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A APPENDIX

A.1 CONTINUOUS-TIME ANALYSIS OF QUADRATICS

Consider the µ-strongly convex function f : Rd → R to be a quadratic of the form f(X) =
1
2X

TAX where A is a diagonal matrix. Then the second-order ODE (11) can be rewritten as[
Ẋ

V̇

]
=

[
0d Id

−(np+mq)A −(n+ q)Id −mA

] [
X
V

]
, (16)

where 0d is d×d zero matrix, and Id is d×d identity matrix. Without loss of generality, we assume
that A is a diagonal matrix and its entries are sorted decreasingly. The equation (16) is solved by
taking Z = [XT V T ]T and

M = −
[

0d −Id
(np+mq)A (n+ q)Id +mA

]
,

so that Ż = −MZ which has the famous solution Z = e−MtZ0 for an initialization Z0. Note that
we have

∥Z∥2 ≤ ∥e−Mt∥2→2∥Z0∥2 ≤
∞∑
k=0

∥(−M)k∥tk

k!
∥Z0∥2 ≤

∞∑
k=0

(ρ(−M) + o(1))ktk

k!
∥Z0∥2

= e(ρ(−M+o(1)))t∥Z0∥2
where ρ(M) is the spectral radius of M , ∥.∥2→2 denotes the spectral norm, and the last inequality
is true asymptotically as k → ∞ since (∥Ak∥ ≤ (ρ(A) + o(1))k). To find the convergence rate we
need maximum eigenvalue of −M (minimum eigenvalue of M ) which corresponds to the largest
spectral radius of (−M ). Matrix M is

0
. . .

0

−1
. . .

−1
(np+mq)a11

. . .
(np+mq)add

(n+ q) +ma11
. . .

(n+ q) +madd


,

which after permuting its rows and columns becomes
0 −1

(np+mq)a11 (n+ q) +ma11
. . .

0 0
0 0

...
. . .

...
0 0
0 0

. . .
0 −1

(np+mq)add (n+ q) +madd

 ,

such that a11 ≥ a22 ≥ . . . ≥ add. Due to the µ-strong convexity of f , we have add = µ. Next, the
eigenvalues of each 2 × 2 matrix in the block matrix M will lead to the eigenvalues of the whole
matrix. The matrix M has d blocks and each block has 2 eigenvalues. The eigenvalues of i-th block
are noted with λi

1,2 for i ∈ {1, .., d}. This will lead to

λi
1,2 = 1

2

(
maii + (n+ q)±

√
((maii) + (n+ q))2 − 4aii(np+mq)

)
∀i ∈ {1, .., d}.

(17)

Now, taking n = q, p = q
aii

+ (maii)
2

4qaii
results in the critical damping setting i.e.√

((maii) + (n+ q))2 − 4aii(np+mq) = 0 ∀i ∈ {1, .., d}.
Note that under this setting, all the eigenvalues are real and nonnegative. Since m ≥ 0, choosing
add = µ will lead to the smallest eigenvalue (slowest one in convergence) which is

λd
1,2 = 1

2 (mµ+ (2q)) = mµ
2 + q. (18)
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The analysis above gives us

∥Zt∥2 ≤ e−(
mµ
2 +q)t∥Z0∥2, (19)

and
f(Xt) ≤ ∥A∥2→2

2 ∥Xt∥22 ≤ ∥A∥2→2

2 ∥Zt∥22 ≤ ∥A∥2→2

2 e−2(
mµ
2 +q)t∥Z0∥22.

In particular, note that increasing q and m can lead to arbitrary fast convergence with the rate of
e−(mµ+2q)t under the conditions mentioned.
Remark A.0.1 (Comparison with quadratics). The rates found for µ-strongly convex functions are
compared with their quadratic counterparts. Specifically, for the quadratic function f(Xt) =
1
2X

T
t AXt we showed |f(Xt)| ≤ Cqe

−(mµ+2q)t. Deeper analysis on the auxiliary variable
Zt = [XT

t V T
t ]T shows

∥Zt∥2 = ∥Xt∥2 + ∥Vt∥2 = XT
t IdXt + ∥Ẋt

n
+Xt +

m

n
AXt∥2,

where the second equality is due to (GM2-ODE) and the Lyapunov function for f(Xt) =
1
2X

T
t AXt

is

ε(t) =
1

2
XT

t AXt+
n

2p
∥Ẋt

n
+Xt+

m

n
AXt∥2 =

1

2
XT

t AXt+
n

2p
∥Vt∥2+ ≤ max{∥A∥2→2

2
,
n

2p
}∥Zt∥2

(19)

≤ Cq max{∥A∥2→2

2
,
n

2p
}e−(mµ+2q)t∥Z0∥2

which is twice faster than the rate found in Theorem 3.2. One can notice the existence of coefficient
2 instead of 1 for q and m in the convergence rate of convex quadratics.

A.2 DISCRETE-TIME ANALYSIS OF THE QUADRATICS

We consider discretizing (GM2-ODE) and investigate the convergence behaviour of it for µ-strongly
convex L-smooth quadratic function of the form f(X) = 1

2X
TAX . Applying the SIE discretization

on (GM2-ODE) we get{
xk+1 − xk = −m

√
sAxk − n

√
s(xk+1 − vk),

vk+1 − vk = −p
√
sAxk+1 − q

√
s(vk − xk+1).

(20)

Without loss of generality we can assume that A is a diagonal matrix in which case the diagonal
elements of A are its eigenvalues. The one line representation of (20) is

xi
k+1 =

(
1 +

(1− q
√
s− npsaii −m

√
saii)

1 + n
√
s

)
xi
k +

(
m
√
saii − 1 + q

√
s(1−m

√
saii)

1 + n
√
s

)
xi
k−1,

(21)

where upper index i denotes the i’th element and aii is the i’th element of A’s diagonal elements
for i = 1, . . . , d. For comparison, the one line representation of the NAG algorithm for quadratic
function f(X) is

xi
k+1 = (

2

1 +
√
µs

(1− saii))x
i
k +

1−√
µs

1 +
√
µs

(saii − 1)xi
k−1 ∀i ∈ {1, . . . d},

which can be derived from (21) by setting

n =
√
µ, q =

√
µ, p =

1
√
µ
,m =

√
s.

To study the convergence rate of (20), we reformulate (21) as

yk =

[
xk+1

xk

]
=

[ (
(1 + (1−q

√
s)

1+n
√
s
)Id − (nps+m

√
s)

1+n
√
s

A
) (

(1−q
√
s)(Am

√
s−Id)

1+n
√
s

)
Id 0d

] [
xk

xk−1

]
= T yk−1 (22)
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with 0d and Id as a d× d zero matrix and d-dimension identity matrix. Next, we have

∥yk∥2 = ∥T yk−1∥2 = ∥T ky0∥2 ≤ ∥T k∥2∥y0∥2 ≤ (ρ(T ) + o(1))k∥y0∥2,

where ρ(T ) is the spectral radius of T and the last inequality is true asymptotically as k → ∞
through Gelfand’s formula (Horn & Johnson, 2012). To define convergence rate we need the largest
eigenvalue of T which corresponds to the largest spectral radius. Note that T is the block diagonal
matrix

T =


T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . Td

 , Ti =

[ (
(1 + (1−q

√
s)

1+n
√
s
)− (nps+m

√
s)

1+n
√
s

aii

) (
(1−q

√
s)(aiim

√
s−1)

1+n
√
s

)
1 0

]
,

(23)

for i ∈ {1, . . . , d}. Hence, the eigenvalues of T are the union of the eigenvalues of Ti’s. For each
Ti there exist two eigenvalues as the solutions of

r2 −
(
1 +

1− q
√
s

1 + n
√
s
− (nps+m

√
saii)

1 + n
√
s

)
r − (1− q

√
s)(aiim

√
s− 1)

1 + n
√
s

= 0,

with

∆ =

(
1 +

1− q
√
s

1 + n
√
s
− (nps+m

√
saii)

1 + n
√
s

)2

− 4
(1− q

√
s)(aiim

√
s− 1)

1 + n
√
s

.

Taking n = q =
√
aii, np = 1,m =

√
s leads to ∆ = 0 and r1,2 = 1 − √

saii. With this choice
of parameters, the convergence rate of (20) for µ-strongly convex and L-Lipschitz quadratics of the
form f(X) = 1

2X
TAX will be

f(xk)− f(x∗) =
1

2

d∑
i=1

aii(x
i
k)

2 ≤ max
i

aii∥xk∥2 ≤ Cmax
i

(1−
√
saii)

2k,

for
√
s ≤ 1√

L
(due to 1 − √

saii ≥ 0). The worst case scenario happens for aii = µ (closest

possible rate to 1) which leads to the rate O((1 −
√

1
κ )

2k). The np = 1 condition does not exist in
the continuous case. This observation is used for our analysis in the general case.

A.3 CONVERGENCE OF OPTIMIZATION ALGORITHMS THROUGH DYNAMICAL SYSTEMS

In the state space, dynamical systems are usually presented in the form of

ξ̇(t) = Aξ(t) +Bu(t), y(t) = Cξ(t), u(t) = ∇f(y(t)) ∀t ≥ 0, (24)

where ξ ∈ Rn is the state, y(t) ∈ Rd(d ≤ n) is the output, and u(t) is the continuous feedback
input. Here, we would have u∗ = 0 and the fixed point of (24) is

Aξ∗ = 0, y∗ = Cξ∗.

Consider the nonnegative function

ε(t) = eλt
(
f(y(t))− f(y∗) + (ξ(t)− ξ∗)TP (ξ(t)− ξ∗)

)
,

with λ > 0, y∗ = x∗ and P ⪰ 0 where A ⪰ B denotes that A−B is positive semi-definite. If when
ξ → ξ∗ we have d

dtε(t) ≤ 0, then ε(t) ≤ ε(0). This results in

f(y(t))− f(y∗) ≤ e−λtε(0).

The following result from (Fazlyab et al., 2018) proposes a Linear Matrix Inequality (LMI) that
guarantees the existence of a Lyapunov function through which we can show that f(x) converges
exponentially fast. For simplicity, we adopt the presentation of (Sanz Serna & Zygalakis, 2021).

14



Under review as a conference paper at ICLR 2023

Theorem A.1 (Theorem 6.4 in (Fazlyab et al., 2018)). Suppose that for (24) there exists λ > 0, P ⪰
0 and σ ≥ 0 such that T = M (0) +M (1) + λM (2) + σM (3) ⪯ 0 where

M (0) =

[
PA+ATP + λP PB

BTP 0

]
,

M (1) =
1

2

[
0 (CA)T

CA CB + (CB)T

]
,

M (2) =

[
CT 0
0 Id

] [
−µ

2 Id
1
2Id

1
2Id 0

] [
C 0
0 Id

]
,

M (3) =

[
CT 0
0 Id

] [
− µL

µ+LId
1
2Id

1
2Id

−1
µ+L

] [
C 0
0 Id

]
,

and (.)T denotes the transpose operator and Id is the identity matrix of size d. Then for f ∈ Fµ,L

we have
f(y(t))− f(y∗) ≤ e−λtε(0).

A.4 ACCELERATION OF THE EXPLICIT EULER DISCRETIZATION

We would like to show the correspondence between EE and SIE discretizations of (GM2-ODE). The
following lemma shows how to update the coefficients of EE method such that SIE is derived.
Lemma 1. Consider the parameters of EE discretization of (GM2-ODE) as nEE ,mEE , q, p and the
parameters of SIE discretization of (GM2-ODE) as nSIE ,mSIE , q, p. Then by taking{

nEE = nSIE−qnSIE
√
s

1+nSIE
√
s

,

mEE = mSIE+nSIEp
√
s

1+nSIE
√
s

,
(25)

SIE discretization of (GM2-ODE) will be the same as its EE discretization with step-size
√
s.

For proving the result, note that the EE discretization of (GM2-ODE) is{
xk+1 − xk = −m

√
s∇f(xk)− n

√
s(xk − vk),

vk+1 − vk = −p
√
s∇f(xkk

)−
√
sq(vk − xk),

(26)

which can be written in one line format
xk+1 = xk −m

√
s∇f(xk) + (1− q

√
s− n

√
s)(xk − xk−1) + (m

√
s(1− q

√
s)− nps)∇f(xk−1),

(27)
replacing the coefficient updates from (25) in above gives the SIE one line update of (6) which is

xk+1 = xk − m
√
s+nps

1+n
√
s

∇f(xk) +
1−q

√
s

1+n
√
s
(xk − xk−1) +

m
√
s(1−q

√
s)

1+n
√
s

∇f(xk−1), (28)

With Lemma 1 and Theorem 4.1, we establish the convergence result for (26) as follows.
Corollary A.1.1 (Convergence of (26)). For µ-strongly convex L-smooth function f with 0 ≤ µ < L
and parameters m,n, p, q such that

q/p ≤ µ, 0 ≤ qps ≤ m
√
s(1 + q

√
s)− qps ≤ 1

L
, n = q

1− q
√
s

1 + q
√
s
, 0 ≤ q

√
s < 1, p > 0,

the sequence xk in (26) will satisfy

f(xk)− f(x∗) ≤ LC ′
GM (1− q

√
s)k,

for constant C ′
GM > 0 and any x0, v0 = x0 − (mn − 2qps

n
√
s(1+q

√
s)
)∇f(x0).

The proof is simply done by using (25) in Theorem 4.1. Note that for the initial condition we need
to get the same result as in Theorem 4.1 with the new coefficients and the new update rule (26).

Corollary A.1.1 suggests that choosing

q =
√
µ, p =

1
√
µ
,m =

2s

1 +
√
µs

, n =
√
µ
1−√

µs

1 +
√
µs

,

in (26) will recover the NAG algorithm.
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Figure 3: Comparison between the NAG, (Shi-SIE) as Shi-SIE, SIE discretization of (GM-ODE) as
GM-SIE with superscript 1 and 2 when n′ = 1,m′ =

√
s, q′ = 2

√
µ and n′ = 1 − 2

√
µs,m′ =√

s, q′ = 2
√
µ respectively. The simulation function was f(x) = 4(L−µ) log(1+e−x)+ µ

2x
2 with

L = 1, µ = 0.01. (a) The effect of the approximations (1/(1−√
µs) ≈ 1 in Shi-SIE and coefficient

deviation in GM-SIE1) in the ODE trajectories, (b) different coefficients used for discretizing (GM-
ODE). GM-SIE1 is the SIE discretization of GM-ODE1 (the recovered high-resolution NAG ODE
from (GM-ODE)) and GM-SIE2 is the SIE discretization of GM-ODE2 (the ODE used to recover
the NAG algorithm).

A.5 NUMERICAL RESULTS

In this section, numerical experiments are designed for further illustration of the previous findings.
An important note is that (GM-ODE) in (Zhang et al., 2021) uses different parameters to recover
(NAG-ODE) (m′ =

√
s, q′ = 2

√
µ, n′ = 1) and the NAG algorithm after discretization (m′ =√

s, q′ = 2
√
µ, n′ = 1 − 2

√
µs). In Figure 3 we have considered two SIE discretizations of (GM-

ODE) and{
qk+1 − qk = jk

√
s,

jk+1 − jk = −2
√
µsjk+1 −

√
s(1 +

√
µs)∇f(qk+1)−

√
s(∇f(qk+1)−∇f(qk)),

(Shi-SIE)

which is the SIE discretization of (11) used in (Shi et al., 2021). The discretizations of (GM-ODE)
are shown with GM-SIE1 and GM-SIE2. The aim of Figure 3 is to highlight two things; First,
the effect of coefficient inconsistency before and after discretization of (GM-ODE) and second, to
depict the approximation 1/(1−√

µs) ≈ 1 made in (Shi et al., 2021). The step-size was s = 1/L in
all simulations. All algorithms are simulated with the parameters they use to recover (NAG-ODE)
except for GM-SIE2 which uses n′ = 1 − 2

√
µs for the sake of comparison with GM-SIE1. GM-

SIE2 does not fall exactly on the NAG algorithm due to different initializations. We did not simulate
(6) due to its exact match with the NAG method.

Table 2: Parameters used for comparing different algorithms in Figure 4.

Nesterov (13) Shi-SIE GM-SIE2

s = 1
L s = 1

L s = 4
9L s = 1

4L

α =
√
κ−1√
κ+1

m =
√
s - m′ =

√
s

- q = n =
√
µ - q′ = 2

√
µ

- p = 1/
√
µ - n′ = 1− 2

√
µs

x0 = y0 ∼ N(0, 1) x0, v0 ∼ N(0, 1) x0 ∼ N(0, 1), v0 = −2∇f(x0)
1+

√
µs x0 = v0 ∼ N(0, 1)

Next, we provide an example of the performance of the NAG method (as Nesterov) with (13),
GM-SIE2, and Shi-SIE under the conditions they prove their convergence results (see table 2). For
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Figure 4: Comparison between the NAG, (13), GM-SIE2, and Shi-SIE. All algorithms are simulated
under the best performance conditions (see table 2). The simulation function was f(x) = 4(L −
µ) log(1 + e−x) + µ

2x
2 with L = 1, µ = 0.01.

the sake of visualization, we simulated (13) with random v0 with 100 monte-carlo simulations in-
stead of v0 = x0 − m

n ∇f(x0). The result is shown in Figure 4.

B PROOFS

B.1 PROOF OF PROPOSITION 5.1

By comparing the one-line presentation of (GM-ODE)

Üt + (q′ +m′∇2f(Ut))U̇t + (n′ +m′q′)∇f(Ut) = 0, (29)

and the one-line presentation of (GM2-ODE)

Ẍ + ((n+ q) +m∇2f(X))Ẋ + (np+mq)∇f(X) = 0, (30)

we can see that if the parameters are chosen as in (10), we get the equivalence.

B.2 PROOF OF THEOREM 3.1

Here, Theorem A.1 is used to find both a Lyapunov function and a convergence rate for (GM2-ODE).
In order to apply the theorem we need to present (GM2-ODE) in the form of (24). Taking X,V ∈
Rd,

ξ = [X,V ]T , A =

[
−nId nId
qId −qId

]
, B =

[
−mId
−pId

]
, C =

[
Id
0d

]T
, (31)

will present the state space of (GM2-ODE). For simplicity, we set σ = 0, i.e. we remove any sign
of L from our formulation. Thus, the result holds for µ-strongly convex functions. We need to find
P ⪰ 0, λ > 0 such that T ⪯ 0. Consider

P = P̂ ⊗ Id, P̂ =

[
p11 p12
p12 p22

]
, (32)
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T = T̂ ⊗ Id, T̂ =

[
t11 t12 t13
t12 t22 t23
t13 t23 t33

]
. (33)

Using the structure in Theorem A.1, one can find the elements tij as

t11 = −(2n− λ)p11 + 2qp12 −
λµ

2
,

t12 = np11 + qp22 − (n+ q − λ)p12,

t13 = −mp11 − pp12 +
λ− n

2
,

t22 = 2(np12 − qp22) + λp22,

t23 = −mp12 − pp22 +
n

2
,

t33 = −m,

Next step is to ensure that P̂ ⪰ 0. If we take det(P̂ ) = 0 and find one of the diagonal elements
such that it would be positive, then one of the eigenvalues of P̂ is zero and the other one is positive
which results in our favor. Before doing so, we will find p11 and p22 as a function of p12. The latter
is done by setting t13 = 0 and t23 = 0. Then

t13 = 0 =⇒ p11 =
−pp12+

λ−n
2

m ,

t23 = 0 =⇒ p22 =
−mp12+

n
2

p .
(34)

These choices will lead to a block diagonal T̂ which is easier to handle later. Now, we will find p12
such that det(P̂ ) = 0.

det(P̂ ) = 0 → p11p22 − p212 = 0 → p12 =
n

4

(
n− λ

m(n−λ)−np
2

)
(35)

From the quadratics analysis, we expect the fastest convergence rate to relate to q with condition
n = q. Therefore, we set λ = q and n = q. These two conditions lead to

p12 = 0, p11 = 0, p22 =
n

2p
, (36)

and since n
2p ≥ 0 we get P̂ ⪰ 0. Also, we have

t11 = −qµ

2
, t12 =

q2

2p
, t13 = 0, t22 =

−q2

2p
, t23 = 0, t33 = −m. (37)

Now, to establish T̂ ⪯ 0, consider

T̂1 =

[
t11 t12
t21 t22

]
, T̂2 = [t33],

as the blocks in the block diagonal matrix T̂ . We know that t33 ≤ 0. Also if Tr(.) denotes the trace
operator, Tr(A) is equal to the sum of the eigenvalues of the matrix A and the determinant of A is
equal to the multiplication of its eigenvalues. Therefore, if the determinant of the first 2 × 2 block
matrix, T̂1, is positive and t11, t22 are negative, we ensure that Tr(T̂1) = Γ1 + Γ2 ≤ 0, Γ1Γ2 ≥ 0,
and Γ3 ≤ 0 where Γi, i = 1, 2, 3 are the eigenvalues of T̂ . Hence, Γi ≤ 0 for i = 1, 2, 3 and this
means T̂ ⪯ 0. One can formulate the above arguments as

t11t22 − t212 ≥ 0 → (
qµ

2
)(
q2

2p
)− (

q2

2p
)2 ≥ 0 → q ≤ µp,

which indeed holds for the quadratic case as well.
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According to Theorem A.1 we have

f(x(t))− f(x∗) ≤ e−qt(f(x(0))− f(x∗) + (ξ(0)− ξ∗)TP (ξ(0)− ξ∗)),

which is

f(x(t))− f(x∗) ≤ e−qt(f(x(0))− f(x∗) +
q

2p
∥V − x∗∥2). (38)

Note that due to the form of (GM2-ODE), x∗ = v∗ (see Figure 1). Therefore, the claim of the
theorem is proved.

B.3 PROOF OF THEOREM 3.2

Recall the form of Lyapunov function as

ε(t) = f(Xt)− f(x∗) +
n

2p
∥Vt − x∗∥2.

In order to prove, we will take derivative of eλtε(t) with respect to time and show the result is
negative.

deλtε(t)

dt
= λeλt[f(Xt)− f(x∗) +

n

2p
∥Vt − x∗∥2] (I)

+ eλt[⟨Ẋt,∇f(Xt)⟩+
n

p
⟨Ẍt

n
+ Ẋt +

m

n
∇2f(Xt)Ẋt︸ ︷︷ ︸

(A)

,
Ẋt

n
+Xt − x∗ +

m

n
∇f(Xt)⟩]. (II)

Using (30) we have

(A) =
Ẍt

n
+ Ẋt +

m

n
∇2f(Xt)Ẋt = −Ẋt −

q

n
Ẋt −

m

n
∇2f(Xt)Ẋt − (p+

mq

n
)∇f(Xt)

+ Ẋt +
m

n
∇2f(Xt)Ẋt = − q

n
Ẋt − (p+

mq

n
∇f(Xt)), (39)

Replacing (39) in (II) gives

⟨Ẋt,∇f(Xt)⟩+
n

p
⟨Ẍt

n
+ Ẋt +

m

n
∇2f(Xt)Ẋt,

Ẋt

n
+Xt − x∗ +

m

n
∇f(Xt)⟩

= ⟨Ẋt,∇f(Xt)⟩+
n

p
⟨− q

n
Ẋt − (p+

mq

n
∇f(Xt)),

Ẋt

n
+Xt − x∗ +

m

n
∇f(Xt)⟩

= ⟨Ẋt,∇f(Xt)⟩+
n

p

[
−qm

n2
⟨Ẋt,∇f(Xt)⟩ − (

p

n
+

mq

n2
)⟨Ẋt,∇f(Xt)⟩ −

q

n2
∥Ẋt∥2 −

q

n
⟨Ẋt, Xt − x∗⟩

−(p+
mq

n
)⟨∇f(Xt), Xt − x∗⟩ − m

n
(p+

mq

n
)∥∇f(Xt)∥2

]
= −2

qm

np
⟨Ẋt,∇f(Xt)⟩ −

q

np
∥Ẋt∥2 −

qn

p
⟨Ẋt

n
,Xt − x∗⟩ − (n+

mq

p
)⟨∇f(Xt), Xt − x∗⟩

−m(1 +
mq

np
)∥∇f(Xt)∥2. (40)

Now, (I) gives

λeλt
[
f(Xt)− f(x∗) +

n

2p
∥Vt − x∗∥2

]
= λeλt

[
f(Xt)− f(x∗)

+
n

2p

(
∥Ẋt

n
∥2 + ∥Xt − x∗∥2 + 2⟨Ẋt

n
,Xt − x∗⟩+ m2

n2
∥∇f(Xt)∥2 + 2⟨Ẋt

n
,
m

n
∇f(Xt)⟩

+ 2
m

n
⟨∇f(Xt), Xt − x∗⟩

)]
. (41)
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Now, using (41) and (equation 40) in (I) and (II) respectively, gives
deλtε(t)

dt
= eλt[λ(f(Xt)− f(x∗))

+ (
mλ− 2mq

np
)⟨Ẋt,∇f(Xt)⟩+ (

λm

p
− n− mq

p
)⟨∇f(Xt), Xt − x∗⟩+ (

λn

2p
− qn

p
)∥Ẋt

n
∥2

+ (
λn

p
− qn

p
)⟨Ẋt

n
,Xt − x∗⟩+ (

λm2

2np
−m− qm2

np
)∥∇f(Xt)∥2 +

λn

2p
∥Xt − x∗∥2].

(42)
Due to strong convexity of f(Xt) we have

⟨∇f(Xt), x
∗ −X⟩ ≤ −(f(Xt)− f(x∗) +

µ

2
∥Xt − x∗∥2).

Using the above inequality in (42) we get
deλtε(t)

dt
≤ eλt[

(
λ− (n+

mq

p
− λm

p
)

)
(f(Xt)− f(x∗)) + µ(

λm

2p
− mq

2p
)∥Xt − x∗∥2 (III)

+

(
λn

2p
− µn

2

)
∥Xt − x∗∥2 +

(
λn− qn

2p

)(
2⟨Ẋt

n
,Xt − x∗⟩+ ∥Ẋt

n
∥2
)

(IV)

− q

2np
∥Ẋt∥2 + 2(

λ

2np
− q

np
)⟨Ẋt,m∇f(Xt)⟩+

(
λ

2np
− 1

m
− q

np

)
∥m∇f(Xt)∥2. (V)

Now, we need to find conditions such that (III), (IV) and (V) are negative. For (III) to be negative
we need that

λ− (n+
mq

p
− λm

p
) ≤ 0 and (

m

2p
(λ− q)) ≤ 0,

which are satisfied as long as

λ− (n+
mq

p
− λm

p
) ≤ (1 +

m

p
)(λ−min{n, q}) → λ ≤ min{n, q}.

Next, we can upper bound (IV) with a negative term with coefficient if
q

p
≤ µ and λ ≤ q.

To see this, if we have λ ≤ q and q
p ≤ µ then λ

p ≤ µ and therefore,(
λn

2p
− µn

2

)
∥Xt − x∗∥2 ≤ −

(
qn− λn

2p

)
∥Xt − x∗∥2.

Replacing in (IV) we get

(IV) ≤ −
(
qn− λn

2p

)
∥Ẋt

n
+Xt − x∗∥2 ≤ 0.

Lastly, one needs to have
2q ≥ λ ≥ q and n,m, p ̸= 0,

so that (
λ

2np
− 1

m
− q

np

)
∥m∇f(Xt)∥2 ≤ (

λ

2np
− q

np
)∥m∇f(Xt)∥2 ≤ 0,

and
− q

2np
∥Ẋt∥2 ≤ (

λ

2np
− q

np
)∥Ẋt∥2.

Then, replacing in (V) results in

(V) ≤ (
λ− 2q

2np
)∥Ẋt +m∇f(Xt)∥2 ≤ 0.

Putting all the above conditions together we conclude that
deλtε(t)

dt
≤ 0,

if n,m, p ̸= 0 and q = λ and n ≥ q and q/p ≤ µ Therefore, eqtε(t) ≤ ε(0) for t ≥ 0 which
concludes the proof.
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B.4 PROOF OF THEOREM 4.1

To show the claim of the theorem, we will bound the difference ε(k + 1)− ε(k) such that

ε(k + 1) ≤ (1− q
√
s)(k+1)ε(0),

holds with ε(k) as the Lyapunov function

ε(k) = f(xk)− f(x∗) +
B

2
∥vk − x∗∥22 −

Bp2s

2
∥∇f(xk)∥2, (43)

with B as a positive constant to be found. Using (43) we have

ε(k + 1)− ε(k) = f(xk+1)− f(xk) +
B

2
(∥vk+1 − vk∥2 + 2⟨vk+1 − vk, vk − x∗⟩)︸ ︷︷ ︸

(I)

− Bp2s

2
∥∇f(xk+1)∥2 +

Bp2s

2
∥∇f(xk)∥2. (44)

Note that for (I) we have

(I) 6
=

B

2
(p2s∥∇f(xk+1)∥2 + q2s∥vk − xk+1∥2 + 2pqs⟨∇f(xk+1), vk − xk+1⟩

− 2p
√
s⟨∇f(xk+1), vk − xk+1⟩ − 2p

√
s⟨∇f(xk+1), xk+1 − x∗⟩ − 2q

√
s⟨vk − xk+1, vk − x∗⟩),

where we have added and subtracted xk+1 in ⟨∇f(xk+1), vk − x∗⟩. Next, using

⟨a− b, a− c⟩ = 1

2
∥a− b∥2 + 1

2
∥a− c∥2 − 1

2
∥b− c∥2,

we get

(I) =
B

2
(p2s∥∇f(xk+1)∥2 + q2s∥vk − xk+1∥2 + 2pqs⟨∇f(xk+1), vk − xk+1⟩

− 2p
√
s⟨∇f(xk+1), vk − xk+1⟩ − 2p

√
s⟨∇f(xk+1), xk+1 − x∗⟩

− q
√
s∥vk − xk+1∥2 − q

√
s∥vk − x∗∥2 + q

√
s∥xk+1 − x∗∥2). (45)

Utilizing strong convexity of f(x) we have

⟨∇f(xk+1), xk+1 − x∗⟩ ≥ f(xk+1)− f(x∗) +
µ

2
∥xk+1 − x∗∥2, (S.C)

thus, we can upper bound (I) as

(I)
(S.C)
≤ B

2
(p2s∥∇f(xk+1)∥2 + q2s∥vk − xk+1∥2 + 2pqs⟨∇f(xk+1), vk − xk+1⟩

− 2p
√
s⟨∇f(xk+1), vk − xk+1⟩ − 2p

√
s(f(xk+1)− f(x∗))− µp

√
s∥xk+1 − x∗∥2

− q
√
s∥vk − xk+1∥2 − q

√
s∥vk − x∗∥2 + q

√
s∥xk+1 − x∗∥2)

±f(xk)
=

B

2
(p2s∥∇f(xk+1)∥2 + q2s∥vk − xk+1∥2 + 2pqs⟨∇f(xk+1), vk − xk+1⟩

− 2p
√
s⟨∇f(xk+1), vk − xk+1⟩ − 2p

√
s(f(xk+1)− f(xk))− 2p

√
s(f(xk)− f(x∗))

− µp
√
s∥xk+1 − x∗∥2 − q

√
s∥vk − xk+1∥2 − q

√
s∥vk − x∗∥2 + q

√
s∥xk+1 − x∗∥2). (46)

Replacing (46) in (44) we have

ε(k + 1)− ε(k)
46
≤ f(xk+1)− f(xk) +

Bp2s

2
∥∇f(xk+1)∥2 +

Bq2s

2
∥vk − xk+1∥2

+Bpqs⟨∇f(xk+1), vk − xk+1⟩ −Bp
√
s⟨∇f(xk+1), vk − xk+1⟩

−Bp
√
s(f(xk+1)− f(xk))−Bp

√
s(f(xk)− f(x∗))

− Bµp
√
s

2
∥xk+1 − x∗∥2 − Bq

√
s

2
∥vk − xk+1∥2 −

Bq
√
s

2
∥vk − x∗∥2

+
Bq

√
s

2
∥xk+1 − x∗∥2 − Bp2s

2
∥∇f(xk+1)∥2 +

Bp2s

2
∥∇f(xk)∥2. (47)
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By setting q/p ≤ µ we get

Bq
√
s

2
∥xk+1 − x∗∥2 ≤ Bµp

√
s

2
∥xk+1 − x∗∥2,

and thus simplifying (47) results in

ε(k + 1)− ε(k)
47
≤ (1−Bp

√
s)(f(xk+1)− f(xk)) +Bp

√
s(q

√
s− 1)⟨∇f(xk+1), vk − xk+1⟩

−Bp
√
s(f(xk)− f(x∗))− Bq

√
s

2
(1− q

√
s)∥vk − xk+1∥2

− Bq
√
s

2
∥vk − x∗∥2 + Bp2s

2
∥∇f(xk)∥2. (48)

Next, using smoothness of f(x) we get

f(xk+1)− f(xk) ≤ ⟨∇f(xk+1), xk+1 − xk⟩ −
1

2L
∥∇f(xk+1)−∇f(xk)∥2

6
= −m

√
s⟨∇f(xk+1),∇f(xk)⟩ − n

√
s⟨∇f(xk+1), xk+1 − vk⟩

− 1

2L
∥∇f(xk+1)−∇f(xk)∥2. (S.L)

Upper-bounding (48) using (S.L) and considering q
√
s ≤ 1 leads to

ε(k + 1)− ε(k)
S.L
≤ −m

√
s(1−Bp

√
s)⟨∇f(xk+1),∇f(xk)⟩ −

(1−Bp
√
s)

2L
∥∇f(xk+1)−∇f(xk)∥2

+ [Bp
√
s(q

√
s− 1) + n

√
s(1−Bp

√
s)]⟨∇f(xk+1), vk − xk+1⟩

−Bp
√
s(f(xk)− f(x∗))− Bq

√
s

2
∥vk − x∗∥2 + Bp2s

2
∥∇f(xk)∥2. (49)

Next, by setting B = n
p , n = q, and q

√
s < 1 we have

ε(k + 1)− ε(k)
49
≤ −m

√
s(1−Bp

√
s)⟨∇f(xk+1),∇f(xk)⟩ −

(1−Bp
√
s)

2L
∥∇f(xk+1)−∇f(xk)∥2

− n
√
s(f(xk)− f(x∗))− Bq

√
s

2
∥vk − x∗∥2 + Bp2s

2
∥∇f(xk)∥2

= −m
√
s(1−Bp

√
s)⟨∇f(xk+1),∇f(xk)⟩ −

(1−Bp
√
s)

2L
∥∇f(xk+1)−∇f(xk)∥2

− n
√
s(f(xk)− f(x∗))− Bq

√
s

2
∥vk − x∗∥2

+
Bp2s

2
(1− q

√
s)∥∇f(xk)∥2 +

Bp2s

2
(q
√
s)∥∇f(xk)∥2. (50)

Now, adding Bp2s(1−q
√
s)

2 ∥∇f(xk+1)∥2 to (50) results in

ε(k + 1)− ε(k)
50
≤ −m

√
s(1−Bp

√
s)⟨∇f(xk+1),∇f(xk)⟩ −

(1−Bp
√
s)

2L
∥∇f(xk+1)−∇f(xk)∥2

− n
√
s(f(xk)− f(x∗))− Bq

√
s

2
∥vk − x∗∥2 + Bp2s

2
(1− q

√
s)∥∇f(xk+1)∥2

+
Bp2s

2
(1− q

√
s)∥∇f(xk)∥2 +

Bp2s

2
(q
√
s)∥∇f(xk)∥2. (51)

Next, setting nps ≤ m
√
s and noting that n = q, we get

−m
√
s(1−Bp

√
s)⟨∇f(xk+1),∇f(xk)⟩+ Bp2s(1−q

√
s)

2 ∥∇f(xk+1)∥2 + Bp2s(1−q
√
s)

2 ∥∇f(xk)∥2

= (1− q
√
s)
[
−m

√
s⟨∇f(xk+1),∇f(xk)⟩+

nps

2
∥∇f(xk+1)∥2 +

nps

2
∥∇f(xk)∥2

]
≤ (1− q

√
s)m

√
s

2
∥∇f(xk+1)−∇f(xk)∥2. (52)
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Using (52) in (51) we get

ε(k + 1)− ε(k)
52
≤ (1− q

√
s)(

m
√
s

2
− 1

2L
)∥∇f(xk+1)−∇f(xk)∥2 − n

√
s(f(xk)− f(x∗))

− Bq
√
s

2
∥vk − x∗∥2 + Bp2s

2
(q
√
s)∥∇f(xk)∥2.

Setting m
√
s ≤ 1

L leads to

ε(k + 1)− ε(k) ≤ −n
√
s(f(xk)− f(x∗))− Bq

√
s

2
∥vk − x∗∥2 + Bp2s

2
(q
√
s)∥∇f(xk)∥2,

which can be expressed in a more favourable way

ε(k + 1)− ε(k) ≤ −(q
√
s)

[
f(xk)− f(x∗) +

B

2
∥vk − x∗∥2 − Bp2s

2
∥∇f(xk)∥2

]
= −(q

√
s)ε(k). (53)

which gives

ε(k + 1) ≤ (1− q
√
s)ε(k). (54)

Therefore,

ε(k + 1) ≤ (1− q
√
s)k+1ε(0). (55)

Using the form of ε(k) in (43) and the inequality

f(xk)− f(x∗) ≥ 1

2L
∥∇f(xk)∥2,

which is true for any L-smooth function with x∗ such that ∇f(x∗) = 0, we get

ε(k) = (f(xk)− f(x∗)) +
B

2
∥vk − x∗∥22 −

Bp2s

2
∥∇f(xk)∥2

≥ (1−Bp2sL)(f(xk)− f(x∗)) +
B

2
∥vk − x∗∥2. (56)

Note that

1−Bp2sL = 1− npsL,

and under the conditions in Theorem 4.1 we have npsL ≤ 1 and thus,

1−Bp2sL = 1− npsL ≥ 0.

Hence, (1−Bp2sL)(f(xk)− f(x∗)) ≥ 0 and (56) leads to

ε(k) ≥ B

2
∥vk − x∗∥22. (57)
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From (55) we have

ε(k) ≤ (1− q
√
s)kε(0)

= (1− q
√
s)k
[
f(x0)− f(x∗) +

B

2
∥v0 − x∗∥22 −

Bp2s

2
∥∇f(x0)∥2

]
v0=x0−

m
n ∇f(x0)
= (1− q

√
s)k
[
f(x0)− f(x∗) +

B

2
∥x0 − m

n ∇f(x0)− x∗∥22

−Bp2s

2
∥∇f(x0)∥2

]
= (1− q

√
s)k
[
f(x0)− f(x∗) +

B

2
∥x0 − x∗∥2 + (

Bm2

2n2
− Bp2s

2
)∥∇f(x0)∥2

−Bm

n
⟨∇f(x0), x0 − x∗⟩

]
S.C
≤ (1− q

√
s)k
[
f(x0)− f(x∗) +

B

2
∥x0 − x∗∥2 + (

Bm2

2n2
− Bp2s

2
)∥∇f(x0)∥2

−Bm

n
(f(x0)− f(x∗))− Bµm

2n
∥x0 − x∗∥2

]
= (1− q

√
s)k
[
(1−B(

m

n
))(f(x0)− f(x∗)) +

B

2
(1− µm

2n
)∥x0 − x∗∥2

+(
Bm2

2n2
− Bp2s

2
)∥∇f(x0)∥2

]
S.L
≤ (1− q

√
s)k
[
L

2
(1−B(

m

n
)) +

B

2
(1− µm

2n
) + (

Bm2

2n2
− Bp2s

2
)L2)

]
∥x0 − x∗∥2. (58)

Therefore, from (57) and (58) we get

B

2
∥vk − x∗∥22 ≤ (1− q

√
s)k
[
L

2
(1−B(

m

n
))+

B

2
(1− µm

2n
) + (

Bm2

2n2
− Bp2s

2
)L2)

]
∥x0 − x∗∥2. (59)

The positivity of the coefficient[
L

2
(1−B(

m

n
)) +

B

2
(1− µm

2n
) + (

Bm2

2n2
− Bp2s

2
)L2)

]
∥x0 − x∗∥2

is guaranteed under the conditions of Theorem 4.1. Multiplying both sides by 2/B gives

∥vk − x∗∥22 ≤ M ′∥x0 − x∗∥2

for M ′ =
[
L
B (1−B(mn )) + (1− µm

2n ) + (m
2

n2 − p2s)L2)
]
. Now, we know that limk→∞ vk = x∗.

By representing algorithm (6) in one-line format of sequence vk we get

vk+1 − vk = −p
√
s∇f(xk+1) +

1− q
√
s

1 + n
√
s
(vk − vk−1) +

q
√
s

1 + n
√
s
(
p

q
−m

√
s)∇f(xk). (60)

Analyzing (60) in limit and Taking ι = 1
1+n

√
s
(1− qm

√
s

p ) we have

lim
k→∞

(∇f(xk+1)− ι∇f(xk)) = 0. (61)

for ι < 1. Thus,

∀ϵ ∃k0 s.t. ∥∇f(xk+1)− ι∇f(xk)∥ ≤ ϵ k ≥ k0,

From the above argument we get

∥∇f(xk+1)∥ − ι∥∇f(xk)∥ ≤ ϵ → ∥∇f(xk+1)∥ ≤ ι∥∇f(xk)∥+ ϵ.
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Unrolling the above inequality results in

∥∇f(xk+1)∥ ≤ ιk−k0+1∥∇f(xk0)∥+ ϵ(1 + ι+ ι2 + . . .+ ιk−k0),

→ ∥∇f(xk+1)∥ ≤ ιk−k0+1∥∇f(xk0
)∥+ ϵ

1− ι
.

Taking ϵ = (1−ι)δ
2 and noting that

∀δ ∃k0 ≤ k : ιk−k0+1∥∇f(xk0
)∥ ≤ δ/2,

we get
∥∇f(xk+1)∥ ≤ δ,

and therefore,
lim
k→∞

∥∇f(xk+1)∥ = 0.

Thus, the limit of ∇f(xk) exists and since f is strongly convex xk → x∗ as k → ∞. We therefore
proved that sequence xk converges to x∗.

B.5 PROOF OF COROLLARY 3.2.1

By comparing the one line representation (11) with (HR-TM) we can easily check the validity of
parameters stated in the corollary. All that remains is to show that these parameters satisfy the
conditions of Theorem 3.2. Due to positiveness of the parameters (s, β, γ, δ) in (TM-Method) and
n ≥ q for ξ ≤ 2/3 the first two conditions in Theorem 3.2 are satisfied. The last condition is
q/p ≤ µ. Using the values for q and p we have

q

p
=

ξ(2− ξ)M

(1− ξγ
√
sM)(1 +

√
Ms)

≤ µ

⇒ (1− ξγ
√
sM)(1 +

√
Ms)

ξ(2− ξ)
− M

µ
≥ 0 (62)

Replacing TM method parameters and defining function G(ξ) we get

G(ξ, κ) =

(
1− ξ( ρ2

(1+ρ)(2−ρ) )
√
(1 + ρ)ML

)(
1 +

√
(1 + ρ)ML

)
ξ(2− ξ)

− M

µ
.

Now, using M =
(

1−β√
s(1+β)

)2
and equation (8) in (Sun et al., 2020) we have

M

µ
=

9κ3
√
κ− 6κ3 + κ2

√
κ

8κ3
√
κ− 12κ3 + 14κ2

√
κ− 9κ2 + 4κ

√
κ− κ

,

M

L
=

9κ2
√
κ− 6κ2 + κ

√
κ

8κ3
√
κ− 12κ3 + 14κ2

√
κ− 9κ2 + 4κ

√
κ− κ

. (63)

With ρ = 1 − 1√
κ

, all the terms in (63) depend on κ and we need G(ξ, κ) ≥ 0 for (62) to hold. By
analyzing limκ→∞ G(ξ, κ) we see that for ξ = { 2

3 ,
4
3} we get limκ→∞ G(ξ, κ) = 0. However, the

solution ξ = 4
3 is not acceptable since it leads to q ≥ n which is not the case in Theorem 3.2. Also,

for κ = 1 we have

G(ξ, 1) =
3

ξ(2− ξ)
− 3

which remains non-negative for 0 ≤ ξ ≤ 2
3 . Therefore, invoking Theorem 3.2 results in (5) and

concludes the proof.
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B.6 PROOF OF COROLLARY 4.1.1

The proof is based on the QHM representation in (Zhang et al., 2021). It is possible to rewrite
(QHM) in one-line format

xk+1 − xk = b(xk − xk−1)− s∇f(xk) + sb(1− a)∇f(xk−1).

On the other hand, (6) has the one-line format

xk+1 − xk =
1− q

√
s

1 + n
√
s
(xk − xk−1)− (

m
√
s+ nps

1 + n
√
s

)∇f(xk) +
m
√
s(1− q

√
s)

1 + n
√
s

∇f(xk−1).

Taking b = 1−q
√
s

1+n
√
s
, m = (1− a)

√
s, n = q, p = a

n +
√
s result in

p > m,nps = s(a+ n
√
s) ≤ (1− a)s = m

√
s → a ≤ 1− q

√
s

2
,

Also, since n
√
s ≤ 1/2 we have (1 − n

√
s)/2 ≥ 1/4 and therefore a ≤ 1/4. For q/p ≤ µ to hold

one needs
q

a
q +

√
s
≤ q2

a
≤ µ → q ≤ √

aµ → q =
√
aµ,

and for m
√
s = (1− a)s ≤ 1/L we need

s ≤ 1

L(1− a)

1
1−a≤ 4

3
=⇒ s ≤ 4

3L
.

Since all the conditions of Theorem 4.1 are satisfied, for (QHM) we have

f(xk)− f(x∗) ≤ C(1−√
aµs)k.
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