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Figure 1. Regulating knowledge continuity on a host of vision models (ResNet50, MobileNetV2, and ViT16). Base

models are trained with cross-entropy loss. KCReg (Our) models are finetuned with the additional regularization objective described 

in Alg. 2 (Lines 805-806).  Two adversarial attacks are then performed: the fast-gradient sign method from [1], and an iterative attack 

SI-NI-FGSM from [2]. We see that regulating knowledge continuity consistently improves/stabilizes robustness. Performance is 

measured using F1 and the attack strength corresponds to the maximum perturbation magnitude in L2 allowed. Since the pixel values 

of the images are bounded between [0,1], we also constrain the attack strength to be between [0,1]. 

Figure 2. Certification of robustness for GPT2, layer=6. We apply 	

Alg. 3 to certify robustness of the model before and after 	

regularization with Alg. 2 (Line 805-806). Each line corresponds 	

to the change in absolute accuracy for a set of examples to be 	

considered non-robust. The y-axis corresponds to the certified 	

probability measure of the set of non-robust examples under this 	

criterion and the x-axis corresponds to the maximum perturbation 

distance in the representation space.     

CNN-BasedCNN-Based Transformer-Based

Algorithm 3. Pseudocode for certifying the robustness of a neural network using Alg. 1 and Theorem 4.1
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Figure 3. On the left, ablation over the strength of regularization and 

its effect on the attack strength-attack success rate curves. On the 

right, ablation over the regularization strength and its effect on test 

accuracy. This same curve can be observed in Fig. 7 (Lines 854-855, 

Pg. 29). We see that moderate regularization significantly improves 

robustness across all attack strengths. This improvement does not 

come at the expensive of test accuracy. The attack-strength is 

measured using the minimum angular similarity between the perturbed 

and original text.    


