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ABSTRACT
Wedevise an articulatory representation-based text-to-speech (TTS)
model, ArtSpeech, an explainable and effective network for human-
like speech synthesis, by revisiting the sound production system.
Current deep TTS models learn acoustic-text mapping in a fully
parametric manner, ignoring the explicit physical significance of
articulation movement. ArtSpeech, on the contrary, leverages artic-
ulatory representations to perform adaptive TTS, clearly describing
the voice tone and speaking prosody of different speakers. Specifi-
cally, energy, F0, and vocal tract variables are utilized to represent
airflow forced by articulatory organs, the degree of tension in the
vocal folds of the larynx, and the coordinated movements between
different organs, respectively. We also design a multi-dimensional
style mapping network to extract speaking styles from the articula-
tory representations, guided by which variation predictors could
predict the final mel spectrogram output. To validate the effective-
ness of our approach, we conducted comprehensive experiments
and analyses using the widely recognized speech corpus, such as
LJSpeech and LibriTTS datasets, yielding promising similarity en-
hancement between the generated results and the target speaker’s
voice and prosody. To promote reproducibility, we intend to make
both the source code and the pre-trained model publicly available.

CCS CONCEPTS
•Human-centered computing; •Applied computing→ Sound
and music computing;

KEYWORDS
Text-to-Speech Synthesis, Style Transfer, Articulatory Representa-
tion

1 INTRODUCTION
Recently, text-to-speech (TTS) systems have made remarkable ad-
vancements [5, 35, 47] with deep learning techniques and NLP
fundamental models [11, 19, 57]. However, due to their parametric
nature, they suffer from several limitations: First, they lack explain-
ability. As speaking style is implicitly modeled, the latent features
are abstract and detached from the physical nature of speech pro-
duction. Second, these TTS models typically extract style features
on the frequency domain, paying less attention to modeling the
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Figure 1: Overview of our proposedArtSpeech, an articulatory
representation-based TTS synthesis model facilitating high
voice tone and prosody similarity to the target speaker.

articulatory system. Thus their controllability over style modifica-
tion is limited. Third, each model employs a unique strategy to
turn text into speech, requiring large-scale datasets to learn the
parameters.

In light of the foregoing discussions, we are motivated to present
ArtSpeech, an articulatory representation-based TTS synthesis net-
work (Fig. 1). Human speech production, requiring the coordination
of various organs, is a complex physiological process. The airflow
from the lung vibrates through the vocal cord and then is shaped
by the resonant cavity to produce sounds. With these organs’ vari-
ations of shapes, sizes, and movement patterns, different speakers
have their unique voices and prosody [15]. Drawing on the inter-
pretability of speech production, our articulatory representation
could serve as a generalizable and supplementary element for TTS
frameworks; it is fully aware of the aforementioned limitations of
parametric counterparts while showing better performance.

Several attempts have been made to explore leveraging articula-
tory data, e.g., information recorded by magnetic resonant imaging
(MRI) [44], ultrasound scan [13], and electromagnetic articulogra-
phy (EMA) [54], to synthesize speech [1, 63] or improve the TTS
process [39]. However, articulatory-based speech representation
learning has been constrained by the complex modeling of physi-
ological processes [3] and the quantity of available datasets [45],
resulting in high word error rates of the synthesized speeches [63].

In this paper, we seek to investigate the following two research
questions. First, what articulatory features are useful for TTS syn-
thesis? To this end, we use three features that could be described
the simplified human speech production: the intensity and velocity
of the airflow expelled from the lungs, represented as energy; the
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fundamental frequency at which the vocal cords oscillate, repre-
sented as F0; articulatory movements of speech organs, represented
as vocal tract variables (TVs). We design a TV extractor to achieve
high-performance extraction and break the bottleneck of the lim-
ited dataset. We also propose a style mapping network to map
articulatory features to speaking style.

The second research question we would like to explore is: How
can speaking style be modeled using articulatory features, and
to what extent can it enhance performance in the TTS task? We
propose a multi-dimensional style mapping network to map artic-
ulatory features to the reference speeches’ speaking style. These
style vectors serve as guidance for the text-based variation predic-
tors to predict both duration and articulatory parameters followed
by the synthesis of mel spectrogram predictions.

Our extensive evaluation demonstrates that the generated speeches
consistently outperform other TTS models in terms of voice tone
and prosody similarity. For example, ArtSpeech demonstrates an
improvement with a +0.05 of MOS on the single-speaker dataset
(LJSpeech) and a +0.07 on the multi-speaker dataset (LibriTTS),
compared to that of StyleTTS2 [36].

2 RELATEDWORK
2.1 Articulatory-Based Speech Synthesis
As early as the 1790s, Kempelen et al. [27] developed a speaking
machine, featuring a bellow to simulate the function of lungs, a flute
to mimic vocal cords, and a tube serving as a stand-in for the mouth,
thereby mimicking human speech production. After the 1970s, the
articulatory system’s physiological structure was further described
through 2D geometry [38, 46] and 3D structural [14, 17, 61] model-
ing. These models enabled the simulation of the displacement and
deformation of soft tissues while speaking yet resulting in limited
quality and expressiveness of synthesized results [3].

With the most advanced medical equipment (e.g., magnetic res-
onance imaging (MRI), ultrasound scan, and electromagnetic ar-
ticulography (EMA)), researchers could capture real-time data on
the movements of articulatory organs, leading to the emergence of
data-driven TTS approaches [13, 44, 50, 54]. Specifically, GMM [55],
HMM [39], and deep learning-based techniques [67] have been
used to map articulatory features to waveforms [10, 63, 64] or as
the intermediate representation to transfer linguistic features to
acoustic features [41]. However, with these limited and low-quality
articulatory datasets, the synthesized speeches are noisy and have
a high word error rate [63]. ArtSpeech, on the contrary, aims to
inherit the intuitive power of the articulatory system’s physical
significance, achieving high-performance speaking style modeling
and breaking the bottleneck of limited articulatory data.

2.2 Expressive TTS
Among the numerous TTS algorithms, deep neural network-based
methods are particularly remarkable, due to the improved expres-
siveness of synthesized speeches [47, 59]. Variance information
(e.g., duration, pitch and energy) are nonparametric and exemplar-
driven and they are added to the phoneme hidden sequence, mak-
ing results appealing and controllable [31, 33, 35, 47, 56]. Emotion

types [24, 34, 66] and textual styles [70] are a special form of vari-
ance information; it has been utilized to further refine the expres-
sion of synthesized speech. However, the consideration of variance
information is limited, and intricate dynamics of speeches may not
be well captured.

Global speaking style modeling of entire utterances is an al-
ternative latent representation learning approach [7, 21, 52, 68].
A reference encoder, such as multi-head attention [53, 60] and
variational autoencoders [29, 49], is always necessary to extract
fine-grained latent vectors capturing speech prosody, style, and
accent [48]. These methods, however, make controlling these style
tokens a great challenge [21], not to mention the need for a large-
scale training dataset [48]. In sharp contrast, ArtSpeech only uses
articulatory representation for speaking style modeling and yields
improved voice tone and prosody similarity between target speech
and synthesized ones.

2.3 Adaptive TTS
In recent years, zero-shot speaker adaptation techniques have been
proposed to mimic or preserve the unique characteristics of a
speaker’s voice. Many efforts initiated speaker representation learn-
ing, e.g., AdaSpeech [6] and YourTTS [5], which incorporated speaker
embeddings into TTS models (like VITS [28]) to facilitate multi-
speaker TTS synthesis. On the other hand, large speech models
also demonstrate their capabilities in such fields by leveraging dif-
fusion models [51] and neural audio codecs [58, 69]. Overall, these
approaches require extensive training data yet the limited articula-
tory data may present challenges.

As the great performance of AdaIN-based model [23] in the do-
main of image style transfer [8, 26], i.e. leveraging style vectors
to disentangle the feature space, there has been a recent surge of
interest in considering a similar strategy in adaptive TTS. For ex-
ample, Meta-StyleSpeech [42]and StyleTTS [35] explored to extract
implicit style vectors from the target mel spectrogram. Several ap-
proaches such as StyleTTS2 [36] and GenerSpeech [22] have made
an in-depth study of the style vector space to achieve more con-
trollable speech synthesis results. Therefore, we desired to explore
using anAdaIN-basedmodel to decouplemultiple style vectors from
target speakers’ speeches – no extra articulatory data is needed,
model controllability is enhanced, and the similarity between syn-
thesized results and the target speech is improved.

3 ARTSPEECH
This section introduces the formulation of our ArtSpeech compris-
ing articulatory representation learning, multi-dimensional style
extraction, and multiple parameter predictors. The training process
is also introduced here.

3.1 Overall Workflow
The goal of the standard TTS model is to accurately convert text
content 𝑐 into natural-sounding speech 𝑠 . In adaptive TTS, the ref-
erence speech 𝑟 is defined as the speaking style template (including
both voice tone and prosody) that the synthesized speech should
express. As human speech production can be systematically decom-
posed into three foundational stages, i.e. respiration, phonation, and
articulation [9], we represent them with three articulatory features

2
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Figure 2: EMA data (points) and vocal tract variables (dashed
lines) calculated using relative distances in EMA.

– energy 𝑒 , fundamental frequency (F0) 𝑓0, and vocal tract variables
(TVs) 𝑣 . Our style extractor 𝑆𝐸 first performs articulatory feature
extraction from 𝑟 , which along with 𝑟 are further mapped to style
vectors 𝑠𝑣 .

The style vectors 𝑠𝑣 are then incorporated into the TTS model as
additional input alongside the 𝑐 . This can be formulated as follows:

𝑠𝑒 = 𝑆𝐸 (𝑒, 𝑓0, 𝑣, 𝑟 ), 𝑠′ = 𝑇𝑇𝑆 (𝑐, 𝑠𝑣),

where 𝑠′ represents the spoken output of 𝑐 with a speaking style
similar to 𝑟 .

3.2 Articulatory Representation
We use three articulatory features to model the human speech
production process.

• First, the lungs expel air, providing power for pronunciation.
The volume and velocity of expelled air are typically proportional
to the energy of the sound [43]. Thus, we choose energy as an
articulatory feature to describe the respiration stage.

• Second, the airflow impacts the vocal cords, causing them to
vibrate. The frequency of these vibrations directly determines the
fundamental frequency (F0)1 of the speech [4].

• Finally, the resonant cavities formed by articulatory organs
(from the larynx to the lips) modulate formant frequencies [12, 15],
i.e. the movement of organs dynamically sculpt vocal tract shapes,
enabling the production of a diverse set of phonemes and a wide
variety of voice tones.

The relationship between vocal tract shape and formant frequen-
cies can be represented by considering factors such as tongue posi-
tion, lip shape, jaw aperture, vocal tract length, and the areas of both
anterior and posterior cavities of the vocal tract [15, 32]. The trans-
fer function method [15] and impedance phase shift method [37]
have been proposed to simulate the relationship between vocal
tract area function and the vowel formant frequency, but causing a
complex solving process and are not easily applied to more intricate
syllables. Wu et al. [62], conversely, proposed using EMA-recorded
data for speech inversion and showed that the real-time relative

1A similar concept is ‘Pitch’, which describes how our ears and brains interpret the
signal, yet F0 describes the actual physical phenomenon.

distances between vocal organs could effectively enhance perfor-
mance. Inspired by this, we incorporate such real-time relative
distances into our speaking style modeling.

As shown in Fig. 2, we leverage the real-time recorded six ar-
ticulatory points, e.g., the tongue tip (TT), tongue blade (TB), etc.,
by electromagnetic articulography (EMA) technique and define 10
distances and constriction degrees accordingly [16]. For example,
the movement of the tongue tip could be indicated by 𝐷LITT and
𝐷TTTB, where 𝐷TTTB is defined as

𝐷𝑇𝑇𝑇𝐵 [𝑡] = ∥𝑇𝑇 [𝑡] −𝑇𝐵 [𝑡] ∥2 ,

where 𝑡 is the timestamp. Similar definitions apply to𝐷𝑈𝐿𝐿𝐿 ,𝐷𝑈𝐿𝐿𝐼 ,
and𝐷𝐿𝐿𝐿𝐼 , indicating lip convexity and opening;𝐷𝐿𝐼𝑇𝐵 and𝐷𝑇𝐵𝑇𝐷 ,
indicating tongue position and vocal tract length respectively. 𝐶𝑇𝑇 ,
𝐶𝑇𝐵 , and 𝐶𝑇𝐷 represent constriction degrees, indicating the short-
est distance between the 3 tongue positions and the palate curve,
respectively. Take 𝐶𝑇𝑇 as an example, i.e.

𝐶𝑇𝑇 [𝑡] = min
𝑥,𝑦

∥𝑇𝑇 [𝑡] − 𝑝𝑎𝑙 (𝑥,𝑦)∥2 ,

Where 𝑝𝑎𝑙 (·) represents the point on the palate curve, with 𝑥 and 𝑦
denoting the plane coordinate system formed by the sagittal plane
of the vocal organs. Note that the palate location is pre-recorded as
it is relatively static to the head pose while speaking [54].

3.3 Style Extraction
Similar to Fastspeech2 [47], we leverage the norm of themel spectro-
gram to approximate the energy of the speech; the JDC network [30]
to estimate the F0 sequence from the mel spectrogram.

Then, we propose a TV extractor, as shown in Fig. 3(a), to estimate
the 10-d vocal track variables from the mel spectrogram of 𝑟 along
with the extracted energy and F0. The extractor consists of five
conformer blocks [18] and one bi-LSTM [20] layer, allowing for
the integration of both global and local information and capturing
short-term correlation of vocal track changes. We pre-trained TV
extractor with L1 loss on HPRC dataset [54], which has 7.9 hours of
44.1 kHz speeches and 100 Hz EMA data recorded by 8 participants.

With the foregoing extracted phoneme-level articulatory fea-
tures, we further design a multi-dimensional Style Extractor to
model the speaking style of the reference speech. As shown in
Fig. 3(b), five separate mapping networks are designed to obtain
style vectors accordingly, i.e. energy, F0, TVs, duration, and mel
spectrogram. These mapping networks have similar structures,
consisting of multiple residual blocks, and take the sentence-level
feature vectors as input and output a fixed-length style vector. We
have demonstrated the effectiveness of articulatory style vectors in
supplementary materials.

3.4 Parameter Prediction
As shown in Fig. 3, the TTS synthesis module of ArtSpeech has three
predictors, including the duration predictor, the articulatory predic-
tor, and the mel spectrogram predictor. All these predictors have
a similar encoder-decoder structure and take phonemes extracted
from the text as input. Style vectors obtained from articulatory
features will respectively modulate corresponding predictors to
achieve the synthesis of specific timbres and rhythms.
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Figure 3: (a) TV Extractor, estimates the 10-d TVs from the mel spectrogram. (b) Architecture of our ArtSpeech, including style
extraction (Sec. 3.3) and parameter prediction (Sec. 3.4).

(a) Training of the 
Feature Extractor

Text

D
uration

Upsample

�mel

�mel

Ref. Speech

Style 
Extractor

Feature
Extractor

Mel Spec.
Predictor

(b) Training of the 
Feature Predictor

Phoneme
Ref. SpeechText

Duration
Predictor

Articulatory 
Predictor

Phoneme

Feature
Extractor

Style 
Extractor

D
uration

Mel Spec.
Predictor

(   warm-up)
(w

arm
-up)

Figure 4: The training strategy of ArtSpeech, Figure (a) shows
the training stage of the feature extractor, where the main
difference between the warm-up step and the subsequent
step is whether the parameters of the articulatory feature
extractor are fixed or not. Figure (b) shows the training stage
of the feature predictor, where the main difference between
the warm-up step and the subsequent step is whether the
articulatory features are extracted from the feature extractor
or predicted from the text.

Duration Predictor, uses a two-layer feed-forward attention
layer as an encoder to extract phoneme features, a three-layer
AdaIN [23] block as a decoder, and a Bi-LSTM layer followed by
a linear layer. The predictor takes the TVs as input and outputs
duration style vector which is fed into the AdaIN block to help with
speaking style transfer in terms of speed.

Articulatory Predictor, performs the phoneme-level articu-
latory parameter prediction, i.e. energy, F0, and TVs, sharing the
same feed-forward attention-based encoder. The encoded results
are aligned by the predicted duration and then fed into different
decoders along with corresponding style vectors. Each articulatory
style vector is individually applied to its corresponding predictor
to ensure that the estimated articulatory parameters align with the
target style. The decoder architecture is similar to that of the du-
ration predictor. We will further illustrate the effectiveness of this

predictor in Sec. 5.2 and Sec. 6 – enhancing the prosody similarity
of synthesized speeches to the target speech and improving the
controllability of the synthesized results.

Mel Spectrogram Predictor, adopts a similar architecture to
the other two predictors. The encoder features a four-layer feed-
forward attention. Alongwith two kinds of style vectors, the aligned
results are fed into the six-layer AdaIN blocks. Specifically, in the
first three layers, the output of the previous layer is concatenated
with articulatory style vectors and mel spectrogram style vector
as the input for the subsequent layer. The last three layers only
utilize the output of the previous layer as input and employ mel
spectrogram style vectors for style transfer. Finally, a linear layer
is used to synthesize the final spectrogram.

3.5 Training
To enhance the accuracy of articulatory feature extraction and
prediction, and to ensure the physical significance of these features
within the model, we divide the training process into two main
steps: training of the articulatory feature extractor and training of
the articulatory feature predictor.

Training of the Feature Extractor As shown in Fig 4(a), dur-
ing this stage, the articulatory features extracted from the feature
extractors are not only used for extracting style vectors but also
serve as inputs to the mel spectrogram predictor. The ground truth
duration is extracted by [35].

Since the feature extractors are pre-trained, we employ a certain
number of warm-up steps during which the parameters of the fea-
ture extractors are fixed, focusing on training the mel predictor first.
Three loss functions are taken into account to facilitate the training
of the mel spectrogram predictor: reconstruction loss Lrecon; adver-
sarial lossLadv for training an additional discriminator; and feature
mapping loss Lfm for improving the speech quality [28].The loss
function is defined as follows:

Lmel = 𝜆L1Lrecon + 𝜆advLadv + 𝜆fmLfm,

Lrecon = ∥𝑥 − 𝑥 ∥1 ,
Ladv = log𝐷 (𝑥) + log (1 − 𝐷 (𝑥)) ,

4
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1
,

where 𝑥 and 𝑥 represent the original and reconstructed mel spectro-
gram, respectively. 𝐷𝑙 represents the feature map of the 𝑙-th layer
of the discriminator 𝐷 with 𝑁𝑙 number of features, 𝑇 is the total
number of layers in the discriminator.

After the warm-up steps, we release the fixed parameters of
the feature extractors. To ensure the articulatory features retain
their physical significance during training, we apply regularization
losses Lreg to constrain the training process of both F0 and TV
feature extractors. We conduct ablation studies to demonstrate the
effectiveness of these losses in supplementary materials. The loss
function in this step is defined as follows:

LExt = Lmel + 𝜆regLreg + 𝜆s2sLs2s + 𝜆monoLmono,

where
Lreg =



𝑓0 − 𝑓 ′0



1 +



𝑣 − 𝑣 ′



1 .

𝑓0 and 𝑣 represents the extracted features extracted by the initial
pre-trained model; 𝑓 ′0 and 𝑣 ′ represents the new predicted results
in this step. We utilize the model and the corresponding losses
proposed by Li et al. [35] to extract speech duration. Ls2s is the
sequence-to-sequence loss to ensure correct attention alignment;
and Lmono aims to force the soft attention alignment to be close to
its monotonic version. Please refer to [35] for more details.

Training of the Feature Predictor
As shown in Fig. 4(b), during this stage, we fix the parameters of

the trained articulatory feature extractors and involve the feature
predictors and duration predictor in the model training. This stage
also includes a certain number of warm-up steps, during which
we continue to utilize the features inputs extracted from reference
mel spectrograms for the mel spectrogram predictor, rather than
using the predicted results from text by these feature predictors.
By independently training the feature predictors using L1 loss, we
can accelerate the convergence speed of the parameters. The loss
function for this training step is defined as follows:

LPre = Lmel + 𝜆pLp,

Lp =
∑︁
𝜃 ∈Θ

𝜆𝜃


𝜃𝑔𝑡 − 𝜃𝑝𝑟𝑒𝑑




1 .

Θ = (𝜃𝑑 , 𝜃𝑒 , 𝜃 𝑓0 , 𝜃𝑣) denotes the set of features including dura-
tion, energy, F0, and TVs. Specifically, 𝜃𝑔𝑡 represents the results
extracted from the reference speech 𝑟 and 𝜃𝑝𝑟𝑒𝑑 represents the
results predicted by predictors.

After the warm-up steps, We employ these parameter predic-
tors to predict articulatory parameters from text, which are then
inputted into the mel spectrogram predictor. Conversely, features
extracted from the reference mel spectrogram are solely utilized
for extracting the style vectors. We fine-tune the rest of the model
to improve blocks’ co-adaptation.

4 EXPERIMENTS
4.1 Dataset
We conducted experiments on two public datasets:

• LibriTTS dataset [65], used to evaluate the zero-shot adap-
tive TTS synthesis results of our ArtSpeech. We screen the

train-clean-360 and train-clean-100 subsets of LibriTTS for
clips longer than 1 second and shorter than 20 seconds.
In total, approximately 245 hours of speeches recorded by
1,151 speakers are used in the training process. We use
the same split strategy of data as StyleTTS [35], i.e. 98%
for training, 1% for validation, and 1% for testing. We uti-
lize the test-clean subset of LibriTTS for the evaluation of
ArtSpeech.

• LJSpeech dataset [25], used to evaluate the synthesized
speeches in terms of audio quality and similarity. It consists
of approximately 24 hours, totaling 13,100 clips recorded by
a single speaker. We split the dataset into 12,500 samples for
training, 100 for validation, and 500 for testing. Moreover,
all clips are upsampled to a 24 kHz sampling rate.

All audio clips are transformed into 80-d mel spectrograms using
the Fast Fourier Transform Algorithm (FFT), with 2048 FFT size,
1200 window size, and 300 hop size. We use the International Pho-
netic Alphabet (IPA) to label phonemes and phonemizer package [2]
to convert text into IPA sequences.

4.2 Implementation
All modules are trained using AdamW optimizer [40] with beta
schedule of 𝛽1 = 0, 𝛽2 = 0.99, and 𝜖 = 10−9. We employ the cosine
annealing schedule for learning rate decay with an initial learning
rate of 2 × 10−4 and a minimum value of 4 × 10−5.

For the training process of the LJspeech dataset, the training of
both the feature extractor and feature predictorwas executed for 120
epochs, with the warm-up step both accounting for 20 epochs. while
for the LibriTTS dataset, the training of the feature extractor stops
after 40 epochs. We configure loss weights as: 𝜆𝐿1 = 5, 𝜆𝑎𝑑𝑣 = 1,
𝜆𝑓𝑚 = 0.1, 𝜆𝑟𝑒𝑔 = 1, 𝜆𝑠2𝑠 = 1, 𝜆𝑚𝑜𝑛𝑜 = 1, 𝜆𝑝 = 1. Different
articulatory features have varying scales. After completing the pre-
training of the articulatory feature extraction model in Sec. 3.3, we
pre-extract the articulatory features from the dataset and conduct
statistical analysis on the overall mean and variance. During the
calculation of loss in subsequent training phases, we normalize the
estimated results. This ensures uniformity in the loss scale among
various articulatory features.

4.3 Evaluation
We recruited 570 native speakers via Amazon Mechanical Turk
(MTurk) to use a 5-point Likert scale to rate all the synthesized
speeches mentioned below, with 1 meaning bad performance and 5
meaning the opposite.

• To evaluate how well our ArtSpeech performs in zero-shot
speaking style transfer for Out-of-Domain (OOD) speakers,
we use the official implementations and pre-trained mod-
els or released demos of YourTTS [5], StyleTTS [35] and
StyleTTS2 [36] as comparison approaches. We also use an
open-source implementation of Microsoft’s VALL-E X [69]
zero-shot TTS model. Specifically, we leverage the subset
of the LibriTTS dataset (LibriTTS-test-clean) and randomly
select two clips as reference speech of each speaker to con-
duct TTS synthesis. We asked participants to rate the Mean
Opinion Score of Overall Similarity (MOS-O) between the
reference speeches and the synthesized results.
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Table 1: Evaluation results of overall similarity ratings (MOS-
O) on the LibriTTS dataset with 95% CI.

Model MOS-O
Ground Truth 4.12±0.06
YourTTS + HiFi-GAN 3.76±0.09
VALL-E X 3.68±0.08
StyleTTS + HiFi-GAN 3.89±0.07
StyleTTS 2 4.01±0.06
ArtSpeech + HiFi-GAN 4.08±0.07

Mel Spectrogram

Energy

TVs

F0

Figure 5: Style features of randomly selected 30 speeches
from 8 speakers in the LibriTTS dataset, dimensionality re-
duced into 2D planes for better visualization.

• To further evaluate the similarity of the synthesized speech
to the target speaker’s voice tone and prosody (MOS-S),
we randomly select 50 texts to conduct TTS synthesis and
compare the performance of ArtSpeech, FastSpeech2 [47],
VITS [28], StyleTTS [35], and StyleTTS2 [36], all trained
on the LJSpeech dataset. We also asked participants to rate
the audio quality (MOS-Q).

Note that all speeches are randomly presented to participants to
avoid bias. We also conduct an ablation study to evaluate the effec-
tiveness of our vocal track variables (TVs), model design, training
strategy, etc. Please refer to supplementary materials for detailed
procedures and the corresponding questionnaires.

For quantitative evaluation, we generated speech that is consis-
tent with the reference speech content and compared the correlation
coefficients (Corr) and Mean Absolute Error (MAE) metrics of 𝐹0
and energy between the ground truth and speeches synthesized by
different approaches. This metric serves to elucidate the prosody
similarity between different speeches.

5 RESULTS
5.1 Zero-Shot Speech Synthesis
We calculate the Mean Opinion Score (MOS) of participants’ rat-
ings for the overall similarity (MOS-O) of the speeches synthesized

ArtSpeech StyleTTS Vall-E X YourTTS

High Frequency Domain

Figure 6: Zoom in on the high-frequency domain of synthe-
sized speeches with the same text (“that”). Our result shows
clearer formant frequencies (the bright yellow bands) and
less absent information.

ArtSpeech StyleTTS

Vall-E X YourTTS

Reference Speech

Figure 7: Zoom in on the part between two sentences in
speeches. Our result shows a similar intonation to the refer-
ence speech, i.e. showing a rising pitch followed by a short
falling pitch.

Table 2: Evaluation results on the LJSpeech dataset of voice
tone and prosody similarity (MOS-S) and speech quality
(MOS-Q), completing with 95% confidence intervals (CI).

Model MOS-Q MOS-S
Ground Truth 3.98±0.07 -
FastSpeech 2 + HiFi-GAN 3.44±0.10 3.58±0.08
VITS 3.73±0.08 3.97±0.06
StyleTTS + HiFi-GAN 3.87±0.07 3.89±0.07
StyleTTS 2 3.91±0.07 4.02±0.07
ArtSpeech + HiFi-GAN 3.96±0.06 4.06±0.06

by different models. As shown in Table 1, our ArtSpeech achieves
better results, i.e. 4.12 ± 0.05, following the ratings of ground truth
(4.18 ± 0.05) and clearly outperforming other models. Additionally,
we plot our four style vectors of 8 randomly selected speakers,
projected into 2D planes (Fig. 5). The results show that our model
excels well in representing the speaking styles of different speakers,
particularly for TVs style and mel spectrogram style. The relatively
higher overlapping of energy style and F0 style could be explained
by the three steps of speech production – different speakers may
have similar expelled air and vocal cord vibration frequencies; yet
the resonant cavities formed by multiple articulatory organs are rel-
atively unique. Overall, the results demonstrate ArtSpeech’s better
performance under both multi-speaker and zero-shot settings.
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On each lobe of the  bi-lobed leaf of Venus fly trap

On each lobe of the bi-lobed  leaf of Venus fly trap

On each  lobe of the        bi-lobed leaf of Venus fly trap

On each lobe of the bi-lobed leaf of Venus fly trap

On each lobe of the bi-lobed leaf of Venus fly trap

Ground Truth

ArtSpeech

FastSpeech2

VITS

StyleTTS

Figure 8: Mel spectrograms different speeches with F0 curves
(green lines) and intonations of the corresponding words.
ArtSpeech’s results are closer to the ground truth than others.
(The blue arrows represent intonations consistent with the
ground truth; the red arrows mean the opposite.)

We further illustrate the effectiveness of our ArtSpeech. First, as
shown in Fig. 6, our synthesized speech exhibits clearer formant fre-
quencies (the bright yellow bands), especially in the high-frequency
domain. Our result also has less absent information compared to
that of Vall-E X [69]. This highlights ArtSpeech’s capacity to under-
stand and mimic the pronunciation process, converting the input
text to human-like speech. Second, our synthesized speech has
an F0 curve resembling that of the reference speech (Fig. 7). This
supports that ArtSpeech could capture the speaking patterns of the
target speaker, e.g., always showing a rising pitch followed by a
short falling pitch during two sentences in the speech. On the con-
trary, other speeches have less similarity to the reference speech,
i.e. no subtle changes in such circumstances.

5.2 Speech Quality and Similarity
As shown in Table 2, ArtSpeech performs better than other models
in both speech quality and similarity (with 95% confidence intervals
(CI)), i.e. 3.92± 0.07 (MOS-Q) and 4.05± 0.08 (MOS-S), approaching

Table 3: The correlation coefficients (Corr) and Mean Ab-
solute Error (MAE) metrics of F0 and energy between the
reference speech and synthesized speech generated by each
model.

Method 𝐹0 Energy
MAE ↓ Corr ↑ MAE ↓ Corr ↑

LibriTTS
YourTTS + HiFi-GAN 19.31 0.85 1.18 0.81
VALL-E X 28.36 0.77 0.81 0.87
StyleTTS + HiFi-GAN 17.98 0.86 0.61 0.93
StyleTTS 2 16.26 0.87 0.58 0.93
ArtSpeech + HiFi-GAN 15.89 0.89 0.56 0.95

LJSpeech
FastSpeech2 + HiFi-GAN 26.05 0.85 0.75 0.91
VITS 28.35 0.84 0.62 0.94
StyleTTS + HiFi-GAN 26.99 0.83 0.64 0.94
StyleTTS 2 27.43 0.84 0.68 0.89
ArtSpeech + HiFi-GAN 23.83 0.87 0.61 0.95

the ratings of ground truth. The results support that our generated
speeches have reduced noise and express a voice tone and prosody
similar to that of the target speaker. In Table 3, we demonstrate
the results of correlation coefficients and MAE metrics of 𝐹0 and
energy respectively. For both test sets of the multi-speaker dataset
(LibriTTS) and single-speaker dataset (LJSpeech), our ArtSpeech
synthesized results have a relatively similar prosody expression to
that of the ground truth.

Fig. 8 further visualizes some generated results with fundamental
frequency (F0) curves and intonations. All speeches says“On each
lobe of the bi-lobed leaf of Venus flytrap.” We observe that ArtSpeech
generated results closely consistent with the ground truth; the F0
curves are similar, both of which are smooth and coherent; the
intonation changes are consistent.

5.3 Ablation Study
We conducted ablation experiments to validate the effectiveness of
our ArtSpeech in terms of the selected vocal track variables (TVs),
model design, training strategy, etc. Experiments are carried out on
the single-speaker dataset, LJSpeech. We leverage the Comparison
Mean Opinion Score (CMOS) to organize participants’ ratings. The
results are shown in Table 4. All settings lead to a reduction in
ratings. For example, we remove the TV-related module, and the
ratings drop by 0.20; we simplify the style extractor and concate-
nate articulatory features and mel spectrogram, leading to a 0.11
reduction; we delete the additional encoders in the articulatory and
duration predictors and CMOS drops by 0.32 and 0.19, respectively;
To validate the effectiveness of our training strategy (Sec. 3.5), we
first remove the Lreg loss from the first training step, i.e. without
any explicit constraints during F0 and TVs feature extractor train-
ing. This leads to a substantial decrease of 0.60. In supplementary
materials, we plot the results of articulatory parameter predicted
from ArtSpeech and w/o Lreg settings. We observe that there is a
significant amount of irregular noise in the latter case. Additionally,
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Figure 9: Visualizations of synthesized speeches with different style controls, i.e. we incorporate style vectors (Speaker A) of F0,
energy, and mel spectrogram and TVs into that of Speaker B, respectively. The results show a shift in Speaker B’s speaking
style towards that of Speaker A, e.g.lower F0 and energy, as well as changed intonations and reduced information in the
high-frequency domain.

Table 4: Ablation study results. All settings lead to rating
drops.

Setting CMOS
ArtSpeech 0
w/o TVs -0.20
w/o multi-style -0.11
w/o articulatory encoder -0.32
w/o duration encoder -0.19
w/o Lreg loss -0.60
w/o warm-up step of the second stage -0.14

we eliminated the warm-up step of the second training step and
fine-tuned the entire model directly, leading to a 0.14 drop.

6 DISCUSSION
In this section, we attempt to demonstrate the speaking style con-
trollability of the proposed ArtSpeech. As our multi-dimension
style extractor decouples the speaking style of the target speaker
(Sec. 3.3), ArtSpeech could employ independent articulatory style
vectors to facilitate flexible style combination and degree adjust-
ment. We encourage readers to view the demo page to hear the
corresponding synthesized speeches.

As shown in Fig. 9, we visualize two very different speakers’
speeches: Speaker A (Fig. 9(a)), male, has a relatively deeper voice
with low fundamental frequency (< 150Hz) and energy (< 8),
and less high-frequency domain information in mel spectrogram;
Speaker B (Fig. 9(b)), female, has a brighter voice with high funda-
mental frequency (> 150Hz) and energy (> 8), and more formant
frequencies in high-frequency domain in mel spectrogram.

In Fig. 9(c), we demonstrate the results of incorporating different
style vectors of the male (Speaker A) into the speech of the female
(Speaker B). To specifically drop the female’s pitch, we add the

male’s F0 style vector during the synthesis and achieve a dropped
F0 curve, while other styles remain unchanged. Similarly, we add
different style vectors into the female’s speech and the synthesized
results sound more like the male’s voice tone and prosody. The
results support that our articulatory style vectors could help with
shaping different synthesized speeches. In supplementary materials
and the demo page, we demonstrate the synthesized speeches and
also provide a visualized plot of continuous style degree adjustment,
i.e. incorporating varying degrees of the male’s style vector into
the female’s speech.

7 CONCLUSIONS
We introduce ArtSpeech, a text-to-speech (TTS) system, building
upon the articulatory system’s physical significance, that enables
zero-shot style transfer of custom voices outside of its domain.
Compared to other deep leaning-basedmodels,ArtSpeech hasmerits
in: i) systemic interpretability by bringing the intuitive articulatory
representations into TTS frameworks; ii) break the bottleneck of
limited articulatory data, facilitating articulatory feature extraction
from the input text; iii) experiments confirm the effectiveness and
enhanced speaking style similarity between synthesized speeches to
target speakers’ speeches. For future work,We believe there is room
for improvement inmodeling speakers’ unique pronunciation styles
while eliminating extraneous environmental noise interference.
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