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Figure 1. Regulating knowledge continuity on a host of vision models (ResNet50, MobileNetV2, and ViT16). Base

models are trained with cross-entropy loss. KCReg (Our) models are finetuned with the additional regularization objective described
in Alg. 2 (Lines 805-806). Two adversarial attacks are then performed: the fast-gradient sign method from [1], and an iterative attack
SI-NI-FGSM from [2]. We see that regulating knowledge continuity consistently improves/stabilizes robustness. Performance is
measured using F1 and the attack strength corresponds to the maximum perturbation magnitude in L2 allowed. Since the pixel values
of the images are bounded between [0,1], we also constrain the attack strength to be between [0,1].

Algorithm 3. Pseudocode for certifying the robustness of a neural network using Alg. 1 and Theorem 4.1

I/ Probability that a § perturbation in the j™ hidden layer will induce an absolute /I Upper bound the knowledge continuity of f in the j™ layer using a (1 — o)

N change in accuracy

function CERTIFY(f, {(x;,yi)}1_ .k, j, &, 6,1)
Let £ be the 0-1 loss function
&y < UPPERCONFBOUND(f, L, {(xi,yi) }1_ 1.k, j, &)
B+ max<q p<n dj(f! (xa), f/ (x5))

2
V+en <lexp(2/B2 (573 %10gn> )

return CLIP(1 —&y6/V,0,1)
end function

one-sided normal confidence interval
function UPPERCONFBOUND(f, £, {(x;,yi) }1 1.k, j, 00)

U+ 0 /] dimension-k zero-vector
fori=1...kdo /I Boostrapping with k straps
S < sample w/ replacement n points from {(x;,yi)}1_
Ui+ (Alg. 1)(S,L,f,)) /I see Alg. 1 Lines 794-795
end for

return ;Y5 U+ @' (a)std(U) /v /I std: standard deviation

end function

1.0

1.0 Base KCReg (Ours) H
Q
(%] I >
¢ 0.8 0.8 g
= Q
5 °
0.6 0.6 3
3 z
o
o
go4 0.4 £
= @
B >
[] Q
002 0.2 2
jo)
Q
0.0 =<

0.0

0.0 11.2 22.4 33.6 44.8 56.0 67.2 0.0 11.2 22.4 33.6 44.8 56.0 67.2
Perturbation Distance

Figure 2. Certification of robustness for GPT2, layer=6. We apply
Alg. 3 to certify robustness of the model before and after
regularization with Alg. 2 (Line 805-806). Each line corresponds
to the change in absolute accuracy for a set of examples to be
considered non-robust. The y-axis corresponds to the certified
probability measure of the set of non-robust examples under this
criterion and the x-axis corresponds to the maximum perturbation
distance in the representation space.
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Figure 3. On the left, ablation over the strength of regularization and
its effect on the attack strength-attack success rate curves. On the
right, ablation over the regularization strength and its effect on test
accuracy. This same curve can be observed in Fig. 7 (Lines 854-855,
Pg. 29). We see that moderate regularization significantly improves
robustness across all attack strengths. This improvement does not
come at the expensive of test accuracy. The attack-strength is
measured using the minimum angular similarity between the perturbed
and original text.
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