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A APPENDIX

A.1 CONTINUOUS-TIME ANALYSIS OF QUADRATICS

Consider the p-strongly convex function f : RY — R to be a quadratic of the form f(X) =
%X T AX where A is a diagonal matrix. Then the second-order ODE can be rewritten as

{ﬂ: [ *(npgqu)A (nJrq)I;dmA} [ﬂ (16)

where 04 is d X d zero matrix, and I is d X d identity matrix. Without loss of generality, we assume
that A is a diagonal matrix and its entries are sorted decreasingly. The equation is solved by
taking Z = [XT V7|7 and

M= — 04 -1,
(np+mq)A (n+q)I;+mA |’

so that Z = — M Z which has the famous solution Z = e~M t Z, for an initialization Z;,. Note that
we have
_Mt o [[(=M)*|t* o (p(=M) + o(1))*t*
1Z]l2 < lle™ |22l Zoll2 < - IZllz < > 1 1Zol[2
k=0 k=0

— e(p(—MJrO(l)))tHZOH2

where p(M) is the spectral radius of M, ||.||2—2 denotes the spectral norm, and the last inequality
is true asymptotically as k — oo since (||A*|| < (p(A4) + 0(1))*). To find the convergence rate we
need maximum eigenvalue of —M (minimum eigenvalue of M) which corresponds to the largest
spectral radius of (—M). Matrix M is

_ 0 . )
0 -1
(np +mq)ai (n+ q) + maiq )
L (np + mq)adq (n +q) + maga
which after permuting its rows and columns becomes
0 -1 0 0
(np+mqla;r (n+¢q)+ma; 00
0 0 0 -1
0 0 T (mp+mq)aga (n+q) + magq

such that a1 > a9 > ... > agqq. Due to the u-strong convexity of f, we have agq = p. Next, the
eigenvalues of each 2 x 2 matrix in the block matrix M will lead to the eigenvalues of the whole
matrix. The matrix M has d blocks and each block has 2 eigenvalues. The eigenvalues of i-th block
are noted with \{ , for i € {1, ..,d}. This will lead to

)\12 = % (maii +(n+gq) £ \/((ma”) +(n+4q))?— 4aii(np+mq)> Vie{1,..,d}.
a7

;. 2 . .. . . .
Now, taking n = ¢,p = -L + % results in the critical damping setting i.e.

(¢223

V((may) + (n+q))? —4dagi(np+mq) =0  Vie{l,.,d}.

Note that under this setting, all the eigenvalues are real and nonnegative. Since m > 0, choosing
aqq = p will lead to the smallest eigenvalue (slowest one in convergence) which is

Ao =3 (mu+ (2q) = " +q. (18)
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The analysis above gives us

(e
1Z]]2 < e~ 2 94| Zg 2, (19)

and

F(X0) < Ml x 2 < WAl 7,2 < Iz =255 40 72
In particular, note that increasing ¢ and m can lead to arbltrary fast convergence with the rate of
e~ (mut29)t ypder the conditions mentioned.
Remark A.0.1 (Comparison with quadratics). The rates found for p-strongly convex functions are
compared with their quadratic counterparts. Specifically, for the quadratic function f(X;) =
%XtTAXt we showed |f(X;)| < qu’(m’”?q”. Deeper analysis on the auxiliary variable
Zy = XTI VT shows

X m
1Zel? = 12 )1* + [Vall* = X LaXo + |5 + Xo + —AX|,
n n

where the second equality is due to (GM*-ODE)) and the Lyapunov function for f(X;) = %XtT AX,
is
e(t) = 1XtTAXmLE||&+Xt+@AXt||2 *XTAXt'F ||V |2+ < max {M, MaAL
2 2p" n n 2p
o |A||2—>2 n
9 2p
which is twice faster than the rate found in Theorem@ One can notice the existence of coefficient
2 instead of 1 for ¢ and m in the convergence rate of convex quadratics.

2 Cymax{ 41292 7y 2o 710

A.2 DISCRETE-TIME ANALYSIS OF THE QUADRATICS

We consider discretizing and investigate the convergence behaviour of it for u-strongly
convex L-smooth quadratic function of the form f(X) = %X T AX. Applying the SIE discretization
on GVP-ODE) we get

Tl — T =  —Mm/SAx — ny/s(Tp11 — Vi), 20)
Vg1 — Uk = —DVSATk1 — qV/5(vk — Tpp1).

Without loss of generality we can assume that A is a diagonal matrix in which case the diagonal
elements of A are its eigenvalues. The one line representation of (20) is

i (4 (1 — gv/s — npsa; —ma/sai;)\ my/sa;; — 14 g/s(1 — my/sai)\
xk+1 - + fL'k + ‘/L.k717
1+nys 1+nys

2y

where upper index i denotes the i’th element and a;; is the i’th element of A’s diagonal elements
fori = 1,...,d. For comparison, the one line representation of the NAG algorithm for quadratic
function f(X) is

. 2 . 1—/us .
P (— (1= sag )k + — Y (g — )i, Vie{1,...d),
Tht1 (1+\/ﬁ( sai;))xy, + 1+\/ﬁ(sa NS ieq }
which can be derived from (21 by setting

1
n=\/l,q=\lhp=—=,m=/s.
Vi = Vip =

To study the convergence rate of (20), we reformulate (Z1)) as

(—qvd)\y,  (npstmy) (1-qvE)(Amy/5—1a)
Ye = [ x;? } — ((1+ Tinys )La Trns A) ( Tinys ) ] [ Tk ]

1, 04
=Tyk—1 (22)
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with 04 and I; as a d X d zero matrix and d-dimension identity matrix. Next, we have

lyellz = I Tye-1ll2 = IT"yoll2 < IT*|l2llyollz < (p(T) + (1) [lyo]l2,

where p(T) is the spectral radius of T" and the last inequality is true asymptotically as k& — oo
through Gelfand’s formula (Horn & Johnson| [2012). To define convergence rate we need the largest
eigenvalue of T" which corresponds to the largest spectral radius. Note that 7" is the block diagonal
matrix

T 0 ... 0
0 Thb ... O ((1 + (1fq\/§)) o (nps+m\/§)a”) ((17q\/§)(aiim\/§71)> ]
rT=\| . . . |, Ti= Tnys Trnys il T+nys 7
: : IR 1 0
0 0 ... Ty
(23)
fori € {1,...,d}. Hence, the eigenvalues of T are the union of the eigenvalues of T;’s. For each

T; there exist two eigenvalues as the solutions of

r? - <1+ L—avs _ (”p3+m\/5az‘i)) . (L= avs)(aimy/s —1)
1+ nys 1+nys 1+ nvs

:07

with

1—qy5  (nps+mysan)\” (1 —qys)(aumy/s —1)
A:<1+1+n\/§_ 1+ns >_4 1+ny/s '

Taking n = ¢ = y/a;;,np = 1,m = /s leadsto A = 0 and 1 5 = 1 — \/sa;;. With this choice
of parameters, the convergence rate of (20) for p-strongly convex and L-Lipschitz quadratics of the
form f(X) = %XTAX will be

d
Z aii(21)? < max ag||zg||* < Cmax(1 — \/5a;)%*,

i=1

1

flan) - f@*) = 5

for /s < ﬁ (due to 1 — /sa;; > 0). The worst case scenario happens for a;; = u (closest

possible rate to 1) which leads to the rate O((1 — \/g )2*). The np = 1 condition does not exist in
the continuous case. This observation is used for our analysis in the general case.

A.3 CONVERGENCE OF OPTIMIZATION ALGORITHMS THROUGH DYNAMICAL SYSTEMS

In the state space, dynamical systems are usually presented in the form of

§(t) = AL(t) + Bu(t), y(t) =CE&(t), wu(t)=V[(y(t)) vt=0, 24)

where ¢ € R" is the state, y(t) € R%(d < n) is the output, and u(t) is the continuous feedback
input. Here, we would have u* = 0 and the fixed point of (24) is

A =0, y*=C¢".
Consider the nonnegative function
e(t) =M (fly(®) = Fly) + (6() — ) PE() — €)

with A > 0, y* = 2™ and P = 0 where A = B denotes that A — B is positive semi-definite. If when
¢ — & we have 22(t) <0, then £(¢) < £(0). This results in

) — fly*) < e Me(0).

The following result from (Fazlyab et al.l 2018)) proposes a Linear Matrix Inequality (LMI) that
guarantees the existence of a Lyapunov function through which we can show that f(x) converges
exponentially fast. For simplicity, we adopt the presentation of (Sanz Serna & Zygalakis| 2021)).
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Theorem A.1 (Theorem 6.4 in (Fazlyab et al.| 2018)). Suppose that for (24) there exists A > 0, P =
Oand o > O0suchthat T = MO + MDD + AM®@) 4+ o MG) <0 where

© _ | PA+ATP+)\P PB
M | BTP 0 |’
L0 (cA)”
2| CA CB+ (BT
M@ — ot 0 %I %Id ¢ 0
Lo I .0 0 Ig |’
MG — et o ] ;H-LId %}1(1 { ¢ 0 :|’
0 1 7Id e 0 Iy

and ()T denotes the transpose operator and I, is the identity matrix of size d. Then for f € F, u,L
we have

@) — fy™) < e Me(0).
A.4 ACCELERATION OF THE EXPLICIT EULER DISCRETIZATION

We would like to show the correspondence between EE and SIE discretizations of (GM>-ODE). The
following lemma shows how to update the coefficients of EE method such that SIE is derived.

Lemma 1. Consider the parameters of EE discretization of asnge, Meg, q, p and the
parameters of SIE discretization of (GM~-ODE)) as nsrg, msig, q, p. Then by taking

_ nsSIip—qnsievV's
{ "EE = “Tinsipvs

_ msrip+nsiepyVs
MEE = 1+nsreVs 7

SIE discretization of (GM~-ODE)) will be the same as its EE discretization with step-size /3.

For proving the result, note that the EE discretization of is
{ Tht1 — T = —m/sV f(xr) — ny/s(xg — vg), 26)
Vps1 — 0k = —pVsV[f(zr,) — Vsq(vp — zi),
which can be written in one line format
Trr = 2 — mV/sV () + (1 = gv/s —ny/s) (@ — xp—1) + (mV/s(1 — gv/s) — ”PS)Vf(le%—)l)a
replacing the coefficient updates from (23) in above gives the SIE one line update of () which is

i1 = — TP £ (3y) + 170 (ag — ) + TPV (), (28)

(25)

With Lemmal [T]and Theorem[4.1] we establish the convergence result for (26) as follows.

Corollary A.1.1 (Convergence of (26)). For ji-strongly convex L-smooth function f with0 < i < L
and parameters m,n, p, q such that

1
q/pém()éqpsSm\/§(1+q\f)*qp8<L 1+q:§ 0<qVs<1lp>0,

the sequence xy, in (26) will satisfy
Flar) = f(a*) < LOGu (1 — qV/5)",
for constant C;,; > 0 and any xo,v9 = o — (% — ﬁ)Vﬂxo).

The proof is simply done by using (25) in Theorem [4.1] Note that for the initial condition we need
to get the same result as in Theorem [4.1] with the new coefficients and the new update rule (26).

Corollary [A.T.T| suggests that choosing

_ _Lmzi \/7

in (26) will recover the NAG algorithm.
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Figure 3: Comparison between the NAG, as Shi-SIE, SIE discretization of as
GM-SIE with superscript 1 and 2 when n’ = 1,m’ = \/s,¢' = 2\/pand n' = 1 — 2,/us, m’
V/'s,q' = 2/l respectively. The simulation function was f(x) = 4(L — p)log(1+e™%) + £2? with
L =1, =0.01. (a) The effect of the approximations (1/(1 — ,/us) ~ 1 in Shi-SIE and coefficient
deviation in GM-SIE!) in the ODE trajectories, (b) different coefficients used for discretizing
. GM-SIE! is the SIE discretization of GM-ODE! (the recovered high-resolution NAG ODE
from (GM-ODE)) and GM-SIE? is the SIE discretization of GM-ODE? (the ODE used to recover
the NAG algorithm).

A.5 NUMERICAL RESULTS

In this section, numerical experiments are designed for further illustration of the previous findings.
An important note is that (GM-ODE) in (Zhang et al., 2021) uses different parameters to recover
(m' = /s,¢" = 2y/p,n = 1) and the NAG algorithm after discretization (m’ =
Vs, ¢ =2/m,n =1—2,/ps). In Figurewe have considered two SIE discretizations of

and
{ Qo1 — Gk = JrV/s,
Jet1 =k = —2y/B8Jk1 — V(1 + B8V f(qr+1) — V8(Vf(@rt1) — VF(aw)),
(Shi-SIE)

which is the SIE discretization of (T used in (Shi et al} 2021). The discretizations of
are shown with GM-SIE! and GM-SIE2. The aim of Figure [3|is to highlight two things; First,
the effect of coefficient inconsistency before and after discretization of and second, to
depict the approximation 1/(1 —/xs) ~ 1 made in (Shi et al., 2021). The step-size was s = 1/L in
all simulations. All algorithms are simulated with the parameters they use to recover

except for GM-SIE? which uses n/ = 1 — 2,/ps for the sake of comparison with GM-SIE". GM-
SIE? does not fall exactly on the NAG algorithm due to different initializations. We did not simulate
(6) due to its exact match with the NAG method.

Table 2: Parameters used for comparing different algorithms in Figure El

H Nesterov l) Shi-SIE GM-SIE? H
=7 s T s= & s= L
a= ﬁ;l m=./s - m' = /s
- g=n=./p - ¢ =2/n
- p=1/Ju - W =1-2/us
0 =1yo ~ N(0,1) wo,v0~ N(0,1) o~ N(0,1),00 = <22 25 = vy ~ N(0, 1)

Next, we provide an example of the performance of the NAG method (as Nesterov) with (T3),
GM-SIE?, and Shi-SIE under the conditions they prove their convergence results (see table . For
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flae) = f(2")

0 20 40 60 80 100
k

Figure 4: Comparison between the NAG, , GM-SIE?Z, and Shi-SIE. All algorithms are simulated
under the best performance conditions (see table 2). The simulation function was f(z) = 4(L —
p)log(14e~*) + La? with L = 1, p = 0.01.

the sake of visualization, we simulated (I3)) with random vy with 100 monte-carlo simulations in-
stead of v = g — 2V f(x0). The result is shown in FigureEl

B PROOFS

B.1 PROOF OF PROPOSITION[5.1]

By comparing the one-line presentation of (GM-ODE)

U+ (¢ +m'N2[(U)Uy + (0 +m'q")V f(UL) = 0, (29)
and the one-line presentation of (GM>-ODE)
X+ ((n+q) +mVA(X)X + (np+mq)VF(X) =0, (30)

we can see that if the parameters are chosen as in (I0), we get the equivalence.

B.2 PROOF OF THEOREM [3.1]

Here, Theorem|[A_T]is used to find both a Lyapunov function and a convergence rate for (GM>-ODE).
In order to apply the theorem we need to present (GM>-ODE) in the form of (24). Taking X,V €
R,

T
_ T | —nlg  nlg | —mliy | g
S B R A L S

will present the state space of 1|§Mf-§§DE: . For simplicity, we set ¢ = 0, i.e. we remove any sign
of L from our formulation. Thus, the result holds for u-strongly convex functions. We need to find
P > 0,\ > 0suchthat T < 0. Consider

> » bi1 P12
P=P®]I P= 32
® la, [ P12 P22 ] ’ 32)
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t11 ti2 t13
t12 too o3
t13  to3  t33

T—Tel, - (33)

—_

Using the structure in Theorem[A.T] one can find the elements #;; as

t11 = —(2n — N)p11 + 2qp12 — 7”;
npi1 + qpaz — (04 q — N)pi2,

t12

n
t13 = —mp11 — pp12 + 5

tao = 2(np12 — qp22) + Ap22,

n
tog = —mp12 — ppo22 + 3

i3z = —m,

Next step is to ensure that P = 0. If we take det(]s) = 0 and find one of the diagonal elements
such that it would be positive, then one of the eigenvalues of P is zero and the other one is positive
which results in our favor. Before doing so, we will find p1; and p25 as a function of p15. The latter
is done by setting t13 = 0 and 53 = 0. Then

_ LA=n
t13 =0 = P11 = ppljn 2 ) 34

—mpi2+35 (34)
ta3 =0 == P = —Fp .

These choices will lead to a block diagonal T which is easier to handle later. Now, we will find P12
such that det(P) = 0.

A n n—A
det(P) =0 — p11pas — pis = 0 — p1a = — () (35)

4 m(n—\)—np
2

From the quadratics analysis, we expect the fastest convergence rate to relate to ¢ with condition
n = q. Therefore, we set A = ¢ and n = ¢q. These two conditions lead to

n
p12=0, p11=0, pp= 2’ (36)
p

and since 2—’; > 0 we get P > 0. Also, we have

2 2

tiz = q*, 113 =0, ta= 17 123 =0, {33 =—m. 37

ty = -1
11 2 ) 2p 2p

Now, to establish T < 0, consider

- t11 t12 -
= { ta1  ta2 } o To = [tss);

as the blocks in the block diagonal matrix T. We know that ts3 < 0. Also if Tr(.) denotes the trace
operator, Tr(A) is equal to the sum of the eigenvalues of the matrix A and the determinant of A is
equal to the multiplication of its eigenvalues. Therefore, if the determinant of the first 2 x 2 block

matrix, Tl, is positive and t11, t9o are negative, we ensure that Tr(Tl) =I'1+I9<0,INTy >0,
and I's < 0 where I';,¢ = 1,2, 3 are the eigenvalues of T. Hence, I'; < 0for¢ = 1,2, 3 and this
means 7" < 0. One can formulate the above arguments as

qp a5
titas — 1y > 0 — (- 5 )(Qp) (zp) >0—q < up,

which indeed holds for the quadratic case as well.
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According to Theorem [AT| we have
F(t) = f(@®) < e (F(2(0)) — (&™) + (£(0) — €)TP((0) — £7)),

which is
Fla(t) = f@*) < e (f(2(0) — f(@*) + ipuv — 2 |?). (38)

Note that due to the form of (GM’-ODE), 2* = v* (see Figure [T). Therefore, the claim of the
theorem is proved.

B.3 PROOF OF THEOREM [3.2]

Recall the form of Lyapunov function as

e(t) = F(Xy) — f(z*) + %nvt — 2|2

In order to prove, we will take derivative of e*e(t) with respect to time and show the result is
negative.

deMe(t)

—AMF(X) — f(z7) + %Hvt —z*|?] (D

MUK VD) + (T X TV (XK T X -t VAL D

(A)

Using (30) we have

A) =28+ X+ DV )X, = — X — X, - VR R X)X — (0 + ZDvEx)
n n n n n

. m . m
+ X+ Bvrpxn X = 2%, - o+ Zvg(x), (39)
Replacing (39) in (I) gives
. n Xt . m_o . Xt % m
(Xt, V(X)) + 5<? + Xi + ﬁv F(Xe) Xy, - Xy —a" + ;Vf(Xt»

X

= (X0, VI + =0 X = (o TV F(X0)), 4 X = a4 V(X))

= (X0, VI (X0) + ) | =15 (K0 VAO)) = (4 ) VA0) = g X = X X =)

o+ PNV, X~ 1) = o+ PV P]

= —2 (X0, VFO0) = X = TR X =) = (o S (VS (X0, X =)
—m(t DIV (40)
Now, (I) gives
0130 = 50+ ol = o] =AM [7(x) = )
n Xt 2 112 Xt % m2 2 Xt m
g (15 1% = a7 4278 X = ) 4+ VAP + 2058 TV (X))

+2%<Vf(Xt),Xt —m*>)] (41)
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Now, using and (equation[40) in (I) and (II) respectively, gives

deMe(t
L0 _ prx) - )
mA\ —2mq. , Am N An
(TMXt,Vf(Xt» + (? —n- ?)<Vf(Xt) X —a®) + (% - *)H
A ogn, X, . Am? qm? 2 212
+(?—?)<?7Xt—ff >+(%—m )va(Xt)“ +*HXt 7.
(42)
Due to strong convexity of f(X;) we have
(VF(X0),2* = X) < —(f(X0) = (@) + £ Xe = a*|2).
Using the above inequality in (42)) we get
deMe(t A A
T (- 0 A ) () - S + e - B I
Anpn 212 An —qn X, % Xi o
+ (5 -5 e -+ (20 <z<n,xt—x 41 ) av)
L 2 Dy O+ (e~ L) s W)
2np ! 2np  mp’ " i 2np m  np oA

Now, we need to find conditions such that (III), (IV) and (V) are negative. For (III) to be negative

we need that \
mq m m
A—-—(n+———)<0and (—(A—gq)) <0,
(n+ 202 (5o~ a)
which are satisfied as long as

A
A—(n —|— — — —m) <1+ m)()\ — min{n, ¢}) = A < min{n, q}.
p p p
Next, we can upper bound (IV) with a negative term with coefficient if
4 <wpand A <gq.
p

To see this, if we have A < ¢ and q <pu then < p and therefore,

An ,Lm o qn — An .
5o | IXe =P < = ) X =27
2p 2p

Replacing in (IV) we get

n—in\ X
Iv) < — (q o ) ||# + X, —z*||* <.

Lastly, one needs to have
2¢ > A >qandn,m,p # 0,

so that \ ) \
q 2 q 2
—_——— = = V(X < (— - — V(X <0
(52~ 2 = ) IVIXDIP < (o = L)X <0,
and )
q .
S IXell? < (55— = )1 X,
an 2np  np
Then, replacing in (V) results in
A-2 )
V) < X V(X <0.
V) < (g% + mVF(x)|* <
Putting all the above conditions together we conclude that
At
deMe(t) <0,
a  —

if n,m,p # 0andq = Aandn > gand ¢/p < u Therefore, e?'e(t) < £(0) for ¢ > 0 which
concludes the proof.

20
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B.4 PROOF OF THEOREM [4.1]

To show the claim of the theorem, we will bound the difference e(k 4+ 1) — (k) such that
e(k+1) < (1-qv5)*De(0),
holds with (k) as the Lyapunov function
Bp?s
2

(k) = flon) — F(a) + S lloe — 13— 52V f )P, 3)

with B as a positive constant to be found. Using ([@3)) we have

ek +1) —e(k) = f(ersr) = flaw) + ?(Hvkﬂ — vkll® + 2(vp41 — vk, v — 27))

@
B 2
ne 1V £ () |12 (44)

2

Bp?s
2

IV £ (@) 1P +
Note that for (I) we have

n B
M = S P*sIVF (@)l + ¢sllve — 2l + 2095(V f (@k11), 08 = 2rg)

=20V s(V f(@1), 06 — Trs1) — 20VS(V f(@hg1), Tpp1 — 2°) — 2¢V/s5(vp — Tpg1, v — 7)),

where we have added and subtracted zj11 in (V f(2p41), vp — *). Next, using

1 1 1
(a—ba—c) = fla—b + L fla—cl? ~ £ [b—el”
we get
B o 2., 2 2
O = S P slIVF(@er)II” + @ sllok = wrral]” + 2pgs(V f(@r41), vk — Trt1)
— 2DV $(V f(®k41), Ve — Tog1) — 20VS(V f(Zp41), Thg1 — &)
— ol — i |” — a/allos — a1+ vl — o IP). @)
Utilizing strong convexity of f(z) we have
(Vi (@)ans = %) 2 fi) - @)+ Alloe —2* 7, 6.0

thus, we can upper bound (I) as

SO B, 2, 2 2
D < g(p sIVF(@rr )17 + @ sllve — 2rgal|” + 2pgs(V f (Tr41), V& — Thy1)

= 2pV/s(V f(@41), vk — Tp1) — 2pV/s(f (eg1) — f(2%)) — pp/sl|wpgr — 2|
— qVslvoe — zppa||? — qVsllve — 2| + q/sl|appa — 2 )7)
+f(z) B

5 WSV @ee)I” + a*sllok — @i |* + 2pas(V f (wh41), 06 = Th41)

= 2pVs(Vf(@rt1)s vk — Tpt1) = 20Vs(f (rt1) — flak)) — 2pV/s(f (k) — f(2"))
— upV/sllzpr — 2*)1? = gv/sllon — appa||? = gvsllon — 2|2 + qVsllena — 2*)?). (46)
Replacing (#6) in (#4) we have
[46] 2 2
k1) = (k) S flan) — F(o) + 252N fag) P+ TL
+ Bpgs(V f(wr41), v — Tit1) — Bpv/s(V f (@r41), 06 — Tpet1)
— BpV/s(f(wrt1) — f(xx)) — Bpv/s(f(ax) — f(27))
Bup+/s Bqy/s Bqy/s

! 2 o, — g = 22 o — |

Bqy/s Bp?s Bp?s
2 2 2

ok — Tppa |2

lwa — 2% =

+ lzpr1 — 2% — IV £ (@re)I? + IVf@)l?. @D
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By setting ¢/p < p we get

Bgy/s
2

and thus simplifying (@7) results in
(1) = () 2 (1~ Bova)(f(oner) — F(on)) + Bov/s(av/s — DV (), on — o)
~ BpvA( () — 1) ~ 2D (1 g3 — P
By e B @

< Bm;x/g

1 — 2*|* < 1 — 21,

Next, using smoothness of f(xz) we get
f@ie1) = flan) < (VF(@h41), D1 — 20) — %va(wkﬂ) = V(x|
—m/5(V f(@ra1), V(@) = nv/5(V S (1), 2es — o)
~ 57 IV Frn) - V@I SL)
Upper-bounding using and considering g+/s < 1 leads to
SR _
lk+1) — (k) 2 ~myE(L - BoyE) (VS (@), V(o) — S () - V()
+ [BpVs(av/s — 1) + nv/s(1 = Bpv/s)|(V f(@p41), vk — Tht1)

2
- BV - 1) - P a2 P e )
Next, by setting B = %, = ¢, and ¢+/s < 1 we have
(k1) - () 2 —my/A(L— BovANV (). V) - LY 9 ) - V()

— s - F@) = 2 o — a2+ B v 2
(1— Bpy/s)

= —m/3(1 = Bpv/a) (Vi (arer), VH (@) — —— [V () = V)|
A (a) — fa)) - B"ﬁnv e
+ B2 0 g9 sl + R s (50)
Now, adding Z2*0=0Y5) 17 £(5, 1 )|? to (50) results in
1)~ 2() 'S —ma(1 ~ BovA) (VA (e). TF ) — Y () - V()
() — £) P a2 BP0 519 a1
B2 0 g9 ol + 2 a1 5D

Next, setting nps < m+/s and noting that n = ¢, we get
29 — S 25 — S
= my/5(1 = Bpv/s)(Vf (whs1), Vf (i) + PG|V f () [P+ PGV f ) |

nps

= (1= ¢v3) [=mv/a(V f(@irn), V) + o [V eI + 22V £ ) ]
LI 9y )~ Vi ) 2

IN
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Using (32) in (51) we get
(k4 1) = e(b) 2 (1= a3 = L)I9 (i) = V@) =m0 ) - Fa))

2 2L
Bp?s
2

Bavs @RIVl

o — 2*|1% +
Setting m+/s < % leads to

Bgy/s

e(k+1) —e(k) < —nv/s(f(an) = f(27) — —5

. Bp®s
lox — &*|* + T(q\/g)llvf(xk)ll27

which can be expressed in a more favourable way

1) = o) < ~(av3) [ £@) = ) + Do — 2712 = B2 19 p@)?
= —(aV/5)z (k). 43
which gives
e(k+1) < (1—qvs)e(k). (54)
Therefore,
e(k+1) < (1—qvs)1e(0). (55)

Using the form of (k) in (d3) and the inequality

flay) = f(@) >
which is true for any L-smooth function with z* such that V f (z*) = 0, we get

Bp?s

(k) = (o) — F@) + 2 o — 213 = 222V p )P

> (1= BASL)(f() — f(*)) + 5 o — 2° (56)

Note that
1 — Bp?sL =1 —npsL,
and under the conditions in Theoremlﬂl we have npsL < 1 and thus,
1— Bp?sL =1—npsL > 0.
Hence, (1 — Bp?sL)(f(zx) — f(z*)) > 0 and leads to
e(k) > ?Hvk -3 (57)
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From (53)) we have
e(k) < (1 - qv/s)*e(0)
— (1= gV [ f(ao) ~ £a") + G llo - o -

vo:Io*%Vf(Io)

2 (1 gy | ) = ) + 5 o~ 29 o) = 07

Bp?s

22V f o) P

B9 sl

= a3 [ 1lan) = ) + Dl =17+ (G~ ZE 9 e
-2V )0 - )|

€ 1= a9 [0 - 1)+ Do = a1+ (Bl — P29 )
-2 )~ (7)) - T — P

— (1-qvs)* [(1 B (Fro) — F@) + 51— B0 g 2 P
B~ B9 )]

S.L m B wm Bm?  Bp%s

2 - s |50 BE) - G- A

Therefore, from (57) and (58) we get

Sloc =o'l < (- Vst | 50~ B+

)LQ)} llzo — z*||%. (58)

B um Bm?  Bp®s, _, 9
—(1—-—= — L — || 59
The positivity of the coefficient
L m B wm Bm?  Bp®s, _, 9
—(1-B(— —(1—-= — L —x*
F0-BE)+ -5+ (G0 - 2N o - o)

is guaranteed under the conditions of Theorem .1} Multiplying both sides by 2/B gives
lok — 213 < M'||zo — z*||®

for M = [%(1 —B(2)+(1-452)+ (7;;—22 —pQS)LQ)] Now, we know that limy,_, o, vx = x*.

2n
By representing algorithm (6)) in one-line format of sequence vj, we get
1—qys qv/s p
—vp = — ———— (v — V- — (= - . (60
Vg1 — Uk PVsV f(xpg1) + 1+n\/§(vk Vp—1) + 1+n\/§(q my/s)V f(xr).  (60)
. e . . o 1 _gmy/s
Analyzing (60) in limit and Taking ¢ = 1+n\/§(1 L552) we have
kli_)H;O(Vf(a:kH) — WV f(z)) = 0. (61)

for ¢« < 1. Thus,
Ve Jko st ||Vf(wrs1) = V() <e k2= ko,
From the above argument we get

IVf(@e)| = V()| < € = [IVF(@ep) | < [VF ()| + e
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Unrolling the above inequality results in

IV f (@) < FTRFHTF(mrg) | + €L+ 0402 4+ P70,

€
= [VF ()| < FRFNV )l + 7

Taking € = % and noting that

Ve ko <k PRV ()| < 6/2,

we get
IVf(zra)ll <6,
and therefore,
Jim |V f(z41)| =0,

Thus, the limit of V f (2 exists and since f is strongly convex xy — x* as k — oco. We therefore
proved that sequence xj, converges to z*.

B.5 PROOF OF COROLLARY [3.2.1]

By comparing the one line representation (T1) with we can easily check the validity of
parameters stated in the corollary. All that remains is to show that these parameters satisfy the
conditions of Theorem [3.2] Due to positiveness of the parameters (s, 3,7, ) in and
n > q for & < 2/3 the first two conditions in Theorem are satisfied. The last condition is
q/p < p. Using the values for ¢ and p we have

q §2—-9M

P A—en/sD(+vVils) ~ "
(1—&/sM)1+VMs) M
N €29 o ©2

Replacing TM method parameters and defining function G(§) we get

(175(%) (1+p)%)(1+ (1+p)%>7%

Gl = §(2-9) w

2
Now, using M = (\/gl(%fﬂ)) and equation (8) in (Sun et al., 2020) we have

M 93k — 6Kr3 + K2k
o 8K3\K — 1263 + 14k2\/k — 9k2 + dk/k — K
M 9k2\/Kk — 6K2 + K\/K

= . 63
L 8r3k —12K3 + 14K2\/k — 9k + 4kvV/K — K (63)

all the terms in depend on « and we need G(&, k) > 0 for to hold. By

analyzing lim,_,~, G(&, k) we see that for £ = %, %} we get lim, o, G(&, k) = 0. However, the

solution £ = % is not acceptable since it leads to ¢ > n which is not the case in Theorem Also,
for k = 1 we have

Withp =1 - -

w°

which remains non-negative for 0 < ¢ < % Therefore, invoking Theorem results in and
concludes the proof.
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B.6 PROOF OF COROLLARY . 1.1]

The proof is based on the QHM representation in (Zhang et al., 2021). It is possible to rewrite
(QHM)) in one-line format

Tpt1 — T = b(x — xp—1) — sV f(xg) + sb(1 — a)V f(z—1).
On the other hand, (]E[) has the one-line format

1—qys my/s + nps my/s(1 —qy/s)
T4l — Tk = m(a:k - Jik_l) - (W)Vf(xk) + 1+ n\/g Vf(xk._l).
Taking b = ;Z‘\/ﬁg, m=(1—-a)y/s,n=q,p= %4 /sresultin
1—
p>m,nps =s(a+nys) <(l—a)s=mys—a< Tq\/g’
Also, since n+/s < 1/2 we have (1 — n+/s)/2 > 1/4 and therefore a < 1/4. For q/p < u to hold
one needs
q 7 _ <
< — — vap — q = \/au,
%+\/§ =7 S q=> 12 q
and for m+/s = (1 — a)s < 1/L we need
< 1 =<3
"SI0 -a) 3

— 3L
Since all the conditions of Theorem@are satisfied, for (QHM) we have

flan) = f(z*) < C(1 = aps)".
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