBJECT triples. The dataset is released under Creative Commons BY-NC-SA 4.0.

E THE CALCULATION OF TRAINABLE PARAMETERS FOR BASELINES

We do not count the classification head for NLU tasks in our calculation of trainable parameters,
even though they are trainable – otherwise they would be random – following prior work.

Bias-only or BitFit The number of trainable parameters is |Θ| = Lbias × dmodel, where Lbias is
the number of trainable bias vectors.

Prefix-embedding tuning (PreEmbed) We use lp (resp. li) denote the number of prefix (resp. infix)
tokens. The number of trainable parameters is |Θ| = dmodel × (lp + li).

Prefix-layer tuning (PreLayer) The number of trainable parameters is |Θ| = L×dmodel×(lp+li),
where L is the number of Transformer layers.

Adapter tuning In all cases, we have |Θ| = L̂Adpt×(2×dmodel×r+r+dmodel)+2×L̂LN×dmodel
where L̂Adpt is the number of adapter layers and L̂LN the number of trainable LayerNorms (e.g., in
AdapterL).

8https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

18

Published as a conference paper at ICLR 2022

LoRA The number of trainable parameters is determined by the rank r and the shape of the original
weights: |Θ| = 2× L̂LoRA × dmodel × r, where L̂LoRA is the number of weight matrices we apply
LoRA to.

F HYPERPARAMETERS USED IN EXPERIMENTS

F.1 ROBERTA

We train using AdamW with a linear learning rate decay schedule. We sweep learning rate, number
of training epochs, and batch size for LoRA. Following Liu et al. (2019), we initialize the LoRA
modules to our best MNLI checkpoint when adapting to MRPC, RTE, and STS-B, instead of the
usual initialization; the pre-trained model stays frozen for all tasks. We report the median over 5
random seeds; the result for each run is taken from the best epoch. For a fair comparison with the
setup in Houlsby et al. (2019) and Pfeiffer et al. (2021), we restrict the model sequence length to 128
and used a fixed batch size for all tasks. Importantly, we start with the pre-trained RoBERTa large
model when adapting to MRPC, RTE, and STS-B, instead of a model already adapted to MNLI.
The runs with this restricted setup are marked with †. See the hyperparameters used in our runs
in Table 9.

F.2 DEBERTA

We again train using AdamW with a linear learning rate decay schedule. Following He et al. (2021),
we tune learning rate, dropout probability, warm-up steps, and batch size. We use the same model
sequence length used by (He et al., 2021) to keep our comparison fair. Following He et al. (2021),
we initialize the LoRA modules to our best MNLI checkpoint when adapting to MRPC, RTE, and
STS-B, instead of the usual initialization; the pre-trained model stays frozen for all tasks. We report
the median over 5 random seeds; the result for each run is taken from the best epoch. See the
hyperparameters used in our runs in Table 10.

F.3 GPT-2

We train all of our GPT-2 models using AdamW (Loshchilov & Hutter, 2017) with a linear learning
rate schedule for 5 epochs. We use the batch size, learning rate, and beam search beam size described
in Li & Liang (2021). Accordingly, we also tune the above hyperparameters for LoRA. We report the
mean over 3 random seeds; the result for each run is taken from the best epoch. The hyperparameters
used for LoRA in GPT-2 are listed in Table 11. For those used for other baselines, see Li & Liang
(2021).

F.4 GPT-3

For all GPT-3 experiments, we train using AdamW (Loshchilov & Hutter, 2017) for 2 epochs with
a batch size of 128 samples and a weight decay factor of 0.1. We use a sequence length of 384 for
WikiSQL (Zhong et al., 2017), 768 for MNLI (Williams et al., 2018), and 2048 for SAMSum (Gliwa
et al., 2019). We tune learning rate for all method-dataset combinations. See Section F.4 for more
details on the hyperparameters used. For prefix-embedding tuning, we find the optimal lp and li
to be 256 and 8, respectively, totalling 3.2M trainable parameters. We use lp = 8 and li = 8 for
prefix-layer tuning with 20.2M trainable parameters to obtain the overall best performance. We
present two parameter budgets for LoRA: 4.7M (rq = rv = 1 or rv = 2) and 37.7M (rq = rv = 8
or rq = rk = rv = ro = 2). We report the best validation performance from each run. The training
hyperparameters used in our GPT-3 experiments are listed in Table 12.

G EXAMPLE LEARNING CURVES FROM GPT-3 175B

The final performance shown in Table 4 does not tell us if different approaches reach their opti-
mal performance at the same speed. We look at GPT-3 175B instead of smaller scale experiments
because we do not have access to the learning curves for baselines taken from prior work. Fig-
ure 6 shows the learning curves from one of datasets we used. There is not a significant difference

19

Published as a conference paper at ICLR 2022

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTa base
LoRA

Batch Size 16 16 16 32 32 16 32 16
Epochs 30 60 30 80 25 25 80 40
Learning Rate 5E-04 5E-04 4E-04 4E-04 4E-04 5E-04 5E-04 4E-04
LoRA Config. rq = rv = 8
LoRA α 8
Max Seq. Len. 512

RoBERTa large
LoRA

Batch Size 4 4 4 4 4 4 8 8
Epochs 10 10 20 20 10 20 20 30
Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
LoRA Config. rq = rv = 8
LoRA α 16
Max Seq. Len. 128 128 512 128 512 512 512 512

RoBERTa large
LoRA†

Batch Size 4
Epochs 10 10 20 20 10 20 20 10
Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
LoRA Config. rq = rv = 8
LoRA α 16
Max Seq. Len. 128

RoBERTa large
AdptP (3M)†

Batch Size 32
Epochs 10 20 20 20 10 20 20 20
Learning Rate 3E-05 3E-05 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 64
Max Seq. Len. 128

RoBERTa large
AdptP (0.8M)†

Batch Size 32
Epochs 5 20 20 20 10 20 20 20
Learning Rate 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 16
Max Seq. Len. 128

RoBERTa large
AdptH (6M)†

Batch Size 32
Epochs 10 5 10 10 5 20 20 10
Learning Rate 3E-05 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 64
Max Seq. Len. 128

RoBERTa large
AdptH (0.8M)†

Batch Size 32
Epochs 10 5 10 10 5 20 20 10
Learning Rate 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04 3E-04
Bottleneck r 8
Max Seq. Len. 128

Table 9: The hyperparameters we used for RoBERTa on the GLUE benchmark.

in terms of the speed up of convergence among LoRA, full finetuning (FT), and Adapter, though
LoRA achieves the lowest validation loss and does so slightly earlier than the other two methods.

H COMBINING LORA WITH PREFIX TUNING

LoRA can be naturally combined with existing prefix-based approaches. In this section, we evaluate
two combinations of LoRA and variants of prefix-tuning on WikiSQL and MNLI.

LoRA+PrefixEmbed (LoRA+PE) combines LoRA with prefix-embedding tuning, where we insert
lp + li special tokens whose embeddings are treated as trainable parameters. For more on prefix-
embedding tuning, see Section 5.1.

20

Published as a conference paper at ICLR 2022

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Linear

DeBERTa XXL
LoRA

Batch Size 8 8 32 4 6 8 4 4
Epochs 5 16 30 10 8 11 11 10
Learning Rate 1E-04 6E-05 2E-04 1E-04 1E-04 1E-04 2E-04 2E-04
Weight Decay 0 0.01 0.01 0 0.01 0.01 0.01 0.1
CLS Dropout 0.15 0 0 0.1 0.1 0.2 0.2 0.2
LoRA Config. rq = rv = 8
LoRA α 8
Max Seq. Len. 256 128 128 64 512 320 320 128

Table 10: The hyperparameters for DeBERTa XXL on tasks included in the GLUE benchmark.

Dataset E2E WebNLG DART

Training

Optimizer AdamW
Weight Decay 0.01 0.01 0.0
Dropout Prob 0.1 0.1 0.0
Batch Size 8
Epoch 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1 0.1 0.0
Learning Rate 0.0002
Adaptation rq = rv = 4
LoRA α 32

Inference

Beam Size 10
Length Penalty 0.9 0.8 0.8
no repeat ngram size 4

Table 11: The hyperparameters for GPT-2 LoRA on E2E, WebNLG and DART.

LoRA+PrefixLayer (LoRA+PL) combines LoRA with prefix-layer tuning. We also insert lp + li
special tokens; however, instead of letting the hidden representations of these tokens evolve natu-
rally, we replace them after every Transformer block with an input agnostic vector. Thus, both the
embeddings and subsequent Transformer block activations are treated as trainable parameters. For
more on prefix-layer tuning, see Section 5.1.

In Table 15, we show the evaluation results of LoRA+PE and LoRA+PL on WikiSQL and MultiNLI.
First of all, LoRA+PE significantly outperforms both LoRA and prefix-embedding tuning on
WikiSQL, which indicates that LoRA is somewhat orthogonal to prefix-embedding tuning. On
MultiNLI, the combination of LoRA+PE doesn’t perform better than LoRA, possibly because LoRA
on its own already achieves performance comparable to the human baseline. Secondly, we notice
that LoRA+PL performs slightly worse than LoRA even with more trainable parameters. We at-
tribute this to the fact that prefix-layer tuning is very sensitive to the choice of learning rate and thus
makes the optimization of LoRA weights more difficult in LoRA+PL.

21

Published as a conference paper at ICLR 2022

Hyperparameters Fine-Tune PreEmbed PreLayer BitFit AdapterH LoRA

Optimizer AdamW
Batch Size 128
Epoch 2
Warmup Tokens 250,000
LR Schedule Linear

Learning Rate 5.00E-06 5.00E-04 1.00E-04 1.6E-03 1.00E-04 2.00E-04

Table 12: The training hyperparameters used for different GPT-3 adaption methods. We use the
same hyperparameters for all datasets after tuning learning rate.

Figure 6: Learning curves for different adaptation methods on WIkiSQL using GPT-3 175B. LoRA
and full finetuning (FT) reaches their best validation loss slightly faster than Adapter.

I ADDITIONAL EMPIRICAL EXPERIMENTS

I.1 ADDITIONAL EXPERIMENTS ON GPT-2

We also repeat our experiment on DART (Nan et al., 2020) and WebNLG (Gardent et al., 2017)
following the setup of Li & Liang (2021). The result is shown in Table 13. Similar to our result
on E2E NLG Challenge, reported in Section 5, LoRA performs better than or at least on-par with
prefix-based approaches given the same number of trainable parameters.

Method # Trainable DART
Parameters BLEU↑ MET↑ TER↓

GPT-2 Medium
Fine-Tune 354M 46.2 0.39 0.46
AdapterL 0.37M 42.4 0.36 0.48
AdapterL 11M 45.2 0.38 0.46
FTTop2 24M 41.0 0.34 0.56
PrefLayer 0.35M 46.4 0.38 0.46
LoRA 0.35M 47.1±.2 0.39 0.46

GPT-2 Large
Fine-Tune 774M 47.0 0.39 0.46
AdapterL 0.88M 45.7±.1 0.38 0.46
AdapterL 23M 47.1±.1 0.39 0.45
PrefLayer 0.77M 46.7 0.38 0.45
LoRA 0.77M 47.5±.1 0.39 0.45

Table 13: GPT-2 with different adaptation methods on DART. The variances of MET and TER are
less than 0.01 for all adaption approaches.

22

Published as a conference paper at ICLR 2022

Method WebNLG
BLEU↑ MET↑ TER↓

U S A U S A U S A

GPT-2 Medium
Fine-Tune (354M) 27.7 64.2 46.5 .30 .45 .38 .76 .33 .53
AdapterL (0.37M) 45.1 54.5 50.2 .36 .39 .38 .46 .40 .43
AdapterL (11M) 48.3 60.4 54.9 .38 .43 .41 .45 .35 .39
FTTop2 (24M) 18.9 53.6 36.0 .23 .38 .31 .99 .49 .72
Prefix (0.35M) 45.6 62.9 55.1 .38 .44 .41 .49 .35 .40
LoRA (0.35M) 46.7±.4 62.1±.2 55.3±.2 .38 .44 .41 .46 .33 .39

GPT-2 Large
Fine-Tune (774M) 43.1 65.3 55.5 .38 .46 .42 .53 .33 .42
AdapterL (0.88M) 49.8±.0 61.1±.0 56.0±.0 .38 .43 .41 .44 .35 .39
AdapterL (23M) 49.2±.1 64.7±.2 57.7±.1 .39 .46 .43 .46 .33 .39
Prefix (0.77M) 47.7 63.4 56.3 .39 .45 .42 .48 .34 .40
LoRA (0.77M) 48.4±.3 64.0±.3 57.0±.1 .39 .45 .42 .45 .32 .38

Table 14: GPT-2 with different adaptation methods on WebNLG. The variances of MET and TER
are less than 0.01 for all the experiments we ran. “U” indicates unseen categories, “S” indicates seen
categories, and “A” indicates all categories in the test set of WebNLG.

I.2 ADDITIONAL EXPERIMENTS ON GPT-3

We present additional runs on GPT-3 with different adaptation methods in Table 15. The focus is on
identifying the trade-off between performance and the number of trainable parameters.

I.3 LOW-DATA REGIME

To evaluate the performance of different adaptation approaches in the low-data regime. we randomly
sample 100, 1k and 10k training examples from the full training set of MNLI to form the low-data
MNLI-n tasks. In Table 16, we show the performance of different adaptation approaches on MNLI-
n. To our surprise, PrefixEmbed and PrefixLayer performs very poorly on MNLI-100 dataset, with
PrefixEmbed performing only slightly better than random chance (37.6% vs. 33.3%). PrefixLayer
performs better than PrefixEmbed but is still significantly worse than Fine-Tune or LoRA on MNLI-
100. The gap between prefix-based approaches and LoRA/Fine-tuning becomes smaller as we in-
crease the number of training examples, which might suggest that prefix-based approaches are not
suitable for low-data tasks in GPT-3. LoRA achieves better performance than fine-tuning on both
MNLI-100 and MNLI-Full, and comparable results on MNLI-1k and MNLI-10K considering the
(±0.3) variance due to random seeds.

The training hyperparameters of different adaptation approaches on MNLI-n are reported in Ta-
ble 17. We use a smaller learning rate for PrefixLayer on the MNLI-100 set, as the training loss does
not decrease with a larger learning rate.

J MEASURING SIMILARITY BETWEEN SUBSPACES

In this paper we use the measure φ(A,B, i, j) = ψ(U iA, U
j
B) =

‖Ui>
A UB‖2F

min{i,j} to measure the subspace

similarity between two column orthonormal matrices U iA ∈ Rd×i and U jB ∈ Rd×j , obtained by
taking columns of the left singular matrices of A and B. We point out that this similarity is simply
a reverse of the standard Projection Metric that measures distance between subspaces Ham & Lee
(2008).

23

Published as a conference paper at ICLR 2022

Method Hyperparameters # Trainable Parameters WikiSQL MNLI-m

Fine-Tune - 175B 73.8 89.5

PrefixEmbed

lp = 32, li = 8 0.4 M 55.9 84.9
lp = 64, li = 8 0.9 M 58.7 88.1
lp = 128, li = 8 1.7 M 60.6 88.0
lp = 256, li = 8 3.2 M 63.1 88.6
lp = 512, li = 8 6.4 M 55.9 85.8

PrefixLayer

lp = 2, li = 2 5.1 M 68.5 89.2
lp = 8, li = 0 10.1 M 69.8 88.2
lp = 8, li = 8 20.2 M 70.1 89.5
lp = 32, li = 4 44.1 M 66.4 89.6
lp = 64, li = 0 76.1 M 64.9 87.9

AdapterH

r = 1 7.1 M 71.9 89.8
r = 4 21.2 M 73.2 91.0
r = 8 40.1 M 73.2 91.5
r = 16 77.9 M 73.2 91.5
r = 64 304.4 M 72.6 91.5

LoRA

rv = 2 4.7 M 73.4 91.7
rq = rv = 1 4.7 M 73.4 91.3
rq = rv = 2 9.4 M 73.3 91.4

rq = rk = rv = ro = 1 9.4 M 74.1 91.2
rq = rv = 4 18.8 M 73.7 91.3

rq = rk = rv = ro = 2 18.8 M 73.7 91.7
rq = rv = 8 37.7 M 73.8 91.6

rq = rk = rv = ro = 4 37.7 M 74.0 91.7
rq = rv = 64 301.9 M 73.6 91.4

rq = rk = rv = ro = 64 603.8 M 73.9 91.4

LoRA+PE
rq = rv = 8, lp = 8, li = 4 37.8 M 75.0 91.4
rq = rv = 32, lp = 8, li = 4 151.1 M 75.9 91.1
rq = rv = 64, lp = 8, li = 4 302.1 M 76.2 91.3

LoRA+PL rq = rv = 8, lp = 8, li = 4 52.8 M 72.9 90.2

Table 15: Hyperparameter analysis of different adaptation approaches on WikiSQL and MNLI. Both
prefix-embedding tuning (PrefixEmbed) and prefix-layer tuning (PrefixLayer) perform worse as we
increase the number of trainable parameters, while LoRA’s performance stabilizes. Performance is
measured in validation accuracy.

Method MNLI(m)-100 MNLI(m)-1k MNLI(m)-10k MNLI(m)-392K

GPT-3 (Fine-Tune) 60.2 85.8 88.9 89.5
GPT-3 (PrefixEmbed) 37.6 75.2 79.5 88.6
GPT-3 (PrefixLayer) 48.3 82.5 85.9 89.6
GPT-3 (LoRA) 63.8 85.6 89.2 91.7

Table 16: Validation accuracy of different methods on subsets of MNLI using GPT-3 175B. MNLI-
n describes a subset with n training examples. We evaluate with the full validation set. LoRA
performs exhibits favorable sample-efficiency compared to other methods, including fine-tuning.

To be concrete, let the singular values of U i>A U jB to be σ1, σ2, · · · , σp where p = min{i, j}. We
know that the Projection Metric Ham & Lee (2008) is defined as:

d(U iA, U
j
B) =

√√√√p−
p∑
i=1

σ2
i ∈ [0,

√
p]

24

Published as a conference paper at ICLR 2022

Hyperparameters Adaptation MNLI-100 MNLI-1k MNLI-10K MNLI-392K

Optimizer - AdamW
Warmup Tokens - 250,000
LR Schedule - Linear
Batch Size - 20 20 100 128
Epoch - 40 40 4 2

Learning Rate

FineTune 5.00E-6
PrefixEmbed 2.00E-04 2.00E-04 4.00E-04 5.00E-04
PrefixLayer 5.00E-05 5.00E-05 5.00E-05 1.00E-04

LoRA 2.00E-4

PrefixEmbed lp 16 32 64 256
Adaptation- PrefixEmbed li 8
Specific PrefixTune lp = li = 8

LoRA rq = rv = 8

Table 17: The hyperparameters used for different GPT-3 adaptation methods on MNLI(m)-n.

where our similarity is defined as:

φ(A,B, i, j) = ψ(U iA, U
j
B) =

∑p
i=1 σ

2
i

p
=

1

p

(
1− d(U iA, U

j
B)2
)

This similarity satisfies that if U iA and U jB share the same column span, then φ(A,B, i, j) = 1. If
they are completely orthogonal, then φ(A,B, i, j) = 0. Otherwise, φ(A,B, i, j) ∈ (0, 1).

K ADDITIONAL EXPERIMENTS ON LOW-RANK MATRICES

We present additional results from our investigation into the low-rank update matrices.

K.1 CORRELATION BETWEEN LORA MODULES

See Figure 7 and Figure 8 for how the results presented in Figure 3 and Figure 4 generalize to other
layers.

K.2 EFFECT OF r ON GPT-2

We repeat our experiment on the effect of r (Section B.2) in GPT-2. Using the E2E NLG Challenge
dataset as an example, we report the validation loss and test metrics achieved by different choices
of r after training for 26,000 steps. We present our result in Table 18. The optimal rank for GPT-2
Medium is between 4 and 16 depending on the metric used, which is similar to that for GPT-3 175B.
Note that the relationship between model size and the optimal rank for adaptation is still an open
question.

K.3 CORRELATION BETWEEN W AND ∆W

See Figure 9 for the normalized subspace similarity between W and ∆W with varying r.

Note again that ∆W does not contain the top singular directions of W , since the similarity between
the top 4 directions in ∆W and the top-10% of those in W barely exceeds 0.2. This gives evidence
that ∆W contains those “task-specific” directions that are otherwise not emphasized in W .

An interesting next question to answer, is how “strong” do we need to amplify those task-specific
directions, in order for the model adaptation to work well?

25

Published as a conference paper at ICLR 2022

0.0

0.2

0.4

0.6

0.8

1.0

1
2

3
4

5
6

7
8

La
ye

r 1 i

Wq Wv Wq Wv

1
2

3
4

5
6

7
8

La
ye

r 3
2

i
1

2
3

4
5

6
7

8

La
ye

r 6
4

i

1 6 12 18 23 29 35 40 46 52 58

j

1
2

3
4

5
6

7
8

La
ye

r 9
6

i

1 6 12 18 23 29 35 40 46 52 58

j
1 2 3 4 5 6 7 8

j
1 2 3 4 5 6 7 8

j

(Ar = 8, Ar = 64, i, j)

Figure 7: Normalized subspace similarity between the column vectors of Ar=8 and Ar=64 for both
∆Wq and ∆Wv from the 1st, 32nd, 64th, and 96th layers in a 96-layer Transformer.

K.4 AMPLIFICATION FACTOR

One can naturally consider a feature amplification factor as the ratio ‖∆W‖F
‖U>WV >‖F , where U and V

are the left- and right-singular matrices of the SVD decomposition of ∆W . (Recall UU>WV >V
gives the “projection” of W onto the subspace spanned by ∆W .)

Intuitively, when ∆W mostly contains task-specific directions, this quantity measures how much of
them are amplified by ∆W . As shown in Section B.3, for r = 4, this amplification factor is as large
as 20. In other words, there are (generally speaking) four feature directions in each layer (out of the
entire feature space from the pre-trained model W), that need to be amplified by a very large factor
20, in order to achieve our reported accuracy for the downstream specific task. And, one should
expect a very different set of feature directions to be amplified for each different downstream task.

One may notice, however, for r = 64, this amplification factor is only around 2, meaning that
most directions learned in ∆W with r = 64 are not being amplified by much. This should not
be surprising, and in fact gives evidence (once again) that the intrinsic rank needed to represent
the “task-specific directions” (thus for model adaptation) is low. In contrast, those directions in the
rank-4 version of ∆W (corresponding to r = 4) are amplified by a much larger factor 20.

26

Published as a conference paper at ICLR 2022

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
7

13
19
25
31
37
43
49
55
61

La
ye

r 1 i

Wq Wv

La
ye

r 3
2

Wq Wv

1 6 11 16 21 26 31 36 41 46 51 56 61

j

1
7

13
19
25
31
37
43
49
55
61

La
ye

r 6
4

i

1 6 11 16 21 26 31 36 41 46 51 56 61

j

1 6 11 16 21 26 31 36 41 46 51 56 61

j

La
ye

r 9
6

1 6 11 16 21 26 31 36 41 46 51 56 61

j

(Ar = 64, A ′
r = 64, i, j)

Figure 8: Normalized subspace similarity between the column vectors of Ar=64 from two randomly
seeded runs, for both ∆Wq and ∆Wv from the 1st, 32nd, 64th, and 96th layers in a 96-layer Trans-
former.

Rank r val loss BLEU NIST METEOR ROUGE L CIDEr

1 1.23 68.72 8.7215 0.4565 0.7052 2.4329
2 1.21 69.17 8.7413 0.4590 0.7052 2.4639
4 1.18 70.38 8.8439 0.4689 0.7186 2.5349
8 1.17 69.57 8.7457 0.4636 0.7196 2.5196
16 1.16 69.61 8.7483 0.4629 0.7177 2.4985
32 1.16 69.33 8.7736 0.4642 0.7105 2.5255
64 1.16 69.24 8.7174 0.4651 0.7180 2.5070

128 1.16 68.73 8.6718 0.4628 0.7127 2.5030
256 1.16 68.92 8.6982 0.4629 0.7128 2.5012
512 1.16 68.78 8.6857 0.4637 0.7128 2.5025

1024 1.17 69.37 8.7495 0.4659 0.7149 2.5090

Table 18: Validation loss and test set metrics on E2E NLG Challenge achieved by LoRA with
different rank r using GPT-2 Medium. Unlike on GPT-3 where r = 1 suffices for many tasks, here
the performance peaks at r = 16 for validation loss and r = 4 for BLEU, suggesting the GPT-2
Medium has a similar intrinsic rank for adaptation compared to GPT-3 175B. Note that some of our
hyperparameters are tuned on r = 4, which matches the parameter count of another baseline, and
thus might not be optimal for other choices of r.

L GRADIENT CALCULATION WITH LORA

When using LoRA, We do not need to calculate the the gradient of the pre-trained, frozen weights.
Consider hi = Wixi−1 and its LoRA counterpart hi = Wixi−1 + BAxi−1. Given ∂L

∂hi
, we would

like to know ∂L
∂B and ∂L

∂A . We denote v = Axi−1. ∂L
∂B is given by ∂L

∂hi
⊗ v, and ∂L

∂A is given by
∂L
∂v ⊗ xi−1. Note that we do not need to compute ∂L

∂Wi
at any point, even though we compute ∂L

∂xi−1
,

which involves a matrix multiplication with Wi.

27

Published as a conference paper at ICLR 2022

0.100

0.125

0.150

0.175

0.200

j

451
555
658
762
865
969

1072
1176

i

(Wq, Ar = 4, i, j)

j

Wq
(Wq, Ar = 8, i, j)

j

(Wq, Ar = 64, i, j)

j

Random
(Wq, Arand, i, j)

Figure 9: Normalized subspace similarity between the singular directions of Wq and those of ∆Wq

with varying r and a random baseline. ∆Wq amplifies directions that are important but not empha-
sized in W . ∆W with a larger r tends to pick up more directions that are already emphasized in
W .

28

	Introduction
	Problem Statement
	Aren't Existing Solutions Good Enough?
	Our Method
	Low-Rank-Parametrized Update Matrices
	Applying LoRA to Transformer

	Empirical Experiments
	Baselines
	RoBERTa base/large
	DeBERTa XXL
	GPT-2 medium/large
	Scaling up to GPT-3 175B

	Related Works
	Conclusion and Future Work
	Large Language Models Still Need Parameter Updates
	Understanding the Low-Rank Updates
	Which Weight Matrices in Transformer Should We Apply LoRA to?
	What is the Optimal Rank r for LoRA?
	How Does the Adaptation Matrix W Compare to W?

	Inference Latency Introduced by Adapter Layers
	Description of Datasets
	The Calculation of Trainable Parameters for Baselines
	Hyperparameters Used in Experiments
	RoBERTa
	DeBERTa
	GPT-2
	GPT-3

	Example Learning Curves from GPT-3 175B
	Combining LoRA with Prefix Tuning
	Additional Empirical Experiments
	Additional Experiments on GPT-2
	Additional Experiments on GPT-3
	Low-Data Regime

	Measuring Similarity Between Subspaces
	Additional Experiments on Low-Rank Matrices
	Correlation between LoRA Modules
	Effect of r on GPT-2
	Correlation between W and W
	Amplification Factor

	Gradient Calculation with LoRA

