
A DETAILED VENN RESPONSIBILITY

Venn delegates responsibilities such as device selection, de-
vice fault tolerance, and privacy protection to individual
CL jobs. Device failures are both inevitable and difficult
to predict in CL. Rather than imposing a one-size-fits-all
solution, Venn empowers CL jobs to take the reins on fault
tolerance based on their specific workloads and objectives.
Therefore, Venn offloads handling device fault tolerance to
CL jobs, who can better detect and react to device failures
(e.g., deciding the amount of overcommit (Bonawitz et al.,
2019)). Similarly, Venn offers CL jobs the freedom to de-
sign their own device selectors (Lai et al., 2021b), where
they can incorporate customized resource criteria into their
requests. Venn also does not interfere with job-specific pri-
vacy solutions such as secure aggregation (Bonawitz et al.,
2016; Huba et al., 2022) or differential privacy (Geyer et al.,
2017; Xu et al., 2023).

B ILP FORMULATION OF IRS
We now formulate the IRS that allocates resources to jobs un-
der the constraints with the objective of minimizing the aver-
age scheduling delay. Assume we have devices S = {s1, s2,
..., sq} continuously arriving at times {ti, t2, ..., tq}. There
are m jobs J = {J1, J2, ..., Jm} with their resource de-
mands D = {D1, D2, ..., Dm}. Let eij be a binary variable
in the eligibility matrix, which is set to 1 if device i is eligi-
ble to job j, and 0 otherwise. Let xij be a binary variable of
resource allocation, which is 1 if device i is assigned to job
j, and 0 otherwise.

We have to follow these constraints during the resource
allocation:

mX

j=1

xij  1, 8i 2 [1, q]

mX

j=1

xij ⇥ eij  1, 8i 2 [1, q]

qX

i=0

xij = Dj , 8j 2 [1,m]

Therefore, the scheduling delay of each job is determined
by the time it acquires the last needed device, i.e., Tj =
maxi(xij⇥ti) under these constraints. The overall objective
can then be expressed as:

min

Pm
j=1 Tj

m

C THEORETICAL INSIGHT TO THE
HEURISTIC OF IRS

Lemma 1. Given a diverse set of CL jobs with one round
request, if jobs are scheduled optimally in terms of the av-

erage JCT, first within each job group and then across job
groups, the resulting average JCT is optimal.

Proof. Let us assume there is an optimal scheduling algo-
rithm that optimizes the average JCT within each group, and
there is an optimal scheduling algorithm which decides how
to merge the job order across job groups to minimize the
average JCT. Since the second step is assumed to provide
optimal average JCT based on the previous within group job
order, we only need to prove the global optimal schedule
follows the order generated by the within job group step.

Venn employs smallest remaining job demand first algo-
rithm within each job group. Since prioritizing jobs with
smaller remaining resource demands has been shown to be
effective in similar scheduling problems (Garey et al., 1976),
we skip the proof that the scheduling algorithm within job
group gives the local optimal average JCT for each group.

We prove the rest by contradiction. Assume that there exists
an optimal schedule S that does not follow the order given
by each job group. In this assumed optimal schedule S, let
us say there are two jobs JA and JB in the same group
such that JA comes after JB , but JA has fewer resource
requirements than JB . Let us swap JA and JB to create
a new schedule S0. Since JA has fewer resource demand,
the average JCT of S0 will be less than that in S. This
contradicts our original assumption that S is an optimal
schedule, as we’ve found a schedule S0 with a lower average
JCT. Therefore, the assumption is false, and the order given
by each job group (sorted by resource demands) must be part
of the optimal schedule. If we have an optimal scheduling
across job groups, the overall average JCT will be optimal.

D EFFECTIVENESS OF VENN SCHEDULING
HEURISTIC

To illustrate the effectiveness of Venn’s approach, we start
with proving Lemma 2, which considers a simplified case
involving only two job groups with arbitrary resource
contention patterns. Through mathematical proof, we can
demonstrate that our algorithm achieves the optimal solution
under this setting.

Lemma 2. Given two job groups with arbitrary resource
contention patterns, the scheduling plan generated by Venn
as in Algorithm 1 is capable of minimizing the average
scheduling delay, if a future resource allocation plan is set.

To better prove the Lemma, we introduce a new represen-
tation of the scheduling problem in a more scalable way.
Firstly, as depicted in Figure 15a, we represent the two job
groups by two distinct sets of squares, where the area of
each square corresponds to the size of the request demand



for that job.

Secondly, to visualize the temporal dynamics of resource
allocation, we refer to Figure 15c. For the sake of this exam-
ple, let’s assume a constant inflow of 100 devices per time
unit. Within this set, ‘x’ devices possess memory � 2GB,
while all 100 devices have memory � to 1GB. The y-axis
is partitioned into two segments: the 0 to ‘x’ range signi-
fies devices with memory exceeding 2GB, and the ‘x’ to
100 range represents devices with memory ranging between
1GB and 2GB.

Resource allocation over time is illustrated using rectangles,
each indicating the job request to which devices are assigned.
For instance, in the right subfigure of Figure 15c, devices in
the 0 to ‘x’ memory range are allocated to job group B at
time 0, while those in the ‘x’ to 100 range are allocated to
job group A. This representation allows us to dynamically
track resource allocation across different jobs over time.

Proof. As shown in Figure 15a, there are mA requests that
ask for devices with 1GB memory and mB jobs that request
devices with 2GB memory, resulting in two job groups A
and B. The devices constantly check-in and execute one CL
task, where 100% devices with memory size � 1GB and x%
of the devices have memory size � 2GB. Note that, the proof
is not limited to the contention pattern draw in Figure 15a,
it can be generalized to job group with intersected resource
contention and give the same conclusion.

Based on Algorithm 1, the first step is to sort these jobs
within each job group by job size in ascending order (Fig-
ure 15b). In the second step, we generate an initial resource
allocation for each job group by focusing on the job group
with the scarcest resources. This results in an initial allo-
cation plan that avoids resource sharing across job groups,
setting the stage for subsequent cross-group allocations.

Based on the group-level initial allocation plan (left sub-
figure in Figure 15c), we need to determine the job order
across groups, that is, to decide whether to prioritize jobs
from Group A over Group B (right subfigure in Figure 15c)
at current time in order to achieve a smaller average schedul-
ing delay. In this case, we focus on determining the order
of the first job with size l in Group A and calculate the
queuing delay difference (�t) if we prioritize the first job
from Group A over Group B.

�t = l ⇤m0
B � (

l

1� x
� l) ⇤m0

A

where m0
A, m0

B represents the number of remaining jobs
whose queuing delay may be affected by this prioritization.
Since the future resource allocation is set by the previous
initial allocation or assumed to be given, m0

A, m0
B are feasi-

ble to get. We prioritize the first job from Group A only if
�t < 0, which gives m0

A
1�x > m0

B
x , otherwise we stick with

the original plan. �t < 0 is actually the prototype of the
scheduling decision as in Algorithm 1 line 15.

mA jobs

Job Group A

mB jobs

Job Group B

>=2GB >=1GB
100 %x %

Resources

(a) Resource supply and demand. There are 100% devices with mem-
ory size � 1GB and x% of the devices have memory size � 2GB.
There are two job groups where Group A with mA jobs requests
for devices with memory size � 1 GB and Group B with mB jobs
requests for devices with memory size � 2 GB.

mA jobs
…

mB jobs

…

(b) Step 1: Sort within Job Group.

[2, ∞) GB

[1,2) GB

Time (unit)

x

100

Time (unit)

x

100

l

[2, ∞) GB

[1,2) GB
…

…

…

…

mA jobs

mB jobs

!t<0

!t>0

(c) Step 2: Schedule across Job Groups.

Figure 15. Venn scheduling algorithm.

By leveraging the conclusion of Lemma 2, Venn can further
generalize to the scenario with more than two job groups
with arbitrary resource contention patterns. Specifically,
Venn greedily compares each pair of job groups (Gj , Gk)
following the order. For each pair, Venn applies the logic
proven in Lemma 2 to minimize the average scheduling
delay between Gj and Gk.


