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Abstract

We give lower bounds on the performance of two of the most popular sampling methods
in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian
Monte Carlo (HMC) with a leapfrog integrator, when applied to well-conditioned distributions.

Our main result is a nearly-tight lower bound of Ω̃(κd) on the mixing time of MALA from an
exponentially warm start, matching a line of algorithmic results [DCWY18, CDWY19, LST20a]
up to logarithmic factors and answering an open question of [CLA+20]. We also show that a
polynomial dependence on dimension is necessary for the relaxation time of HMC under any
number of leapfrog steps, and bound the gains achievable by changing the step count. Our
HMC analysis draws upon a novel connection between leapfrog integration and Chebyshev
polynomials, which may be of independent interest.

∗University of Washington and Microsoft Research, yintat@uw.edu
†University of Washington, shenr3@cs.washington.edu
‡Stanford University, kjtian@stanford.edu



Contents

1 Introduction 1

1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Metropolis-adjusted Langevin algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Lower bound for MALA on Gaussians 10

4 Lower bound for MALA on well-conditioned distributions 16

5 Mixing time lower bound for MALA 22

5.1 Mixing time lower bound for small h . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Lower bounds for HMC 24

6.1 Structure of HMC: a detour to Chebyshev polynomials . . . . . . . . . . . . . . . . . 25

6.2 HMC lower bound for all K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion 33

A Necessity of fixing a scale 37

B HMC lower bounds beyond κ
√
d 37

B.1 Relaxation time lower bound for small K . . . . . . . . . . . . . . . . . . . . . . . . 37

B.2 Mixing time lower bound for small K . . . . . . . . . . . . . . . . . . . . . . . . . . 43



1 Introduction

Sampling from a continuous distribution in high dimensions is a fundamental problem in algorithm
design. As sampling serves as a key subroutine in a variety of tasks in machine learning [AdFDJ03],
statistical methods [RC99], and scientific computing [Liu01], it is an important undertaking to
understand the complexity of sampling from families of distributions arising in applications.

The more restricted problem of sampling from a particular family of distributions, which we call
“well-conditioned distributions,” has garnered a substantial amount of recent research effort from
the algorithmic learning and statistics communities. This specific family is interesting for a number
of reasons. First of all, it is practically relevant : Bayesian methods have found increasing use in
machine learning applications [Bar12], and many distributions arising from these methods are well-
conditioned, such as multivariate Gaussians, mixture models with small separation, and densities
arising from Bayesian logistic regression with a Gaussian prior [DCWY18]. Moreover, for several
of the most widely-used sampler implementations in popular packages [Aba16, CGH+17], such as
the Metropolis-adjusted Langevin algorithm (MALA) and Hamiltonian Monte Carlo (HMC), the
target density having a small condition number is in some sense a minimal assumption for known
provable guarantees (discussed more thoroughly in Section 1.3, when we survey prior work).

Finally, the highly-documented success of first-order (gradient-based) methods in optimization
[Bec17], which are particularly favorable in the well-conditioned setting, has driven a recent inter-
est in connections between optimization and sampling. Exploring this connection has been highly
fruitful: since seminal work of [JKO98], which demonstrated that the continuous-time Langevin
dynamics which MALA and HMC discretize has an interpretation as gradient descent on density
space, a flurry of work including [Dal17, CCBJ18, DCWY18, DR18, DM19, DMM19, CDWY19,
CV19, SL19, MMW+19, LST20a, LST20b, CLA+20] has obtained improved upper bounds for the
mixing of various discretizations of the Langevin dynamics for sampling from well-conditioned den-
sities. Many of these works have drawn inspiration from techniques from first-order optimization.

On the other hand, demonstrating lower bounds on the complexity of sampling tasks (in the well-
conditioned regime or otherwise) has proven to be a remarkably challenging problem. To our
knowledge, there are very few unconditional lower bounds for sampling tasks (i.e. the complexity
of sampling from a family of distributions under some query model). This is in stark contrast
to the theory of optimization, where there are matching upper and lower bounds for a variety of
fundamental tasks and query models, such as optimization of a convex function under first-order
oracle access [Nes03]. This gap in the development of the algorithmic theory of sampling is the
primary motivation for our work, wherein we aim to answer the following more restricted question.

What is the complexity of the popular sampling methods, MALA and HMC,

for sampling well-conditioned distributions?

The problem we study is still less general than unconditional query lower bounds for sampling, in
that our lower bounds are algorithm-specific; we characterize the performance of particular algo-
rithms for sampling a distribution family. However, we believe asking this question, and developing
an understanding of it, is an important first step towards a theory of complexity for sampling.
On the one hand, lower bounds for specific algorithms highlight weaknesses in their performance,
pinpointing their shortcomings in attaining faster rates. This is useful from an algorithm design
perspective, as it clarifies what the key technical barriers are to overcome. On the other hand,
the hard instances which arise in designing lower bounds may have important structural properties
which pave the way to stronger and more general (i.e. algorithm-agnostic) lower bounds.
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For these reasons, in this work we focus on characterizing the complexity of the MALA and HMC
algorithms (see Sections 2.3 and 2.4 for algorithm definitions), which are often the samplers of
choice in practice, by lower bounding their performance when they are used to sample from densities
proportional to exp(−f(x)), where f : Rd → R has a finite condition number. In particular, f is
said to have a condition number of κ < ∞ if it is L-smooth and µ-strongly convex (has second
derivatives in all directions in the range [µ,L]), where κ = L

µ . We will also overload this terminology
and say the density itself has condition number κ. We call such a density (with finite κ) “well-
conditioned.” Finally, we explicitly assume throughout that κ = O(d4), as otherwise in light of our
lower bounds the general-purpose logconcave samplers of [LV07, JLLV20, Che21] are preferable.

1.1 Our results

Our primary contribution is a nearly-tight characterization of the performance of MALA for sam-
pling from two high-dimensional distribution families without a warm start assumption: well-
conditioned Gaussians, and the more general family of well-conditioned densities. In Sections 3
and 4, we prove the following two lower bounds on MALA’s complexity, which is a one-parameter
algorithm (for a given target distribution) depending only on step size. We also note that we fix
a scale [1, κ] on the eigenvalues of the function Hessian up front, because otherwise the non-scale-
invariance of the step size can be exploited to give much more trivial lower bounds (cf. Appendix A).

Theorem 1. For every step size, there is a target Gaussian on Rd whose negative log-density always

has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω( κ
√
d√

log d
).

Theorem 2. For every step size, there is a target density on Rd whose negative log-density always
has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω( κd

log d).

To give more context on Theorems 1 and 2, MALA is an example of a Metropolis-adjusted Markov
chain, which in every step performs updates which preserve the stationary distribution. Indeed, it
can be derived by applying a Metropolis filter on the standard forward Euler discretization of the
Langevin dynamics, a stochastic differential equation with stationary density ∝ exp(−f(x)):

dxt = −∇f(xt)dt+
√

2dWt,

where Wt is Brownian motion. Such Metropolis-adjusted methods typically provide total variation
distance guarantees, and attain logarithmic dependence on the target accuracy.1 The mixing of such
chains is governed by their relaxation time, also known as the inverse spectral gap (the difference
between 1 and the second-largest eigenvalue of the Markov chain transition operator).

However, in the continuous-space setting, it is not always clear how to relate the relaxation time
to the mixing time, which we define as the number of iterations it takes to reach total variation
distance 1

e from the stationary distribution from a given warm start (we choose 1
e for consistency

with the literature, but indeed any constant bounded away from 1 will do). There is an extensive
line of research on when it is possible to relate these two quantities (see e.g. [BGL14]), but typically
these arguments are tailored to properties of the specific Markov chain, causing relaxation time
lower bounds to not be entirely satisfactory in some cases. We thus complement Theorems 1 and 2
with a mixing time lower bound from an exponentially warm start, as follows.

1We note this is in contrast with a different family of unadjusted discretizations, which are analyzed by coupling
them with the stochastic differential equation they simulate (see e.g. [Dal17, CCBJ18] for examples), at the expense
of a polynomial dependence on the target accuracy; we focus on Metropolis-adjusted discretizations in this work.
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Theorem 3. For every step size, there is a target density on Rd whose negative log-density always
has Hessian eigenvalues in [1, κ], such that MALA initialized at an exp(d)-warm start requires
Ω( κd

log2 d
) iterations to reach e−1 total variation distance to the stationary distribution.

We remark that Theorem 3 is the first mixing time lower bound for discretizations of the Langevin
dynamics we are aware of, as other related lower bounds have primarily been on relaxation times
[CV19, LST20a, CLA+20]. Up to now, it is unknown how to obtain a starting distribution for a
general distribution with condition number κ with warmness better than κd (which is obtained by
the starting distribution N (x∗, 1

LI) where L is the smoothness parameter and x∗ is the mode).2 A
line of work [DCWY18, CDWY19, LST20a] analyzed the performance of MALA under this warm
start, culminating in a mixing time of Õ(κd), where Õ hides logarithmic factors in κ, d, and the
target accuracy. On the other hand, a recent work [CLA+20] demonstrated that MALA obtains a
mixing time scaling as Õ(poly(κ)

√
d), when initialized at a polynomially warm start,3 and further

showed that such a mixing time is tight (in its dependence on d). They posed as an open question
whether it was possible to obtain Õ(poly(κ)d1−Ω(1)) mixing from an explicit starting distribution.

We address this question by proving Theorem 3, showing that the Õ(κd) rate of [LST20a] for MALA
applied to a κ-conditioned density is tight up to logarithmic factors from an explicit “bad” warm
start. Concretely, to prove Theorems 1-3, in each case we exhibit an exp(−d)-sized set according to
the stationary measure where either the chain cannot move in poly(d) steps with high probability,
or must choose a very small step size. Beyond exhibiting a mixing bound, this demonstrates the
subexponential warmness assumption in [CLA+20] is truly necessary for their improved bound.
To our knowledge, this is the first nearly-tight characterization of a specific sampling algorithm’s
performance in all parameters, and improves lower bounds of [CLA+20, LST20a]. It also implies
that to go beyond Õ(κd) mixing requires a subexponential warm start.

The lower bound statement of Theorem 3 is warmness-sensitive, and is of the following (somewhat
non-standard) form: for β = exp(d), we provide a lower bound on the quantity

inf
algorithm parameters

sup
starts of warmness ≤β

densities in target family

mixing time of algorithm.

In other words, we are allowed to choose both the hard density and starting distribution adaptively
based on the algorithm parameters (in the case of MALA, our choices respond to the step size). We
note that this type of lower bound is compatible with standard conductance-based upper bound
analyses, which typically only depend on the starting distribution through the warmness parameter.

In Section 6, we further study the multi-step generalization of MALA, known in the literature as
Hamiltonian Monte Carlo with a leapfrog integrator (which we refer to in this paper as HMC). In
addition to a step size η, HMC is parameterized by a number of steps per iteration K; in particular,
HMC makes K gradient queries in every step to perform a K-step discretization of the Langevin
dynamics, before applying a Metropolis filter. It was recently shown in [CDWY19] that under
higher derivative bounds, balancing η and K more carefully depending on problem parameters
could break the apparent κd barrier of MALA, even from an exponentially warm start.

It is natural to ask if there is a stopping point for improving HMC. We demonstrate that HMC
cannot obtain a better relaxation time than Õ(κ

√
dK−1) for any K, even when the target is a

Gaussian. Since every HMC step requires K gradients, this suggests Ω̃(κ
√
d) queries are necessary.

2The warmness of a distribution is the worst-case ratio between the measures it and the stationary assign to a set.
3As discussed, it is currently unknown how to obtain such a warm start generically.
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Theorem 4. For every step size and count, there is a target Gaussian on Rd whose negative log-

density always has Hessian eigenvalues in [1, κ], such that the relaxation time of HMC is Ω( κ
√
d

K
√

log d
).

In Appendix B, we also give some lower bounds on how much increasing K can help the performance
of HMC in the in-between range κ

√
d to κd. In particular, we demonstrate that if K ≤ dc for some

constant c ≈ 0.1, then the K-step HMC Markov chain can only improve the relaxation time of
Theorem 4 by roughly a factor K2, showing that to truly go beyond a κd relaxation time by more
than a do(1) factor, the step size must scale polynomially with the dimension (Proposition 5). We
further demonstrate how to extend the mixing time lower bound of Theorem 3 in a similar manner,
demonstrating formally for small K that (up to logarithmic factors) the gradient query complexity
of HMC cannot be improved beyond κd by more than roughly a K factor (Proposition 6).

Our mixing lower bound technique in Theorem 3 does not directly extend to give a complementary
mixing lower bound for Theorem 4 for all K, but we defer this to interesting future work.

1.2 Technical overview

In this section, we give an overview of the techniques we use to show our lower bounds. Throughout
for the sake of fixing a scale, we assume the negative log-density has Hessian between I and κI.

MALA. Our starting point is the observation made in [CLA+20] that for a MALA step size
h, the spectral gap of the MALA Markov chain scales no better than O(h + h2), witnessed by a
simple one-dimensional Gaussian. Thus, our strategy for proving Theorems 1 and 2 is to show a
dichotomy on the choice of step size: either h is so large such that we can construct an exp(d)-warm
start where the chain is extremely unlikely to move (e.g. the step almost always is filtered), or it
is small enough to imply a poor spectral gap. In the Gaussian case, we achieve this by explicitly
characterizing the rejection probability and demonstrating that choosing the “small ball” warm
start where ‖x‖22 is smaller than its expectation by a constant ratio suffices to upper bound h.

Given the result of Theorem 1, we see that if MALA is to move at all with decent probability from an
exponentially warm start, we must take h� 1, so the spectral gap in this regime is simply O(h). We
now move onto the more general well-conditioned setting. As a thought experiment, we note that the
upper bound analyses of [DCWY18, CDWY19, LST20a] for MALA have a dimension dependence
which is bottlenecked by the noise term only. In particular, the MALA iterates apply a filter to
the move x′ ← x − h∇f(x) +

√
2hg, where g ∼ N (0, I) is a standard Gaussian vector. However,

even for the more basic “Metropolized random walk” where the proposal is simply x′ ← x+
√

2hg,
the dimension dependence of upper bound analyses scales linearly in d. Thus, it is natural to study
the effect of the noise, and construct a hard distribution based around it.

We first formalize this intuition, and demonstrate that for step sizes not ruled out by Theorem 1,
all terms in the rejection probability calculation other than those due to the effect of the noise g
are low-order. Moreover, because the effect of the noise is coordinatewise separable (since N (0, I)
is a product distribution), to demonstrate a Õ( 1

κd) upper bound on h it suffices to show a hard one-
dimensional distribution where the log-rejection probability has expectation −Ω(hκ), and apply
sub-Gaussian concentration to show a product distribution has expectation −Ω(hκd).

At this point, we reduce to the following self-contained problem: let x ∈ R, let π∗ ∝ exp(−f1d) be
one-dimensional with second derivative ≤ κ, and let xg = x +

√
2hg for g ∼ N (0, 1). We wish to

construct f1d such that for x in a constant probability region over exp(−f1d) (the “bad set”),

Eg∼N (0,1)

[
−f1d(xg) + f1d(x)− 1

2

〈
x− xg, f ′1d(x) + f ′1d(xg)

〉]
= −Ω(hκ), (1)
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where the contents of the expectation in (1) are the log-rejection probability along one coordinate by
a straightforward calculation. By forming a product distribution using f1d as a building block, and
combining with the remaining low-order terms due to the drift ∇f(x), we attain an exp(−d)-sized
region where the rejection probability is exp(−Ω(hκd)), completing Theorem 2.

It remains to construct such a hard f1d. The calculation

−f1d(xg) + f1d(x)− 1

2

〈
x− xg, f ′1d(x) + f ′1d(xg)

〉
= −2h

∫ 1

0

(
1

2
− s
)
g2f ′′1d(x+ s(xg − s))ds

suggests the following approach: because the above integral places more mass closer to the starting
point, we wish to make sure our bad set has large second derivative, but most moves g result in a
much smaller second derivative. Our construction patterns this intuition: we choose4

f1d(x) =
κ

3
x2 − κh

3
cos

x√
h

=⇒ f ′′1d(x) =
2κ

3
+
κ

3
cos

x√
h
,

such that our bad set is when cos x√
h

is relatively large (which occurs with probability→ 1
2 for small

h in one dimension). The period of our construction scales with
√
h, so that most moves

√
2hg of

size O(
√
h) will “skip a period” and hence hit a region with small second derivative, satisfying (1).

Figure 1: Second derivative of our hard function f1d, κ = 10, h = 0.01. Starting from inside the
hard region, on average over g ∼ N (0, I), a move by

√
2hg decreases the second derivative.

HMC. We further demonstrate that similar hard Gaussians as the one we use for MALA also
place an upper bound on the step size of HMC for any number of steps K. Our starting point is
a novel characterization of HMC iterates on Gaussians: namely, when the negative log-density is
quadratic, we show that the HMC iterates implement a linear combination between the starting
position and velocity, where the coefficients are given by Chebyshev polynomials. For step size η of
size Ω( 1

K
√
κ

) for specific constants, we show the HMC chain begins to cycle because of the locations

of the Chebyshev polynomials’ zeroes, and cannot move. Moreover, for sufficiently small step size η
outside of this range, it is straightforward by examining the coefficients of Chebyshev polynomials
to show that they are the same (up to constant factors) as in the MALA case, at which point our
previous lower bound holds. It takes some care to modify our hard Gaussian construction to rule
out all constant ranges in the η ≈ 1

K
√
κ

region, but by doing so we obtain Theorem 4.

We remark that the observation that HMC iterates are implicitly implementing a Chebyshev poly-
nomial approximation appears to be unknown in the literature, and is a novel contribution of
our work. We believe understanding this connection is a worthwhile endeavor, as a similar con-
nection between polynomial approximation and first-order convex optimization has led to various

4We note [CLA+20] also used a (different, but similar) cosine-based construction for their lower bound.
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interesting interpretations of Nesterov’s accelerated gradient descent method [Har13, Bac19].

1.3 Prior work

Sampling from well-conditioned distributions (as well as distributions with more stringent bounds
on higher derivatives) using discretizations of the Langevin dynamics is an extremely active and
rich research area, so for brevity we focus on discussing two types of related work in this section:
upper bounds for the MALA and HMC Markov chains, and lower bounds for sampling and related
problems. We refer the reader to e.g. [Dal17, CCBJ18, DCWY18, DR18, DM19, DMM19, CDWY19,
CV19, SL19, MMW+19, LST20a, LST20b, CLA+20] and the references therein for a more complete
account on progress on the more general problem of well-conditioned sampling.

Theoretical analyses of MALA and HMC. MALA was originally proposed in [Bes94], and
subsequently its practical and theoretical performance in different settings has received extensive
treatment in the literature (cf. the survey [PSC+15]). A number of theoretical analyses related to
the well-conditioned setting we study predate the work of [DCWY18], such as [RT96, BRH12], but
they typically consider more restricted settings or do not state explicit dependences on κ and d.

Recently, a line of work has obtained a sequence of stronger upper bounds on the mixing of MALA.
First, [DCWY18] demonstrated that MALA achieves a mixing time of Õ(κd + κ1.5

√
d) from a

polynomially warm start, and the same set of authors later proved the same mixing time under
an exponentially warm start (which can be explicitly constructed) in [CDWY19]. It was later
demonstrated in [LST20a] that under an appropriate averaging scheme, the mixing time could be
improved to Õ(κd) from an exponentially warm start with no low-order dependence. Finally, a
recent work [CLA+20] demonstrated that from a polynomially warm start, MALA mixes in time
Õ(poly(κ)

√
d) for general κ-conditioned distributions and in time Õ(poly(κ) 3

√
d) for κ-conditioned

Gaussians, and posed the open question of attaining similar bounds from an explicit (exponentially)
warm start. This latter work was a primary motivation for our exploration.

The HMC algorithm with a leapfrog integrator (which we refer to as HMC for simplicity) can
be viewed as a multi-step generalization of MALA, as it has two parameters (a step size η and
a step count K), and when K = 1 the implementation matches MALA exactly. For larger K,
the algorithm simulates the (continuous-time) Hamiltonian dynamics with respect to the potential
f(x) + 1

2 ‖v‖
2
2 where f is the target’s negative log-density and v is an auxiliary “velocity” variable.

The intuition is that larger K leads to more faithful discretizations of the true dynamics.

However, there are few explicit analyses of the (Metropolis-adjusted) HMC algorithm, applied
to well-conditioned distributions.5 To our knowledge, the only theoretical upper bound for the
mixing of (multi-step) HMC stronger than known analyses of its one-step specialization MALA is
by [CDWY19], which gave a suite of bounds trading off three problem parameters: the conditioning
κ, the dimension d, and the Hessian Lipschitz parameter LH , under the additional assumption that
the log-density has bounded third derivatives. Assuming that LH is polynomially bounded by the
problem smoothness L, they demonstrate that HMC with an appropriate K can sometimes achieve
sublinear dependence on d in number of gradient queries, where the quality of this improvement
depends on κ and d (e.g. if κ ∈ [d

1
3 , d

2
3 ] and LH ≤ L1.5, κd

11
12 gradients suffice). This prompts the

question: can HMC attain query complexity independent of d, assuming higher derivative bounds,
from an explicit warm start? Theorem 4 answers this negatively (at least in terms of relaxation
time) using an exponentially-sized bad set; moreover, our hard distribution is a Gaussian, with all
derivatives of order at least 3 vanishing.

5There has been considerably more exploration of the unadjusted variant [MV18, MS19, BE21], which typically
obtain mixing guarantees scaling polynomially in the inverse accuracy (as opposed to polylogarithmic).
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Lower bounds for sampling. The bounds most closely relevant to those in this paper are given
by [LST20a], who showed that the step size of MALA must scale inversely in κ for the chain to
have a constant chance of moving, and [CLA+20], who showed that the step size must scale as

d−
1
2 . Theorem 2 matches or improves both bounds simultaneously, proving that up to logarithmic

factors the relaxation time of MALA scales linearly in both κ and d, while giving an explicit hard
distribution and exp(−d)-sized bad set. Moreover, both [LST20a, CLA+20] gave strictly spectral
lower bounds, which are complemented by our Theorem 3, a mixing time lower bound.

We briefly mention several additional lower bound results in the sampling and sampling-adjacent
literature, which are related to this work. Recently, [CLW20] exhibited an information-theoretic
lower bound on unadjusted discretizations simulating the underdamped Langevin dynamics, whose
dimension dependence matches the upper bound of [SL19] (while leaving the precise dependence
on κ open). Finally, [GLL20] and [CBL20] give information-theoretic lower bounds for estimat-
ing normalizing constants of well-conditioned distributions and the number of stochastic gradient
queries required by first-order sampling methods under noisy gradient access respectively.

2 Preliminaries

In Section 2.1, we give an overview of notation and technical definitions used throughout the paper.
We state standard helper concentration bounds we frequently use in Section 2.2. We then recall
the definitions of the sampling methods which we study in this paper in Sections 2.3 and 2.4.

2.1 Notation

General notation. For d ∈ N we let [d] := {i ∈ N | 1 ≤ i ≤ d}. We let ‖·‖2 denote the Euclidean
norm on Rd for any d; for any positive semidefinite matrix A, we let ‖·‖A be its induced seminorm

‖x‖A =
√
x>Ax. We use ‖·‖p to denote the `p norm for p ≥ 1, and ‖·‖∞ is the maximum absolute

value of entries. We let N (µ,Σ) denote the multivariate Gaussian with mean µ ∈ Rd and covariance
Σ ∈ Rd×d. We let I ∈ Rd×d denote the identity matrix when dimensions are clear from context,
and � is the Loewner order on the positive semidefinite cone. We let {Wt}t≥0 ⊂ Rd denote the
standard Brownian motion when dimensions are clear from context.

Functions. We say twice-differentiable f : Rd → R is L-smooth and µ-strongly convex for 0 ≤
µ ≤ L if µI � ∇2f(x) � LI for all x ∈ Rd. It is well-known that for any x, y ∈ Rd, this implies f
has a Lipschitz gradient (i.e. ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2), and satisfies the quadratic bounds

f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 ≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖y − x‖22 .

We define the condition number of such a function f by κ := L
µ . We will assume that κ is at least

a constant for convenience of stating bounds; a lower bound of 10 suffices for all our results.

Distributions. For distribution π on Rd, we say π is logconcave if dπ
dx (x) = exp(−f(x)) for

convex f ; we say π is µ-strongly logconcave if f is µ-strongly convex. For A ⊆ Rd we let Ac denote
its complement and π(A) :=

∫
x∈A dπ(x) denote its measure under π. We say distribution ρ is

β-warm with respect to π if dρ
dπ (x) ≤ β everywhere; we define their total variation ‖π − ρ‖TV :=

supA⊆Rd π(A)− ρ(A). Finally, we denote the expectation and variance of g : Rd → R under π by

Eπ [g] =

∫
g(x)dπ(x), Varπ [g] = Eπ

[
g2
]
− (Eπ [g])2 .
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Sampling. Consider a Markov chain defined on Rd with transition kernel {Tx}x∈Rd , so that∫
Tx(y)dy = 1 for all x. Further, denote the stationary distribution of the Markov chain by π∗.

Define the Dirichlet form of functions g, h : Rd → R with respect to the Markov chain by

E(g, h) :=

∫
g(x)h(x)dπ∗(x)−

∫∫
g(y)h(x)Tx(y)dπ∗(x)dy.

A standard calculation demonstrates that

E(g, g) =
1

2

∫∫
(g(x)− g(y))2Tx(y)dπ∗(x)dy.

The mixing of the chain is governed by its spectral gap, a classical quantity we now define:

λ ({Tx}x∈Rd) := inf
g

{
E(g, g)

Varπ∗ [g]

}
. (2)

The relaxation time is the inverse spectral gap. We also recall a result of Cheeger [Che69], showing
the spectral gap is O(Φ), where Φ is the conductance of the chain:

Φ ({Tx}x∈Rd) := inf
A⊂Rd|π∗(A)≤ 1

2

∫
x∈A Tx(Ac)dπ∗(x)

π∗(A)
(3)

Finally, we recall the definition of a Metropolis filter. A Markov chain with transitions {Tx}x∈Rd
and stationary distribution π∗ is said to be reversible if for all x, y ∈ Rd,

dπ∗(x)Tx(y) = dπ∗(y)Ty(x).

The Metropolis filter is a way of taking an arbitrary set of proposal distributions {Px}x∈Rd and
defining a reversible Markov chain with stationary distribution π∗. In particular, the Markov chain
induced by the Metropolis filter has transition distributions {Tx}x∈Rd defined by

Tx(y) := Px(y) min

(
1,
dπ∗(y)Py(x)

dπ∗(x)Px(y)

)
for all y 6= x. (4)

Whenever the proposal is rejected by the modified distributions above, the chain does not move.

2.2 Concentration

Here we state several frequently used (standard) concentration facts.

Fact 1 (Mill’s inequality). For one-dimensional Gaussian random variable Z ∼ N (0, σ2),

Pr [Z > t] ≤
√

2

π

σ

t
exp

(
− t2

2σ2

)
.

8



Fact 2 (χ2 tail bounds, Lemma 1 [LM00]). Let {Zi}i∈[n] ∼i.i.d. N (0, 1) and a ∈ Rn≥0. Then

Pr

∑
i∈[n]

aiZ
2
i − ‖a‖

2
2 ≥ 2 ‖a‖2

√
t+ 2 ‖a‖∞ t

 ≤ exp(−t),

Pr

∑
i∈[n]

aiZ
2
i − ‖a‖

2
2 ≤ −2 ‖a‖2

√
t

 ≤ exp(−t).

Fact 3 (Bernstein’s inequality). Let {Zi}i∈[n] be independent mean-zero random variables with
sub-exponential parameter λ. Then

Pr

∣∣∣∣∣∣
∑
i∈[n]

Zi

∣∣∣∣∣∣ > t

 ≤ exp

(
−1

2
min

(
t2

nλ2
,
t

λ

))
.

2.3 Metropolis-adjusted Langevin algorithm

In this section, we formally define the Metropolis-adjusted Langevin algorithm (MALA) which we
study in Sections 3 and 4. Throughout this discussion, fix a distribution π on Rd, with density
dπ
dx (x) = exp(−f(x)), and suppose that f is twice-differentiable for simplicity.

The MALA Markov chain is given by a discretization of the (continuous-time) Langevin dynamics

dxt = −∇f(xt)dt+
√

2dWt,

which is well-known to have stationary density exp(−f(x)). MALA is defined by performing a
simple Euler discretization of the Langevin dynamics up to time h > 0, and then applying a
Metropolis filter. In particular, define the proposal distribution at a point x by

Px := N (x− h∇f(x), 2hI) .

We obtain the MALA transition distribution by applying the definition (4), which yields

Tx(y) ∝ exp

(
−
‖y − (x− h∇f(x))‖22

4h

)
min

1,
exp

(
−f(y)− ‖x−(y−h∇f(y))‖22

4h

)
exp

(
−f(x)− ‖y−(x−h∇f(x))‖22

4h

)
 . (5)

The normalization constant above is that of the multivariate Gaussian with covariance 2hI.

2.4 Hamiltonian Monte Carlo

In this section, we formally define the (Metropolized) Hamiltonian Monte Carlo (HMC) method
which we study in Section 6. We assume the same setting as Section 2.3.

The Metropolized HMC algorithm is governed by two parameters, a step size η > 0 and a step
count K ∈ N, and can be viewed as a multi-step generalization of MALA. In particular, when
K = 1 it is straightforward to show that HMC is a reparameterization of MALA, see e.g. Appendix
A of [LST20a]. More generally, from an iterate x, HMC performs the following updates.

1. x0 ← x, v0 ∼ N (0, I)

2. For 0 ≤ k < K:

9



(a) vk+ 1
2
← vk − η

2∇f(xk)

(b) xk+1 ← xk + ηvk+ 1
2

(c) vk+1 ← vk − η
2∇f(xk+1)

3. Return xK

Each loop of step 2 is known in the literature as a “leapfrog” step, and is a discretization of Hamil-
ton’s equations for the Hamiltonian function H(x, v) := f(x) + 1

2 ‖v‖
2
2; for additional background,

we refer the reader to [CDWY19]. This discretization is well-known to have reversible transition
probabilities (i.e. the transition density is the same if the endpoints are swapped) because it satis-
fies a property known as symplecticity. Moreover, the Markov chain has stationary density on the
expanded space (x, v) ∈ Rd×Rd proportional to exp(−H(x, v)). Correspondingly, the Metropolized
HMC Markov chain performs the above algorithm from a point x, and accepts with probability

min

{
1,

exp (−H(xK , vK))

exp (−H(x0, v0))

}
. (6)

3 Lower bound for MALA on Gaussians

In this section, we derive a upper bound on the spectral gap of MALA when the target distribution is
restricted to being a multivariate Gaussian (i.e. its negative log-density is a quadratic in some well-
conditioned matrix A). Throughout this section we will let f(x) = 1

2x
>Ax for some I � A � κI.

We remark here that without loss of generality, we have assumed that the minimizer of f is the
all-zeros vector and the strong convexity parameter is µ = 1. These follow from invariance of
condition number under linear translations and scalings of the variable.

Next, we define a specific hard quadratic function we will consider in this section, fhq : Rd → R.
Specifically, fhq will be a quadratic in a diagonal matrix A which has A11 = 1 and Aii = κ for
2 ≤ i ≤ d. We can rewrite this as

fhq(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

{
1
2c

2 i = 1
κ
2 c

2 2 ≤ i ≤ d
. (7)

Notice that fhq is coordinate-wise separable, and behaves identically on coordinates 2 ≤ i ≤ d (and
differently on coordinate 1). To this end for a vector v ∈ Rd, we will denote its first coordinate by
v1 ∈ R, and its remaining coordinates by v−1 ∈ Rd−1. This will help us analyze the behavior of
these components separately, and simplify notation.

We next show that for coordinate-separable functions with well-behaved first coordinate, such as
our fhq, the spectral gap (defined in (2)) of the MALA Markov chain is governed by the step size
h. The following is an extension of an analogous proof in [CLA+20].

Lemma 1. Consider the MALA Markov chain (5), with stationary distribution π∗ with negative
log-density f . Suppose f is coordinate-wise separable (i.e. f(x) =

∑
i∈[d] fi(xi)). If f(x) = f(−x)

for all x ∈ Rd, f1 is O(1)-smooth, and Ex1∼exp(−f1)[x
2
1] = Θ(1), the spectral gap (2) is O(h+ h2).

Proof. Recalling the definition (2), we choose g(x) = x1; note that by symmetry of f around the
origin, we have Eπ∗ [g] = 0, and thus by our assumption,

Varπ∗ [g] = Ex∼π∗ [x2
1] = Θ(1).

10



Here we used that π∗ is a product distribution. Thus it suffices to upper bound E(g, g):

E(g, g) =
1

2

∫∫
(x1 − y1)2Tx(y)dπ∗(x)dy

≤ 1

2

∫∫
(x1 − y1)2Px(y)dπ∗(x)dy

=
1

2
Ex∼π∗,ξ∼N (0,1)

[(
hf ′1(x1)−

√
2hξ
)2
]

≤ Ex∼π∗
[
h2
(
f ′1(x1)

)2]
+ 2Eξ∼N (0,1)

[
hξ2
]

≤ O(h2)Ex∼π∗
[
x2

1

]
+ 2h = O

(
h+ h2

)
.

In the second line, we used that whenever the Markov chain rejects the distribution both terms
are zero; in the third, we used the definition of the MALA proposals; in the fourth, we used
(a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R. Finally, the last line used that symmetry implies that the
minimizer of f is the origin, so applying Lipschitzness and f ′1(0) = 0 yields the desired bound.

This immediately implies a spectral gap bound on our hard function fhq.

Corollary 1. The spectral gap of the MALA Markov chain for sampling from the density propor-
tional to exp(−fhq), where fhq is defined in (7), is O(h+ h2).

It remains to give a lower bound on the step size h, which we accomplish by upper bounding the ac-
ceptance probability of MALA. We will give a step size analysis for a fairly general characterization
of Markov chains, where the proposal distribution from a point x is

y =

(
y1

y−1

)
, where y1 = (1− α1)x1 + β1g1

and y−1 = (1− α−1)x−1 + β−1g−1, for g ∼ N (0, I).

(8)

To be concrete, recall that the proposal distribution for MALA (5) is given by y = x−hAx+
√

2hg.
For the A used in defining fhq, this is of the form (8) with the specific parameters

α1 = h, α−1 = hκ, β1 = β−1 =
√

2h.

However, this more general characterization will save significant amounts of recalculation when
analyzing updates of the HMC Markov chain in Section 6. Recalling the formula (5), we first give
a closed form for the acceptance probability.

Lemma 2. For f(x) = 1
2x
>Ax, we have

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
=
h

4
‖x‖2A2 −

h

4
‖y‖2A2 .

Supposing y is of the form in (8) and A is as in (7), we have

h

4
‖x‖2A2 −

h

4
‖y‖2A2 =

h

4

((
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

)
+
hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1 ‖g−1‖22 − 2(1− α−1)β−1 〈x−1, g−1〉

)
.

11



Proof. This is a direct computation which we perform here for completeness: the given quantity is

1

2
‖x‖2A −

1

2
‖y‖2A +

1

4h

(
‖y − x+ hAx‖22 − ‖x− y + hAy‖22

)
=

1

2
‖x‖2A −

1

2
‖y‖2A +

1

2
〈y − x,Ax〉+

h

4
‖x‖2A2 −

1

2
〈x− y,Ay〉 − h

4
‖y‖2A2 =

h

4
‖x‖2A2 −

h

4
‖y‖2A2 .

The second equality follows from expanding the definition of y:

‖x‖2A2 − ‖y‖2A2 = x2
1 − ((1− α1)x1 + β1g1)2 + κ2

(
‖x−1‖22 − ‖(1− α−1)x−1 + β−1g−1‖22

)
=
(
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

+ κ2
((

2α−1 − α2
−1

)
‖x−1‖22 − β

2
−1 ‖g−1‖22 − 2(1− α−1)β−1 〈x−1, g−1〉

)
.

Corollary 2. For any fixed x ∈ Rd, and supposing y is of the form in (8) and A is as in (7),

Eg∼N (0,I)

[
f(x)− f(y) +

1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)]
=
h

4

((
2α1 − α2

1

)
x2

1 − β2
1

)
+
hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1(d− 1)

)
.

Proof. This follows from Lemma 2, independence of g and x, and linearity of trace and expectation
applied on squared coordinates of g, where we recognize Eg∼N (0,I)[gg

>] = I.

Next, for a fixed x, consider the random variables Rxi :

Rxi =

{
h
4

((
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

)
i = 1

hκ2

4

((
2α−1 − α2

−1

)
x2
i − β2

−1g
2
i − 2(1− α−1)β−1xigi

)
2 ≤ i ≤ d

where g ∼ N (0, I) is a standard Gaussian random vector. Notice that for a given realization of g,
we have by Lemma 2 that ∑

i∈[d]

Rxi =
h

4
‖x‖A2 −

h

4
‖y‖A2 . (9)

We computed the expectation of
∑

i∈[d]R
x
i in Corollary 2. We next give a high-probability bound

on the deviation of
∑

i∈[d]R
x
i from its expectation.

Lemma 3. With probability at least 1− δ over the randomness of g ∼ N (0, I),

∑
i∈[d]

Rxi − Eg∼N (0,I)

∑
i∈[d]

Rxi

 ≤ 2h|α1 − 1|β1|x1|

√
log

(
4

δ

)
+ hβ2

1

√
log

(
4

δ

)

+ 2hκ2|α−1 − 1|β−1 ‖x−1‖2

√
log

(
4

δ

)
+ hκ2β2

−1

√
d log

(
4

δ

)
.

Proof. In defining {Rxi }i∈[d], the terms involving {x2
i }i∈[d] are deterministic. Thus, we need to upper

12



bound the deviations of the remaining terms, namely

S
(1)
1 :=

h

2
(α1 − 1)β1x1g1, S

(2)
1 :=

hβ2
1

4

(
1− g2

1

)
,

S
(1)
−1 :=

hκ2

2
(α−1 − 1)β−1

∑
2≤i≤d

xigi, S
(2)
−1 :=

hκ2β2
−1

4

∑
2≤i≤d

(
1− g2

i

)
.

To motivate these definitions, S
(1)
1 + S

(2)
1 + S

(1)
−1 + S

(2)
−1 is the left hand side of the display in the

lemma statement. We begin with S
(1)
−1 . Notice that this is a one-dimensional Gaussian random

variable distributed as

N
(
0, σ2

1

)
where σ1 :=

hκ2

2
|α−1 − 1|β−1 ‖x−1‖2 .

Thus, applying Mill’s inequality yields

Pr
[
S

(1)
−1 > t

]
≤
√

2

π

σ1

t
exp

(
− t2

2σ2
1

)
≤ δ

4
, for t = 4σ1

√
log

(
4

δ

)
.

Next, to bound the term S
(2)
−1 , define

σ2 :=
hκ2β2

−1

4

√
d− 1.

Standard χ2 concentration results (Fact 2) then yield

Pr
[
S

(2)
−1 > t

]
≤ exp

(
− t2

4σ2
2

)
≤ δ

4
, for t = 2σ2

√
log

(
4

δ

)
.

Similar bounds follow for S
(1)
1 and S

(2)
1 , whose computations we omit for brevity. Taking a union

bound over these four terms yields the desired claim.

Finally, we have a complete characterization of a bad set Ω ⊂ Rd where, with high probability over
the proposal distribution, the acceptance probability is extremely small.

Proposition 1. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2d
3κ and |x1| ≤ 5

√
log d, and suppose y is of the

form in (8) and A is as in (7). Also suppose that

|α−1| ≤
3

5
β2
−1κ, β−1 = ω

(√
log d

κd

)
, |α1| = O(|α−1|), β1 = O(β−1).

Then with probability at least 1− d−5 over the randomness of g ∼ N (0, I), we have

h

4
‖x‖A2 −

h

4
‖y‖A2 = −Ω

(
hκ2β2

−1d
)
.

Proof. We first handle terms involving x−1 and g−1. Combining (9), Corollary 2, and Lemma 3, we
have with probability at least 1− 1

2d
−5 over the randomness of g ∼ N (0, I) that ‖x−1‖2A2

−1
−‖y−1‖2A2

−1

13



(where A−1 is the Hessian of fhq on the last d− 1 coordinates) is upper bounded by

hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1(d− 1)

)
+ 5hκ2|α−1 − 1|β−1 ‖x−1‖2

√
log d+ 3hκ2β2

−1

√
d log d

≤ −hκ
2

4.5
β2
−1d+

hκ2

4
(2α−1 − α2

−1) ‖x−1‖22 + 5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d.

(10)
Here we dropped the last term in the first line by adjusting a constant since it is dominated for
sufficiently large d. It remains to show that all the terms in the second line other than −hκ2

4.5 β
2
−1d

are bounded by O(hκ2β2
−1d). We will perform casework on the size of α−1.

Case 1: |α−1| > 3. In this case, we have for sufficiently large d, by Young’s inequality

5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d ≤ 1

40
hκ2|α−1|β−1 ‖x−1‖2

√
d

≤ 1

80
hκ2β2

−1d+
1

80
hκ2α2

−1 ‖x−1‖22 .

Plugging this bound into (10), we have the desired

‖x−1‖2A2
−1
− ‖y−1‖2A2

−1
≤ −hκ

2

5
β2
−1d+

hκ2

4

(
2α−1 − 0.9α2

−1

)
‖x−1‖22 ≤ −

hκ2

5
β2
−1d.

In the last inequality we used 2α−1 − 0.9α2
−1 ≤ 0 for |α−1| > 3.

Case 2: |α−1| ≤ 3. In this case, we first observe by our assumed bounds on ‖x−1‖2 and β−1,

5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d ≤ 20hκ1.5β−1

√
d log d = o

(
hκ2β2

−1d
)
.

Thus, substituting into (10) and dropping the (nonpositive) term corresponding to α2
−1,

‖x−1‖2A2
−1
− ‖y−1‖2A2

−1
≤ −hκ

2

4.8
β2
−1d+

hκ2

2
α−1 ‖x−1‖22

≤ −hκ
2

4.8
β2
−1d+

hκα−1d

3
= −Ω

(
hκ2β2

−1d
)
.

In the second inequality, we used the assumed bound on ‖x−1‖22, and in the last we used the bound
|α−1| ≤ 3

5β
2
−1κ to reach the conclusion.

To complete the proof we need to show terms involving x1 and g1 are small. In particular, combining
(9), Corollary 2, and Lemma 3 and dropping nonnegative terms, it suffices to argue

h

2
α1x

2
1 + 5h|α1 − 1|β1|x1|

√
log d+ 3hβ2

1

√
log d = o

(
hκ2β2

−1d
)
.

This bound clearly holds for the last term hβ2
1

√
log d using β1 = O(β−1). For the first term, it

suffices to use our assumed bounds on |α1| and x1. Finally, the middle term 5h|α1− 1|β1|x1|
√

log d
is low-order compared to the term 5hκ2|α−1 − 1|β−1 ‖x−1‖2

√
log d which we argued about earlier,

and hence does not affect any of our earlier bounds by more than a constant. The left-hand side of
the above display is an upper bound of the first coordinate’s contribution with probability at least
1− 1

2d
−5, so a union bound shows the proof succeeds with probability ≥ 1− d−5.

Finally, we are ready to give the main lower bound of this section.
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Theorem 1. For every step size, there is a target Gaussian on Rd whose negative log-density always

has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω( κ
√
d√

log d
).

Proof. Let π∗ be the Gaussian with log-density −fhq (7) throughout this proof. If h = O
(√

log d

κ
√
d

)
,

then Corollary 1 immediately implies the result, so for the remainder of the proof suppose

h = ω

(√
log d

κ
√
d

)
. (11)

We first recall that MALA Markov chains are an instance of (8) with

α1 = h, α−1 = hκ, β1 = β−1 =
√

2h.

It is easy to see that these parameters satisfy the assumptions in Proposition 1, for the given range
of h. We define a “bad starting set” as follows:

Ω :=

{
x

∣∣∣∣ ‖x−1‖22 ≤
2d

3κ
, x2

1 ≤ 25 log d

}
. (12)

For any x ∈ Ω, and h satisfying (11), Proposition 1 is applicable, and by our definition of Ω, any
x ∈ Ω has proposals which will be accepted with probability

exp
(
−Ω

(
hκ2β2

−1d
))

= exp
(
−Ω(h2κ2d)

)
≤ 1

d10
.

The conductance of the Markov chain (3) is then at most 2
d5

by the witness set Ω and the failure
probability of Proposition 1, which concludes the proof by Cheeger’s inequality [Che69], where we
use the assumption that κ = O(d4).

Finally, as it clarifies the required warmness to escape the bad set in the proof of Theorem 1 (and
is used in our mixing time bounds in Section 5), we lower bound the measure of Ω according to π∗.
Applying Lemma 4 shows with probability at least exp(− 1

12d), ‖x−1‖22 ≤
d

2κ , and Fact 1 shows that
x2

1 ≤ 25 log d with probability at least 1
2 ; combining shows that the measure is at least exp(−d).

We required one helper technical fact, a small-ball probability bound for Gaussians.

Lemma 4. Let v ∼ N (0, I) be a random Gaussian vector in n dimensions. For large enough n,

Pr
[
‖v‖22 ≤

n

2

]
≥ exp

(
− n

12

)
.

Proof. Observe that ‖v‖22 follows a χ2 distribution with n degrees of freedom. Thus this probability
is governed by the χ2 cumulative density function, and is

1

Γ(k)
γ (k, ck)

where we define k := n
2 and c := 1

2 ; here Γ is the standard gamma function, and γ is the lower
incomplete gamma function. Next, we have the bound from [ODL+20]

1

Γ(k)
γ (k, ck) ≥ (1− exp (−`ck))k , ` := (Γ(k + 1))−

1
k−1 .
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A direct calculation yields ` ≥ 2.5
k =⇒ 1− exp(−`ck) ≥ exp(−1

6) for large enough k. Recalling we
defined k = n

2 yields the conclusion.

4 Lower bound for MALA on well-conditioned distributions

In this section, we derive a lower bound on the relaxation time of MALA for sampling from a
distribution with density proportional to exp(−f(x)), where f : Rd → R is a (non-quadratic) target
function with condition number κ. In particular, by exploiting the structure of non-cancellations
which do not occur for quadratics, we will attain a stronger lower bound.

Our first step is to derive an upper bound on the acceptance probability for a general target function
f according to the MALA updates (5), analogously to Lemma 2 in the Gaussian case.

Lemma 5. For any function f : Rd → R, we have

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
= −f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

Proof. This is a direct computation which we perform here for completeness:

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
= f(x)− f(y) +

1

2h
〈y − x, h∇f(x)〉 − 1

2h
〈x− y, h∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22

= −f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

Next, recall the proposal distribution of the MALA updates (5) sets y = x−h∇f(x) +
√

2hg where
g ∼ N (0, I). We further split this update into a random step and a deterministic step, by defining

xg := x+
√

2hg, where g ∼ N (0, I) and y = xg − h∇f(x). (13)

This will allow us to reason about the effects of the stochastic and drift terms separately. We
crucially will use the following decomposition of the equation in Lemma 5:

−f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22

= −f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉

+f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉

−1

2
〈xg − y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

(14)

We will use the following observation, which gives an alternate characterization of the second line
of (14), as well as a bound on the third and fourth lines for smooth functions.
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Lemma 6. For twice-differentiable f : Rd → R, letting xs := x+ s(xg − x) for s ∈ [0, 1], we have

−f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 = −2h

∫ 1

0

(
1

2
− s
)
g>∇2f(xs)gds.

Moreover, assuming f is κ-smooth,

f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉

−1

2
〈xg − y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 +

h

4
‖∇f(y)‖22

≤ 2
(
h2κ+ h3κ2

)
‖∇f(x)‖22 + 3

(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇f(x)‖2 + h2κ2 ‖g‖22 .

Proof. By integrating twice and using the definition xg = x+
√

2hg,

f(xg) = f(x) +

∫ 1

0
〈∇f(xs), xg − x〉 ds

= f(x) + 〈∇f(x), xg − x〉+

∫ 1

0

〈∫ s

0
∇2f(xt) (xg − x) dt, xg − x

〉
ds

= f(x) + 〈∇f(x), xg − x〉+ 2h

∫ 1

0
(1− s) g>∇2f(xs)gds.

(15)

Similarly,

f(x) = f(xg) + 〈∇f(xg), x− xg〉+ 2h

∫ 1

0
sg>∇2f(xs)gds. (16)

The first conclusion follows from combining (15) and (16). Next, assuming f is κ-smooth,

f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉 −

1

2
〈xg − y,∇f(x) +∇f(y)〉

= f(xg)− f(y) +

√
2h

2
〈g,∇f(y)−∇f(xg)〉 − 〈xg − y,∇f(y)〉 − h

2
〈∇f(x),∇f(x)−∇f(y)〉

≤ f(xg)− f(y)− 〈xg − y,∇f(y)〉+

√
2h

2
‖g‖2 ‖∇f(xg)−∇f(y)‖2 +

h

2
‖∇f(x)‖2 ‖∇f(x)−∇f(y)‖2

≤ κ

2
‖xg − y‖22 +

√
2hκ

2
‖g‖2 ‖xg − y‖2 +

hκ

2
‖∇f(x)‖2 ‖x− y‖2

≤ h2κ

2
‖∇f(x)‖22 +

√
2

2
h1.5κ ‖g‖2 ‖∇f(x)‖2 +

hκ

2
‖∇f(x)‖2

(√
2h ‖g‖2 + h ‖∇f(x)‖2

)
= h2κ ‖∇f(x)‖22 +

√
2h1.5κ ‖g‖2 ‖∇f(x)‖2 .

(17)
The second line used the definitions of xg and y in (13), and the third used Cauchy-Schwarz. The
fourth used smoothness (which implies gradient Lipschitzness), and the fifth again used (13) and
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the triangle inequality. Next, we bound the remaining terms h
4 ‖∇f(x)‖22 −

h
4 ‖∇f(y)‖22:

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 =

h

4
〈∇f(x) +∇f(y),∇f(x)−∇f(y)〉

≤ hκ

4
(2 ‖∇f(x)‖2 + κ ‖x− y‖2) ‖x− y‖2

≤ hκ

4

(
2 ‖∇f(x)‖2 + hκ ‖∇f(x)‖2 +

√
2hκ ‖g‖2

)(
h ‖∇f(x)‖2 +

√
2h ‖g‖2

)
≤ 1

2

(
h2κ+ h3κ2

)
‖∇f(x)‖22 +

√
2

2

(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇f(x)‖2 + h2κ2 ‖g‖22 .

(18)

Combining (17) and (18) yields the conclusion.

We will ultimately use the second bound in Lemma 6 to argue that the third and fourth lines in
(14) are low-order, so it remains to concentrate on the remaining term,

− f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 = −2h

∫ 1

0

(
1

2
− s
)
g>∇2f(xs)gds. (19)

Our goal is to demonstrate this term is −Ω(hκd) over an inverse-exponentially sized region, for
a particular hard distribution. As it is coordinate-wise separable, our proof strategy will be to
construct a hard one-dimensional function, and replicate it to obtain a linear dependence on d.

We now define the specific hard function fhard : Rd → R we work with for the remainder of the
section; it is straightforward to see fhard is κ-smooth and 1-strongly convex.

fhard(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

{
1
2c

2 i = 1
κ
3 c

2 − κh
3 cos c√

h
2 ≤ i ≤ d

. (20)

We will now show that sampling from the distribution with density proportional to exp(−fhard) is
hard. First, notice that the function fhard has condition number κ and is coordinate-wise separable.
It immediately follows from Lemma 1 that the spectral gap (defined in (2)) of the MALA Markov
chain is governed by the step size h as follows.

Corollary 3. The spectral gap of the MALA Markov chain for sampling from the density propor-
tional to exp(−fhard), where fhard is defined in (20), is O(h+ h2).

For the remainder of the section, we focus on upper bounding (19) over a large region according to
the density proportional to exp(−fhard). Recall {fi}i∈[d] are the summands of fhard. For a fixed x,
consider the random variables Sxi :

Sxi = −fi([xg]i) + fi(xi)−
1

2
(xi − [xg]i)(f

′
i(xi) + f ′i([xg]i)).

It is easy to check that for a given realization of g, we have∑
i∈[d]

Sxi = −f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 ,

where the right-hand side of the above display is the left-hand side of (19). We bound the expec-
tation of

∑
i∈[d] S

x
i , and its deviation from its expectation, in Lemma 7 and Lemma 8 respectively.
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Lemma 7. For any fixed x ∈
{
x
∣∣∣ −1

2π
√
h+ 2πki

√
h ≤ xi ≤ 1

2π
√
h+ 2πki

√
h, ki ∈ N,∀2 ≤ i ≤ d

}
and h ≤ 1, the random variables Sxi , 1 ≤ i ≤ d satisfy

Eg∼N (0,I) [Sxi ] ≤

{
0 i = 1

−0.08hκ cos xi√
h

2 ≤ i ≤ d
.

Proof. We remark that the condition on x simply enforces coordinatewise in 2 ≤ i ≤ d, cos xi√
h
> 0.

Consider some coordinate 2 ≤ i ≤ d: since [xg]i = xi +
√

2hgi,

Sxi = −fi
(
xi +

√
2hgi

)
+ fi(xi) +

√
2h

2
gi

(
f ′i(xi) + f ′i

(
xi +

√
2hgi

))
= −κ

3

(
xi +

√
2hgi

)2
+
κh

3
cos

(
xi√
h

+
√

2gi

)
+
κ

3
x2
i −

κh

3
cos

(
xi√
h

)
+

√
2h

2
gi

(
4κ

3
xi +

2
√

2hκ

3
gi +

κ
√
h

3
sin

(
xi√
h

+
√

2gi

)
+
κ
√
h

3
sin

(
xi√
h

))

=
κh

3

(
cos

(
xi√
h

+
√

2gi

)
− cos

(
xi√
h

))
+

√
2hκ

6
gi

(
sin

(
xi√
h

+
√

2gi

)
+ sin

(
xi√
h

))
Here, we used that the quadratic terms in the second and third lines cancel (this also follows from
examining the proof of Lemma 2):

−κ
3

(
xi +

√
2hgi

)2
+
κ

3
x2
i +

√
2h

2
gi

(
4κ

3
xi +

2
√

2hκ

3
gi

)
= 0.

By a direct computation, taking an expectation over gi ∼ N (0, 1) yields

Egi∼N (0,1)

[
cos

(
xi√
h

+
√

2gi

)]
=

cos
(
xi√
h

)
exp (1)

,

Egi∼N (0,1)

[
sin

(
xi√
h

+
√

2gi

)
gi

]
=

√
2 cos

(
xi√
h

)
exp (1)

.

Putting these pieces together,

Egi∼N (0,1) [Sxi ] =
κh

3

(
2

exp(1)
− 1

)
cos

(
xi√
h

)
≤ −0.08κh cos

(
xi√
h

)
.

Here, we used cos xi√
h
> 0. For i = 1, Lemma 2 shows Eg1∼N (0,1) [Sx1 ] = 0.

Lemma 8. With probability at least 1− 1
d5

over the randomness of g ∼ N (0, I),

∑
i∈[d]

Sxi − Eg∼N (0,I)

∑
i∈[d]

Sxi

 ≤ 10hκ
√
d log d.
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Proof. By Lemma 6, for coordinate 1 ≤ i ≤ d,

Sxi = −2h

∫ 1

0

(
1

2
− s
)
f ′′i ([xs]i)dsg

2
i , where

∣∣∣∣2h∫ 1

0

(
1

2
− s
)
f ′′i ([xs]i)ds

∣∣∣∣ ≤ hκ

2
.

We attained the latter bound by smoothness. Now, each random variable Sxi − E[Sxi ] is sub-
exponential with parameter hκ

2 (for coordinates where the coefficient is negative, note the negation
of a sub-exponential random variable is still sub-exponential). Hence, by Fact 3,

Pr

∑
i∈[d]

Sxi − Eg∼N (0,I)

∑
i∈[d]

Sxi

 ≥ 10hκ
√
d log d

 ≤ 1

d5
.

Now, we build a bad set Ωhard with lower bounded measure that starting from a point x ∈ Ωhard,

with high probability, −Eg∼N (0,I)

[∑
i∈[d] S

x
i

]
is negative:

Ωhard =

{
x
∣∣∣ |x1| ≤ 2, ∀2 ≤ i ≤ d,∃ki ∈ Z, |ki| ≤

⌊
5

π
√
hκ

⌋
, such that

− 9

20
π
√
h+ 2πki

√
h ≤ xi ≤

9

20
π
√
h+ 2πki

√
h

}
.

(21)

In other words, Ωhard is the set of points where cosxi is large for 2 ≤ i ≤ d, and coordinates are
bounded. We first lower bound the measure of Ωhard, and show ‖∇f(x)‖2 is small within Ωhard.
Our measure lower bound will not be used in this section, but will become relevant in Section 5.

Lemma 9. Let h ≤ 1
10000π2κ

. Let π∗ have log-density −fhard (20). Then, π∗(Ωhard) ≥ exp(−d).

Moreover, for all x ∈ Ωhard, ‖∇f(x)‖2 ≤ 10
√
κd.

Proof. We first consider a superset of Ωhard. We define the set, for K :=
⌊

5
π
√
hκ

⌋
,

Ω′ =

{
x
∣∣∣ |x1| ≤ 2,∀2 ≤ i ≤ d,− 9

20
π
√
h− 2πK

√
h ≤ xi ≤

9

20
π
√
h+ 2πK

√
h

}
.

It is easy to verify that Ω′ ⊇ Ωhard. We first show π∗(Ω′) is lower bounded by 1.1−d. Since fhard is
separable, the coordinates are independent, so it suffices to show each one-dimensional measure is
lower bounded by 1

1.1 . This is a standard computation of Gaussian measure for the first coordinate,
which we omit. For 2 ≤ i ≤ d, since the marginal distribution is κ

3 -strongly logconcave, it is sub-
Gaussian with parameter 3

κ (see Lemma 1, [DCWY18]). It follows from a standard sub-Gaussian
tail bound that the measure of the set |xi| ≤ 9√

κ
is at least 1

1.1 . For our choice of K, by assumption

on h, 2π
√
hK ≥ 10√

κ
− 2π

√
h ≥ 9√

κ
. Combining across coordinates gives π∗ (Ω′) ≥ 1.1−d.

Next, we lower bound π∗(Ωhard)
π∗(Ω′) . We divide the support of the set Ωhard and Ω′ into small disjoint

regions and bound π∗(Ωhard)
π∗(Ω′) for each small region and each coordinate separately. For 2 ≤ i ≤ d,
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k ∈
[
−
⌊

5
π
√
hκ

⌋
− 1,

⌊
5

π
√
hκ

⌋]
, k ∈ Z, let

Ω′(i,k) =
(

2πk
√
h, 2π(k + 1)

√
h
]
,

and

Ω
(i,k)
hard =

(
2πk
√
h, 2πk

√
h+

9

20
π
√
h

]
∪
[
2π(k + 1)

√
h− 9

20
π
√
h, 2π(k + 1)

√
h

]
.

Then, letting π∗i be the marginal of π∗ on coordinate i, we have

π∗i

(
Ω

(i,k)
hard

)
π∗i
(
Ω′(i,k)

) =

∫ 2πk
√
h+ 9

20
π
√
h

2πk
√
h

exp
(
−κ

3x
2
i + κh

3 cos xi√
h

)
dxi +

∫ 2π(k+1)
√
h

2π(k+1)
√
h− 9

20
π
√
h

exp
(
−κ

3x
2
i + κh

3 cos xi√
h

)
dxi∫ 2π(k+1)

√
h

2πk
√
h

exp
(
−κ

3x
2
i + κh

3 cos xi√
h

)
dxi

≥

∫ 2πk
√
h+ 9

20
π
√
h

2πk
√
h

exp
(
−κ

3x
2
i

)
dxi +

∫ 2π(k+1)
√
h

2π(k+1)
√
h− 9

20
π
√
h

exp
(
−κ

3x
2
i

)
dxi∫ 2π(k+1)

√
h

2πk
√
h

exp
(
−κ

3x
2
i

)
dxi exp

(
κh
3

)
≥ exp

(
−κh

3

)
·

9
10π
√
h

2π
√
h
·

exp

(
−κ

3

(
2π(k + 1)

√
h
)2
)

exp

(
−κ

3

(
2πk
√
h
)2
) ≥ 0.42.

The second step used cos xi√
h
≥ 0 for xi ∈ Ω

(i,k)
hard. The fourth step used the assumption κh ≤ 1

10000π2 .

Finally, letting Ω′(i) and Ω
(i)
hard be the projections of Ω′ and Ωhard on the ith coordinate. For any

xi ∈ Ω′i with x /∈ Ω′(i,k), and for all integers k ∈ [−K − 1,K], xi ∈ Ω
(i)
hard, so

π∗
(

Ω
(i)
hard

)
π∗(Ω′(i))

≥ 0.42. Since

the coordinates are independent under π∗, π∗(Ωhard)
π∗(Ω′) ≥ 0.42d. Combining our lower bounds,

π∗ (Ωhard) = π∗(Ω′)
π∗(Ωhard)

π∗(Ω′)
≥
(

1.1

0.42

)−d
≥ exp (−d) .

Finally, we bound ‖∇fhard(x)‖2 for x ∈ Ω′, from the definition of fhard (20),

‖∇fhard(x)‖2 =

√√√√f ′1(x)2 +

d∑
i=2

f ′i(x)2 =

√√√√x2
1 +

d∑
i=2

(
2κ

3
xi +

κ
√
h

3
sin

xi√
h

)2

.

Then directly plugging in the definition of Ωhard and using | sin c| ≤ |c| for all c,

‖∇fhard(x)‖2 ≤
√

1.52 + (d− 1)
(
9
√
κ
)2 ≤ 10

√
κd.

Finally, we combine the bounds we derived to show the acceptance probability is small within Ωhard.

Lemma 10. Let h = o
(

1
κ log d

)
. For any x ∈ Ωhard, let y = x−h∇fhard(x)+

√
2hg for g ∼ N (0, I).
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With probability at least 1− 2
d5

, we have

fhard(x)− fhard(y) +
1

4h

(
‖y − (x− h∇fhard(x))‖22 − ‖x− (y − h∇fhard(y))‖22

)
= −Ω (hκd) .

Proof. By combining Lemma 5 and the decomposition (14), the conclusion is equivalent to showing
that the following quantity is −Ω(hκd):

−fhard(xg) + fhard(x)− 1

2
〈x− xg,∇fhard(x) +∇fhard(xg)〉

+fhard(xg)− fhard(y)− 1

2
〈x− xg,∇fhard(y)−∇fhard(xg)〉

−1

2
〈xg − y,∇fhard(x) +∇fhard(y)〉+

h

4
‖∇fhard(x)‖22 −

h

4
‖∇fhard(y)‖22 .

For x ∈ Ωhard, every xi for 2 ≤ i ≤ d has cos xi√
h

bounded away from 0 by a constant and hence

combining Lemmas 7 and 8 implies the first line is −Ω(hκd) with probability at least 1
d5

. Regarding
the second and third lines, Lemma 6 shows that it suffices to bound (over the set Ωhard)

(h2κ+ h3κ2) ‖∇fhard(x)‖22 +
(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇fhard(x)‖2 + h2κ2 ‖g‖22 = o(hκd).

Fact 2 implies ‖g‖2 ≤
√

2d with probability at least 1− 1
d5

. Combining this bound, the bound on
‖∇fhard(x)‖2 from Lemma 9, and the upper bound on h yields the conclusion.

We conclude by giving the main result of this section.

Proposition 2. For h = o( 1
κ log d), there is a target density on Rd whose negative log-density always

has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω( κd
log d).

Proof. The proof is identical to that of Theorem 1, where we use Lemma 10 in place of Proposition 1.

Theorem 2. For every step size, there is a target density on Rd whose negative log-density always
has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω( κd

log d).

Proof. This is immediate from combining Theorem 1 (with the hard function fhq in the range
h = Ω( 1

κ log d)) and Proposition 2 (with the hard function fhard in the range h = o( 1
κ log d)).

5 Mixing time lower bound for MALA

In this section, we derive a mixing time lower bound for MALA. Concretely, we show that for any
step size h, there is a hard distribution π∗ ∝ exp(−f) such that ∇2f always has eigenvalues in
[1, κ], yet there is a exp(d)-warm start π0 such that the chain cannot mix in o( κd

log2 d
) iterations,

starting from π0. We begin by giving such a result for h = O( log d
κd ) in Section 5.1, and combine it

with our developments in Sections 3 and 4 to prove our main mixing time result.
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5.1 Mixing time lower bound for small h

Throughout this section, let h = O
(

log d
κd

)
, and let π∗ = N (0, I) be the standard d-dimensional

multivariate Gaussian. We will let π0 be the marginal distribution of π∗ on the set

Ω :=

{
x | ‖x‖22 ≤

1

2
d

}
.

Recall from Lemma 4 that π0 is a exp(d)-warm start. Our main proof strategy will be to show that
for such a small value of h, after T = O( κd

log2 d
) iterations, with constant probability both of the

following events happen: no rejections occur throughout the Markov chain, and ‖xt‖22 ≤
9
10d holds

for all t ∈ [T ]. Combining these two facts will demonstrate our total variation lower bound.

Lemma 11. Let {xt}0≤t<T be the iterates of the MALA Markov chain with step size h = O
(

log d
κd

)
,

for T = o( κd
log2 d

) and x0 ∼ π0. With probability at least 99
100 , both of the following events occur:

1. Throughout the Markov chain, ‖xt‖2 ≤ 0.9
√
d.

2. Throughout the Markov chain, the Metropolis filter never rejected.

Proof. We inductively bound the failure probability of the above events in every iteration by 0.01
T ,

which will yield the claim via a union bound. Take some iteration t+ 1, and note that by triangle
inequality, and assuming all prior iterations did not reject,

‖xt+1‖2 ≤ ‖x0‖2+h

t∑
s=0

‖xs‖2+
√

2h

∥∥∥∥∥
t∑

s=0

gs

∥∥∥∥∥
2

≤ ‖x0‖2+0.9hT
√
d+
√

2h ‖Gt‖2 ≤ 0.8
√
d+
√

2h ‖Gt‖2 .

Here, we applied the inductive hypothesis on all ‖xs‖2, the initial bound ‖x0‖2 ≤
√

1
2d, and that

hT = o(1) by assumption. We also defined Gt =
∑t

s=0 gs, where gs is the random Gaussian used
by MALA in iteration s; note that by independence, Gt ∼ N (0, t+ 1). By Fact 2, with probability
at least 1

200T , ‖Gt‖2 ≤ 2
√
Td, and hence 0.8

√
d+
√

2h ‖Gt‖2 ≤ 0.9
√
d, as desired.

Next, we prove that with probability ≥ 1− 1
200T , step t does not reject. This concludes the proof

by union bounding over both events in iteration t, and then union bounding over all iterations. By
the calculation in Lemma 2, the accept probability is

min

(
1, exp

(
h

4

((
2h− h2

)
‖xt‖22 − 2h ‖g‖22 − 2

√
2h (1− h) 〈xt, g〉

)))
.

We lower bound the argument of the exponential as follows. With probability at least 1 − d−5 ≥
1 − 1

400T , Facts 1 and 2 imply both of the events ‖g‖22 ≤ 2d and 〈xt, g〉 ≤ 10
√

log d ‖x‖2 occur.

Conditional on these bounds, we compute (using 2h ≥ h2 and the assumption ‖xt‖2 ≤ 0.9
√
d)(

2h− h2
)
‖xt‖22 − 2h ‖g‖22 − 2

√
2h (1− h) 〈xt, g〉 ≥ −4hd− 40

√
hd log d ≥ −44 log d.

Hence, the acceptance probability is at least

exp (−11h log d) ≥ 1− 1

400T
,
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by our choice of T with Th log d = o(1), concluding the proof.

Proposition 3. The MALA Markov chain with step size h = O
(

log d
κd

)
requires Ω( κd

log2 d
) iterations

to reach total variation distance 1
e to π∗, starting from π0.

Proof. Let π̃ be the distribution of the MALA Markov chain after T = o( κd
log2 d

) steps without

applying a Metropolis filter in any step, and let π̂ be the distribution after applying the actual
MALA chain (including rejections). To show ‖π̂ − π∗‖TV ≥

1
e , it suffices to show the bounds

‖π̃ − π∗‖TV ≥
2

5
, ‖π̃ − π̂‖TV ≤ 0.01,

and then we apply the triangle inequality. By the coupling characterization of total variation, the
second bound follows immediately from the second claim in Lemma 11, wherein we couple the two
distributions whenever a rejection does not occur. To show the first bound, the measure of

Ωlarge :=
{
x | ‖x‖22 ≥ 0.81d

}
according to π∗ is at least 0.99 by Fact 2, and according to π̃ it can be at most 0.01 by the first
conclusion of Lemma 11. This yields the bound via the definition of total variation.

5.2 Proof of Theorem 3

Finally, we put together the techniques of Sections 3, 4, and 5.1 to prove Theorem 3.

Theorem 3. For every step size, there is a target density on Rd whose negative log-density always
has Hessian eigenvalues in [1, κ], such that MALA initialized at an exp(d)-warm start requires
Ω( κd

log2 d
) iterations to reach e−1 total variation distance to the stationary distribution.

Proof. We consider three ranges of h. First, if h = Ω
(

1
κ log d

)
, we use the hard function fhq and

the hard set in (12), which has measure at least exp(−d) according to the stationary distribution
by Lemma 4. Then, applying Proposition 1 demonstrates that the chance the Markov chain can
move over d5 iterations is o(1

d), and hence it does not reach total variation 1
e in this time. Next,

if h = o
(

1
κ log d

)
∩ ω

(
log d
κd

)
, we use the hard function fhard and the hard set in (21), which has

measure at least exp(−d) by Lemma 9. Applying Lemma 10 again implies the chain does not mix

in d5 iterations. Finally, if h = O
(

log d
κd

)
, applying Proposition 3 yields the claim.

6 Lower bounds for HMC

In this section, we derive a lower bound on the spectral gap of HMC. We first analyze some general
structural properties of HMC in Section 6.1, as a prelude to later sections. We then provide a lower
bound for HMC on quadratics in Section 6.2, with any number of leapfrog steps K.
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6.1 Structure of HMC: a detour to Chebyshev polynomials

We begin our development with a bound on the acceptance probability for general HMC Markov
chains. Recall from (6) that this probability is (for H(x, v) := f(x) + 1

2 ‖v‖
2
2)

min

{
1,

exp (−H(xK , vK))

exp (−H(x0, v0))

}
. (6)

We first state a helper calculation straightforwardly derived from the exposition in Section 2.4.

Fact 4. One step of the HMC Markov chain starting from x0 generates iterates {(vk− 1
2
, xk, vk)}0≤k≤K

defined recursively by the closed-form equations:

vk− 1
2

= v0 −
η

2
∇f(x0)− η

∑
j∈[k−1]

∇f(xj),

vk = v0 −
η

2
∇f(x0)− η

∑
j∈[k−1]

∇f(xj)−
η

2
∇f(xk),

xk = x0 + ηkv0 −
η2k

2
∇f(x0)− η2

∑
j∈[k−1]

(k − j)∇f(xj).

When expanding the acceptance probability (6) using the equations in Fact 4, many terms conve-
niently cancel, which we capture in Lemma 12. This phenomenon underlies the improved perfor-
mance of HMC on densities with highly-Lipschitz Hessians [CDWY19].

Lemma 12. For the iterates given by Fact 4,

H (x0, v0)−H (xK , vK) =
∑

0≤k≤K−1

(
f(xk)− f(xk+1) +

1

2
〈∇f(xk) +∇f(xk+1), xk+1 − xk〉

)

+
η2

8
‖∇f(x0)‖22 −

η2

8
‖∇f(xK)‖22 .
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Proof. Recall H(x0, v0)−H(xK , vK) = f(x0)− f(xK) + 1
2 ‖v0‖22−

1
2 ‖vK‖

2
2. We begin by expanding

1

2
‖v0‖22 −

1

2
‖vK‖22 =

1

2
‖v0‖22 −

1

2

∥∥∥∥∥∥v0 −
η

2
∇f(x0)− η

∑
j∈[K−1]

∇f(xj)−
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

= η

〈
v0,

1

2
∇f(x0) +

∑
j∈[K−1]

∇f(xj) +
1

2
∇f(xK)

〉

− η2

2

∥∥∥∥∥∥1

2
∇f(x0) +

∑
j∈[K−1]

∇f(xj) +
1

2
∇f(xK)

∥∥∥∥∥∥
2

2

=
η

2

∑
0≤k≤K−1

〈v0,∇f(xk) +∇f(xk+1)〉

− η2

2

∑
0≤k≤K−1

〈
∇f(xk) +∇f(xk+1),

1

2
∇f(x0) +

∑
j∈[k]

∇f(xj)

〉

+
η2

8
〈∇f(x0)−∇f(xK),∇f(x0) +∇f(xK)〉 .

Here the first equality used Fact 4. Moreover, for each 0 ≤ k ≤ K − 1, by Fact 4

1

2
〈∇f(xk) +∇f(xk+1), xk+1 − xk〉 =

η

2
〈∇f(xk) +∇f(xk+1), v0〉

− η2

2

〈
∇f(xk) +∇f(xk+1),

1

2
∇f(x0) +

∑
j∈[k]

∇f(xj)

〉
.

Combining yields the result.

We state a simple corollary of Lemma 12 in the case of quadratics.

Corollary 4. For f(x) = 1
2x
>Ax, the iterates given by Fact 4 satisfy

H(x0, v0)−H(xK , vK) =
η2

8
‖∇f(x0)‖22 −

η2

8
‖∇f(xK)‖22 .

Proof. It suffices to observe that for any two points x, y ∈ Rd,

f(x)− f(y) +
1

2
〈∇f(x) +∇f(y), y − x〉 =

1

2
x>Ax− 1

2
y>Ay +

1

2
〈A(x+ y), y − x〉 = 0.

Finally, it will be convenient to have a more explicit form of iterates in the case of quadratics,
which follows directly from examining the recursion in Fact 4.
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Lemma 13. For f(x) = 1
2x
>Ax, the iterates {xk}0≤k≤K given by Fact 4 satisfy

xk =

 ∑
0≤j≤k

Dj,k(η
2A)j

x0 +

η ∑
0≤j≤k−1

Ej,k(η
2A)j

 v0,

where Dj,k := (−1)j · k

k + j
·
(
k + j

2j

)
, Ej,k := (−1)j ·

(
k + j

2j + 1

)
.

(22)

Proof. This formula can be verified to match the recursions of Fact 4 by checking the base cases
D0,k = 1, D1,k = −k2

2 , E0,k = k, and (where Dj,k := 0 for j > k and Ej,k := 0 for j ≥ k)

Dj,k = −
∑

i∈[k−1]

(k − i)Dj−1,i, Ej,k = −
∑

i∈[k−1]

(k − i)Ej−1,i.

In particular, by using the third displayed line of Fact 4, the coefficient of (η2A)jx0 in xk for j ≥ 2
is the negated sum of the coefficients of (η2A)j−1 in all (k − i)xi. Similarly, the coefficient of
η(η2A)jv0 in xk for j ≥ 1 is the negated sum of the coefficients of η(η2A)j−1 in all (k − i)xi. The
displayed coefficient identities follow from the binomial coefficient identities

k

k + j

(
k + j

2j

)
=

∑
j−1≤i≤k−1

(k − i)i
i+ j − 1

(
i+ j − 1

2j − 2

)
,

(
k + j

2j + 1

)
=

∑
j≤i≤k−1

(k − i)
(
i+ j − 1

2j − 1

)
.

Lemma 13 motivates the definition of the polynomials

pk(z) :=
∑

0≤j≤k
Dj,kz

j , qk(z) :=
∑

0≤j≤k−1

Ej,kz
j . (23)

In this way, at least in the case when A = diag (λ) for a vector of eigenvalues λ ∈ Rd, we can
concisely express the coordinates of iterates in (22) by

[xk]i = pk(η
2λi)[x0]i + ηqk(η

2λi)[v0]i. (24)

Interestingly, the polynomial pk turns out to have a close relationship with the kth Chebyshev
polynomial (of the first kind), which we denote by Tk. Similarly, the polynomial qk is closely
related to the (k − 1)th Chebyshev polynomial of the second kind, denoted Uk−1. The relationship
between the Chebyshev polynomials and the phenomenon of acceleration for optimizing quadratics
via first-order methods has been known for some time (see e.g. [Har13, Bac19] for discussions), and
we find it interesting to further explore this relationship. Concretely, the following identities hold.

Lemma 14. Following definitions (22), (23),

pk(z) = Tk

(
1− z

2

)
, qk(z) = Uk−1

(
1− z

2

)
.

Proof. It is easy to check p0(z) = 1 and p1(z) = 1− z
2 , so the former conclusion would follow from

pk+1(z) = (2− z)pk(z)− pk−1(z) ⇐⇒ Dj,k+1 = 2Dj,k −Dj−1,k −Dj,k−1,
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following well-known recursions defining the Chebyshev polynomials of the first kind. This identity
can be verified by direct expansion. Moreover, for the latter conclusion, recalling the definition of
Morgan-Voyce polynomials of the first kind Bk(z), we can directly match qk(z) = Bk−1(−z). The
conclusion follows from Section 4 of [AJ94], which shows Bk−1(−z) = Uk−1(1− z

2) as desired (note
that in the work [AJ94], the indexing of Chebyshev polynomials is off by one from ours).

Now for z = η2λi, we have from (24) and Lemma 14 that [xk]i = ±[x0]i precisely when

pk(z) = Tk

(
1− z

2

)
= ±1, qk(z) = Uk−1

(
1− z

2

)
= 0.

Hence, this occurs whenever 1 − z
2 is both an extremal point of Tk in the range [−1, 1] and a root

of Uk−1. Both of these occur exactly at the points cos( jkπ), for 0 ≤ j ≤ k.

Proposition 4. For κ ≥ π2 and K ≥ 2, no K-step HMC Markov chain with step size 1 ≥ η2 ≥ π2

κK2

can mix in finite time for all densities on Rd whose negative log-density’s Hessian has eigenvalues
between 1 and κ for all points x ∈ Rd, initialized at a constant-warm start.

Proof. Fix a value of 1 ≥ η ≥
√

π2

κK2 . We claim there exists a 1 ≤ j ≤ K − 1 such that for

λ :=
2
(

1− cos
(
jπ
K

))
η2

, 1 ≤ λ ≤ κ.

Since λ is a monotone function of η, it suffices to check the endpoints of the interval [ π2

κK2 , 1]. For

η2 = 1, we choose j = K − 1, which using 2x2

π2 ≤ 1− cos(x) ≤ x2

2 for all −π ≤ x ≤ π, yields

1 ≤ 4(K − 1)2

K2
≤ λ ≤ (K − 1)2π2

K2
≤ π2 ≤ κ.

Similarly, for η2 = π2

κK2 , we choose j = 1, which yields

1 ≤ 4

η2K2
≤ λ ≤ π2

η2K2
≤ κ.

Now, consider the quadratic f(x) = 1
2x
>Ax where A ∈ Rd×d is a diagonal matrix, A11 = 1, Aii = κ

for all 3 ≤ i ≤ d, and A22 = λ :=
2(1−cos( jπK ))

η2
for the choice of j which makes 1 ≤ λ ≤ κ. For any

symmetric starting set capturing a constant amount of measure along the second coordinate, by
Lemma 13 and the following exposition, xK = ±x0 along the second coordinate regardless of the
random choice of velocity and thus the chain cannot leave the starting set.

6.2 HMC lower bound for all K

We now give our HMC lower bound, via improving Proposition 4 by a dimension dependence. We
begin in Section 6.2.1, where we give a stronger upper bound on η in the range η2 ≤ 1

κK2 . Noting
that there is a constant-sized gap between this range and the bound in Proposition 4, we rule out
this gap in Section 6.2.2. Finally, we handle the case of extremely large η2 ≥ 1 in Section 6.2.3.
We put these pieces together to prove Theorem 4 in Section 6.2.4.
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6.2.1 Upper bounding η = O(K−1κ−
1
2 ) under a constant gap

For this section, we let A be the d× d diagonal matrix which induces the hard quadratic function
fhq, defined in (7) and reproduced here for convenience:

fhq(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

{
1
2c

2 i = 1
κ
2 c

2 2 ≤ i ≤ d
.

We also let h := η2

2 , x := x0, g := v0, and y := xK throughout for analogy to Section 3, so that
we can apply Proposition 1. Next, note that by the closed-form expression given by Lemma 13, we
can write the iterates of the HMC chain in the form (8), reproduced here:

y =

(
y1

y−1

)
, where y1 = (1− α1)x1 + β1g1

and y−1 = (1− α−1)x−1 + β−1g−1, for g ∼ N (0, I).

Concretely, we have by Lemma 13 that

α1 = −
∑

1≤j≤K
(−1)j (2h)j

(
K

K + j

)(
K + j

2j

)
,

α−1 = −
∑

1≤j≤K
(−1)j (2hκ)j

(
K

K + j

)(
K + j

2j

)
,

β1 =
√

2h
∑

0≤j≤K−1

(−1)j(2h)j
(
K + j

2j + 1

)
,

β−1 =
√

2h
∑

0≤j≤K−1

(−1)j(2hκ)j
(
K + j

2j + 1

)
.

(25)

By a straightforward computation, the parameters in (25) satisfy the conditions of Proposition 1.

Lemma 15. Supposing η2 ≤ 1
κK2 , α1, α−1, β1, β−1 defined in (25) satisfy

|α−1| ≤
3

5
β2
−1κ, |α1| = O(|α−1|), β1 = O(β−1).

Proof. The proof follows since under η2 ≤ 1
10κK2 , all of the parameters in (25) are dominated by

their first summand. We will argue this for α−1 and β−1; the corresponding conclusions for α1 and
β1 follow analogously since κ ≥ 1. Define the summands of α−1 and β−1 by

cj := (−1)j+1(2hκ)j
(

K

K + j

)(
K + j

2j

)
, 1 ≤ j ≤ K,

dj :=
√

2h(−1)j(2hκ)j
(
K + j

2j + 1

)
, 0 ≤ j ≤ K − 1.

Then, we compute that for all 1 ≤ j ≤ K − 1, assuming 2hκK2 ≤ 1,

0 ≥ cj+1

cj
= (−2hκ)

(K + j)(K − j)
(2j + 2)(2j + 1)

≥ −2hκK2

12
≥ −0.1. (26)
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Similarly, for all 0 ≤ j ≤ K − 2,

0 ≥ dj+1

dj
= (−2hκ)

(K + j + 1)(K − j − 1)

(2j + 3)(2j + 2)
≥ −2hκK2

6
≥ −0.2. (27)

By repeating these calculations for α1 and β1, we see that all parameters are given by rapidly
decaying geometric sequences, and thus the conclusion follows by examination from

α1 ∈
[
0.8hK2, hK2

]
, α−1 ∈

[
0.8hκK2, hκK2

]
,

β1 ∈
[
0.8
√

2hK,
√

2hK
]
, β−1 ∈

[
0.8
√

2hK,
√

2hK
]
.

We obtain the following corollary by combining Lemma 15, Corollary 4, and Proposition 1.

Corollary 5. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2d
3κ and |x1| ≤ 5

√
log d, let (xK , vK) be the result of

the K-step HMC Markov chain with step size η =
√

2h with η2 ≤ 1
κK2 from x0 = x, and let A be

as in (7). Then with probability at least 1− d−5 over the randomness of v0 ∼ N (0, I), we have

H(x0, v0)−H(xK , vK) = −Ω
(
h2κ2K2d

)
.

Proof. It suffices to use the bounds on β−1 = Θ(
√
hK) shown in the proof of Lemma 15 and the

conclusions of Corollary 4 and Proposition 1.

6.2.2 Removing the constant gap

We show how to improve the bound in Corollary 5 to only require η2 ≤ π2

κK2 , which removes the
constant gap between the requirement of Corollary 5 and the bound in Proposition 4. First, let Ac

be the D × d diagonal matrix which induces the following hard quadratic function fhqc:

fhqc(x) :=
∑
i∈[d]

fi(xi), where fi(c) =


1
2c

2 i = 1
κ

2π2 c
2 2 ≤ i ≤ d− 1

κ
2 c

2 i = d

. (28)

In other words, along the first d− 1 coordinates, fhqc is the same as a d− 1-dimensional variant of
fhq with condition number κ

π2 . We define a coordinate partition of x and g into x1, x−1d, xd, and
g1, g−1d, gd, and we define α1, α−1d, αd, β1, β−1d, βd in analogy with (8).

We first note that because of separability of fhqc, and since the assumption of Corollary 5 holds on

the first d− 1 coordinates for η2 ≤ π2

κK2 , we can immediately obtain a bound on the change in the
Hamiltonian along these coordinates.

Corollary 6. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2π2d
3κ and |x1| ≤ 5

√
log d, let (xK , vK) be the result of

the K-step HMC Markov chain with step size η =
√

2h where η2 ≤ π2

κK2 from x0 = x, and let Ac be
as in (28). Then with probability at least 1− 2d−5 over the randomness of v0 ∼ N (0, I), we have

H
(

[x0][d−1] , [v0][d−1]

)
−H

(
[xK ][d−1] , [vK ][d−1]

)
= −Ω

(
h2κ2K2d

)
.

We now move to bounding the contribution of the last coordinate.
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Lemma 16. Let (y, vK) be the result of the K-step HMC Markov chain with step size η =
√

2h

where η2 ≤ π2

κK2 , and write yd = (1− αd)xd + βdgd, for

αd = −
∑

1≤j≤K
(−1)j(2hκ)j

(
K

K + j

)(
K + j

2j

)
, βd =

√
2h

∑
0≤j≤K−1

(−1)j(2hκ)j
(
K + j

2j + 1

)
.

Then, we have |αd| = O(hκK2), |βd| = O(
√
hK).

Proof. After the index j is a sufficiently large constant, the geometric argument sequence of
Lemma 15 applies (since the denominators of the ratios (26) and (27) grow with the index j);
before then, each coefficient is within a constant factor of the first in absolute value. Thus, the
coefficients can be at most a constant factor larger than the first in absolute value.

Lemma 17. Let |[x0]d| ≤ log d√
κ

, |[v0]d| ≤ log d, and let (xK , vK) be the result of the K-step HMC

Markov chain with step size η =
√

2h where η2 ≤ π2

κK2 . Then with probability at least 1− d−5 over
the randomness of v0 ∼ N (0, I), we have

H ([x0]d , [v0]d)−H ([xK ]d , [vK ]d) = o
(
h2κ2K2d

)
.

Proof. We can assume |[v0]d| = |gd| ≤ log d, which passes the high probability bound. By Corol-
lary 4 and Lemma 2, we wish to bound

hκ2

4

((
2αd − α2

d

)
x2
d − β2

dg
2
d − 2(1− αd)βdxdgd

)
= o

(
h2κ2K2d

)
.

Dropping all clearly negative terms, and since |αd| = O(1) by Lemma 16, it is enough to show∣∣hκ2αdx
2
d

∣∣ = o
(
h2κ2K2d

)
,
∣∣hκ2βdxdgd

∣∣ = o
(
h2κ2K2d

)
.

The first bound is immediate from assumptions. The second follows from assumptions as well since√
hκK2 is at most a constant, so

∣∣hκ2βdxdgd
∣∣ = O(h1.5κ1.5K log2 d) = O(h2κ2K2 log2 d).

By combining Lemma 17 and Corollary 6, we obtain the following strengthening of Corollary 5.

Corollary 7. Let x ∈ Rd satisfy ‖x−1d‖2 ≤
√

2d
3κ , |x1| ≤ 5

√
log d, and |xd| ≤ log d√

κ
, let (xK , vK) be

the result of the K-step HMC Markov chain with step size η =
√

2h with η2 ≤ π2

κK2 from x0 = x,
and let Ac be as in (28). Then with probability at least 1−d−5 over the randomness of v0 ∼ N (0, I),
we have

H(x0, v0)−H(xK , vK) = −Ω
(
h2κ2K2d

)
.

6.2.3 Ruling out η ≥ 1

Finally, we give a short argument ruling out the case η ≥ 1 not covered by Proposition 4. In this
section, let π∗ = N (0, κ−1I), with negative log-density f(x) = κ

2 ‖x‖
2
2. For η ≥ 1 and κ ≥ 10, (24)

and straightforward lower bounds on Chebyshev polynomials outside the range [−1, 1] demonstrate
the proposal distribution is of the form (from starting point x0 ∈ Rd)

xK ← αx0 + βv0, v0 ∼ N (0, 1), |α| ≥ 10, |β| ≥ 1. (29)
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Lemma 18. Letting (xK , vK) be the result of K-step HMC from any x0, and f(x) = κ
2 ‖x‖

2
2, for

η ≥ 1, with probability at least 1− d−5 over the randomness of v0 ∼ N (0, I), we have

H(x0, v0)−H(xK , vK) = −Ω(d).

Proof. Following notation (29) and applying Corollary 4, it suffices to show

‖x0‖22 − ‖αx0 + βv0‖22 = −Ω(d).

Expanding, it suffices to upper bound(
1− α2

)
‖x0‖22 − 2αβ 〈x0, v0〉 − β2 ‖v0‖22 .

With probability at least 1− d−5, Fact 2 shows ‖v0‖22 ≥
1
2d and 〈x0, v0〉 ≥ −4

√
log d ‖x0‖2. Hence,

(
1− α2

)
‖x0‖22 − 2αβ 〈x0, v0〉 − β2 ‖v0‖22 ≤ −0.99α2 ‖x0‖22 + 8αβ

√
log d ‖x0‖2 −

β2

2
d

≤ 20β2 log d− β2

2
d = −Ω(d).

Here, we used that α2 ≥ 100 and took d larger than a sufficiently large constant.

6.2.4 Proof of Theorem 4

A consequence of Corollary 5 is that if the step size h = ω(
√

log d

κK
√
d
), initializing the chain from any

x0 in the set Ω defined in (12) leads to a polynomially bad mixing time. We further relate the step
size to the spectral gap of the HMC Markov chain in the following.

Lemma 19. The spectral gap of the K-step HMC Markov chain for sampling from the density
proportional to exp(−fhq), where fhq is defined in (7), is O(hK2 + h2K4).

Proof. We follow the proof of Lemma 1; again let g(x) = x1, and π∗ be the stationary distribution.
For our function f , it is clear again that Varπ∗ [g] = Θ(1). Thus it suffices to upper bound E(g, g):
letting Px(y) be the proposal distribution of K-step HMC, and α1, β1 be as in (25),

E(g, g) ≤ 1

2

∫∫
(x1 − y1)2Px(y)dπ∗(x)dy

≤ Ex∼π∗
[
α2

1x
2
1

]
+ Eξ∼N (0,1)

[
β2

1ξ
2
]

= α2
1 + β2

1 = O
(
hK2 + h2K4

)
.

Finally, by combining Lemma 19 and Corollary 7, we arrive at the main result of this section.

Theorem 4. For every step size and count, there is a target Gaussian on Rd whose negative log-

density always has Hessian eigenvalues in [1, κ], such that the relaxation time of HMC is Ω( κ
√
d

K
√

log d
).

Proof. For 1 ≥ η2 ≥ π2

κK2 it suffices to apply Proposition 4. For η2 ≥ 1, we apply Lemma 18.
Otherwise, in the relevant range of h = 2η2 , the dominant term in Lemma 19 is O(hK2). Applying
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Corollary 7 with the hard quadratic function fhqc, the remainder of the proof follows analogously
to that of Theorem 1.

We remark that as in Theorem 1, it is straightforward to see that the measure of the bad region

‖x−1d‖2 ≤
√

2d
3κ , |x1| ≤ 5

√
log d, and |xd| ≤ log d√

κ
used in the proof is at least exp(−d).

7 Conclusion

In this work, we presented relaxation time lower bounds for the MALA and HMC Markov chains
at every step size and scale, as well as a mixing time bound for MALA from an exponentially warm
start. We highlight in this section a number of unexplored directions left open by our work, beyond
direct strengthenings of our results, which we find interesting and defer to a future exploration.

Variable or random step sizes. Our lower bounds were for MALA and HMC Markov chains
with a fixed step size. For variable step sizes which take e.g. values in a bounded multiplicative range,
we believe our arguments can be modified to give relaxation time lower bounds for the resulting
Markov chains. However, the arguments of Section 6 (our HMC lower bound) are particularly
brittle to large multiplicative ranges of candidate step sizes, because they rely on the locations of
Chebyshev polynomial zeroes, which only occur in a bounded range. From an algorithm design
perspective, this suggests that adaptively or randomly choosing step size ranges may be effective
in improving the performance of HMC. Such a result would also give theoretical justification to
the No-U-Turn sampler of [HG14], a common HMC alternative in practice. We state as an explicit
open problem: can one obtain improved upper bounds, such as a

√
κ dependence or a dimension-

independent rate, for example by using variations of these strategies (variable step sizes)?

Necessity of κ lower bound. All of our witness sets throughout the paper are exp(−d) sized.
It was observed in [DCWY18] that it is possible to construct a starting distribution with warmness

arbitrarily close to
√
κ
d
; the marginal restriction of our witness set falls under this warmness bound

for all κ ≥ e2 ≈ 8. However, recently [LST20b] proposed a proximal point reduction approach to
sampling, which (for mixing bounds scaling at least linearly in κ) shows that it suffices to sample
a small number of regularized distributions, whose condition numbers are arbitrarily close to 1.

By adjusting constants, we can modify the proof of the Gaussian lower bounds (Theorems 1 and 4)
to have witness sets with measure cd for a constant c arbitrarily close to 1 (the bottleneck being
Lemma 4). However, our witness set for the family of hard distributions in Section 4 encounters a
natural barrier at measure 2d, since the set is sign-restricted by the cosine function (and hence can
only contain roughly every other period). This bottleneck is encountered in the proof of Lemma 9.
We find it interesting to see if a stronger construction rules out the existing warm starts for all
κ ≥ 1, or if an upper bound can take advantage of the reduction of [LST20b] to obtain improved
dependences on dimension assuming κ ≈ 1.
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A Necessity of fixing a scale

We give a simple argument showing if the step size η of the HMC algorithm does not depend on
the “scale” of the problem, namely the eigenvalues of the function Hessian (as opposed to scale-
invariant quantities, e.g. the condition number κ and the dimension), then the task of proving lower
bounds becomes much more trivial. In particular, we can adaptively pick a scale of the problem in
response to the fixed η. This justifies the additional requirement in Theorems 1, 2, 3 and 4 of the
fixed scale [1, κ], which we remark is a strengthening of an analogous scale-free lower bound.

Concretely, suppose we wished to prove the statement of Theorem 4 but only on functions with
condition number κ (without specifying a range of eigenvalues). Then, for fixed η, K, consider

f(x) =
λ

2
x2, where λ :=

2
(
1− cos

(
π
K

))
η2

.

Clearly, f : R→ R has condition number 1 ≤ κ for any κ. Then, the proof of Proposition 4 applies
to show that the HMC Markov chain cannot leave any symmetric set, because the coefficients
encounter extremal points or zeroes of the Chebyshev polynomials.

B HMC lower bounds beyond κ
√
d

Here, we analyze the behavior of HMC on the hard function (20). We will use this construction to
demonstrate that when the number of steps K is small, we cannot improve either the relaxation
time (Section B.1) or the mixing time (Section B.2) of MALA by more than roughly a O(K) factor.

B.1 Relaxation time lower bound for small K

We first give a bound on the acceptance probability (6) for general HMC Markov chain. We expand
the term −H(xK , vK) +H(x0, v0) and extend the result given by Lemma 12.

Lemma 20. For the iterates given by Fact 4, write x̃j := x0 + ηjv0 for 0 ≤ j ≤ K − 1. Then, for
a κ-smooth function f ,

−H(xK , vK) +H(x0, v0) ≤
K−1∑
j=0

(
−f(x̃j+1) + f(x̃j) +

1

2
〈ηv0,∇f(x̃j+1) +∇f(x̃j)〉

)
+ηK ‖v0‖2 max

0≤j≤K
‖∇f(xj)−∇f(x̃j)‖2 +

1

2
η2K2 max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2

+
1

2
η2K2 max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2 .
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Proof. Expanding H (x0, v0)−H (xK , vK) according to the definition of H, xK and vK ,

H (x0, v0)−H (xK , vK)

=− f(xK) + f(x0)−

∥∥∥v0 − η
2∇f(x0)− η

∑K−1
j=1 ∇f(xj)− η

2∇f(xK)
∥∥∥2

2

2
+
‖v0‖22

2

=− f(xK) + f(x̃K)− f(x̃K) + f(x0) +

〈
v0,

η

2
∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

〉

− 1

2

∥∥∥∥∥∥η2∇f(x0) + η
K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

=− f(xK) + f(x̃K) +
K−1∑
j=0

(−f(x̃j+1) + f(x̃j)) +

〈
ηv0,

1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉

− 1

2

∥∥∥∥∥∥η2∇f(x0) + η
K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

+

〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉

=
K−1∑
j=0

(
−f(x̃j+1) + f(x̃j) +

1

2
〈ηv0,∇f(x̃j+1) +∇f(x̃j)〉

)

− f(xK) + f(x̃K)− 1

2

∥∥∥∥∥∥η2∇f(x0) + η
K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

+

〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉 .
(30)

Now we bound the last two lines in the decomposition (30). For the second-to-last line of (30), by
convexity of f and the Cauchy-Schwarz inequality,

− f(xK) + f(x̃K)− 1

2

∥∥∥∥∥∥η2∇f(x0) + η
K−1∑
j=1

∇f(xj)−
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

≤

〈
∇f(x̃K),

1

2
Kη2∇f(x0) + η2

K−1∑
j=1

(K − j)∇f(xj)

〉
− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

≤1

2
η2K2 max

0≤j1,j2,j3≤K

(
∇f(x̃K)>∇f(xj1)−∇f(xj2)>∇f(xj3)

)
≤1

2
η2K2

(
max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2 + max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2

)
.

(31)
In the third line above, we used that the total “number of gradient inner products” for both terms
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is 1
2η

2K2, and took the largest such inner product difference.

Finally, for the last line of (30), by the Cauchy-Schwarz inequality,〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉
≤ηK ‖v0‖2 max

0≤j≤K
‖∇f(xj)−∇f(x̃j)‖2 .

(32)
Combining (30), (31) and (32) proves the desired claim.

We define a hard function fhard : Rd → R that is κ-smooth and 1-strongly convex (note it is the

same hard function as in Section 6, under the change of variable h = η2

2 ). We will show it is hard
to sample from the density proportional to exp(−fhard) when K is small.

fhard(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

{
1
2c

2 i = 1
κ
3 c

2 − κη2

6 cos
(√

2c
η

)
2 ≤ i ≤ d

. (33)

Lemma 21. For η2 ≤ 1, let x̃j := x0 + ηjv0 for 0 ≤ j ≤ K − 1 and v0 ∼ N (0, I). Let R(j) be the

random variable with given by R(j) =
∑d

i=1R
(j)
i where

R
(j)
i = −fi([x̃j+1]i) + fi([x̃j ]i) +

1

2
η[v0]i · (∇fi([x̃j+1]i) +∇fi([x̃j ]i)).

Then,

Ev0∼N (0,1)

K−1∑
j=0

R(j)

 ≤ −0.02κη2
d∑
i=2

cos

√
2[x0]i
η

. (34)

and

Pr

K−1∑
j=0

R(j) − E

K−1∑
j=0

R(j)

 ≥ 10η2Kκ
√
d log d

 ≤ 1

d5
. (35)

Proof. In this proof, all expectations E are taken over v0 ∼ N (0, I), so we omit them. For i = 1,

E

K−1∑
j=0

R
(j)
i

 = E

−1

2
([x0]1 + ηK[v0]1)2 +

1

2
[x0]21 +

1

2

K−1∑
j=0

η[v0]1(2[x0]1 + η(2j + 1)[v0]1)


= E

[
−1

2
[x0]21 −

1

2
η2K2[v0]21 − ηK[x0]1[v0]1 +

1

2
[x0]21 +

1

2
η2K2[v0]21 + ηK[x0]1[v0]1

]
= 0.
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We bound each coordinate 2 ≤ i ≤ d separately.

E

K−1∑
j=0

R
(j)
i


=E

K−1∑
j=0

−fi([x̃j+1]i) + fi([x̃j ]i) +
1

2
η[v0]i · (∇fi([x̃j+1]i) +∇fi([x̃j ]i))


=− κ

3
E
[
([x0]i + ηK[v0]i)

2 − [x0]2i

]
+

1

3
ηκE

[v0]i ·

2[x0]i + η
K−1∑
j=0

(2j + 1)[v0]i


+
κη2

6
E

K−1∑
j=0

cos

√
2 ([x0]i + η(j + 1)[v0]i)

η
− cos

√
2 ([x0]i + ηj[v0]i)

η


+

√
2η2κ

12
E

[v0]i

K−1∑
j=0

(
sin

√
2 ([x0]i + ηj[v0]i)

η
+ sin

√
2 ([x0]i + η(j + 1)[v0]i)

η

)
=− κη2

6

K−1∑
j=0

exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2) cos

√
2[x0]i
η

The last line used the computation

E

[
[v0]i sin

√
2 ([x0]i + ηj[v0]i)

η

]
=
√

2jexp(−j2) cos

√
2[x0]i
η

,

E

[
cos

√
2 ([x0]i + ηj[v0]i)

η

]
= exp(−j2) cos

√
2[x0]i
η

.

Next, we bound
∑K−1

j=0

(
exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
. For

j = 0, 1 − 2
exp(1) ≥ 0.264. For j = 1, the negative terms have −3 exp(−4) ≥ −0.06, and the

positive terms can only help this inequality. For the remaining terms,

K−1∑
j=2

(
exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
≥

K−1∑
j=2

(
−j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
≥ −2

K∑
j=2

(
j exp(−j2)

)
≥ −2

2

exp(4)

1

1− 2 exp(−5)
≥ −0.075.

The last inequality used the ratio between two consecutive terms is bounded by j+1
j exp(j2 − (j +

1)2) ≤ 2 exp(−5). Summing over d coordinates proves (34).

Next, we prove the concentration property of
∑K−1

j=0 R(j). Let x̃j,s = x̃j + sηv0, for s ∈ [0, 1] and
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j = 0, ...,K − 1. By Lemma 6, we have

K−1∑
j=0

R(j) =

K−1∑
j=0

−η2

∫ 1

0

(
1

2
− s
)
v>0 ∇2f(x̃j,s)v0ds.

For coordinate 1 ≤ i ≤ d,
∣∣∣η2
∫ 1

0

(
1
2 − s

)
f ′′i ([xj,s]i)ds

∣∣∣ ≤ η2κ
2 by smoothness. Then, the random

variables
∑K−1

j=0 R
(j)
i − E

[∑K−1
j=0 R

(j)
i

]
for 1 ≤ i ≤ d are sub-exponential with parameter η2κK

2 (for

coordinates where the coefficient is negative, note the negation of a sub-exponential random variable
is still sub-exponential). Hence, by Fact 3,

Pr

∑
i∈[d]

(
K−1∑
k=0

R
(j)
i − E

[
K−1∑
k=0

R
(j)
i

])
≥ 10η2Kκ

√
d log d

 ≤ 1

d5
.

Now, we build a bad set Ωhard with lower bounded measure that starting from a point x0 ∈ Ωhard,

such that with high probability, −E
[∑K−1

j=0 R(j)
]

is very negative. Let h = 1
2η

2 so that we may use

the results from Section 4. We use the bad set Ωhard defined in (21).

Ωhard =

{
x
∣∣∣ |x1| ≤ 2, ∀2 ≤ i ≤ d,∃ki ∈ Z, |ki| ≤

⌊
5

π
√
hκ

⌋
, such that

− 9

20
π
√
h+ 2πki

√
h ≤ xi ≤

9

20
π
√
h+ 2πki

√
h

}
.

We restate Lemma 9 here, which lower bounds π∗(Ωhard) and bounds ‖∇f(x)‖2 for x ∈ Ωhard.

Lemma 9. Let h ≤ 1
10000π2κ

. Let π∗ have log-density −fhard (20). Then, π∗(Ωhard) ≥ exp(−d).

Moreover, for all x ∈ Ωhard, ‖∇f(x)‖2 ≤ 10
√
κd.

We can further show the following, which is used to bound the remaining terms in Lemma 20.

Lemma 22. Let x0 ∈ Ωhard, ηK ≤ 1
100
√
κ log d

and d ≥ 8. Let let xj for 1 ≤ j ≤ K − 1 be given by

the iterates in Fact 4 and x̃K = x0 + ηKv0.Then, with probability at least 1− 1
d5

over random v0 ∼
N (0, I), ‖v0‖2 ≤ 4

√
d log d and for all 0 ≤ j ≤ K, ‖∇f(xj)‖2 ≤ 11

√
κd and ‖∇f(x̃K)‖2 ≤ 11

√
κd.

Proof. We first derive a bound on v0 ∼ N (0, I). By a standard Gaussian tail bound, for d ≥ 8,
with probability at least 1 − 1

d5
, |[v0]i| ≤ 4 log d for all 1 ≤ i ≤ d. Then, ‖v0‖2 ≤

√
16d(log d)2 =

4
√
d log d. Now, we prove the bound on ‖xj − x0‖2 and ‖∇f(xj)‖2 using induction. First, ‖∇f(x0)‖ ≤

11
√
dκ holds by Lemma 9. Assume for induction ‖∇f(xk)‖2 ≤ 11

√
dκ for 1 ≤ k < j. Then,

‖xj − x0‖2 ≤

∥∥∥∥∥ηjv0 −
η2j

2
∇f(x0)− η2

j−1∑
k=1

(j − k)∇f(xk)

∥∥∥∥∥
2

≤ 4ηj
√
d log d+ η2j2 · 11

√
κd ≤

√
d

κ
.
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The last inequality used the assumption ηK ≤ 1
100
√
κ log d

. Since f is κ-smooth, we have

‖∇f(xj)‖2 ≤ ‖∇f(x0)‖2 + κ ‖xj − x0‖2 ≤ 10
√
κd+ κ

√
d

κ
≤ 11

√
κd.

This completes the induction step. Finally, we have

‖∇f(x̃K)‖2 ≤ ‖∇f(x0)‖2 + κ ‖ηKv0‖2 ≤ 10
√
κd+ 4ηKκ

√
d log d ≤ 11

√
κd,

where we used ηK ≤ 1
100
√
κ log d

.

Lemma 23. Let η and K satisfy K ≤
√
d

10000
√

log d
, and ηK3 ≤ 1

100000
√
κ log d

. For any x0 ∈ Ωhard,

let (xK , vK) be given by the iterates in Fact 4 and v0 ∼ N (0, I). With probability at least 1− 2
d5

,

−H(xK , vK) +H(x0, v0) ≤ −Ω
(
η2κd

)
.

Proof. We first remark that the bound on ηK3 implies we may apply Lemma 9 and Lemma 22.

Next, for x0 ∈ Ωhard, cos
√

2[x0]i
η is bounded away from 0 for all 2 ≤ i ≤ d. By Lemma 21, when

K ≤
√
d

10000
√

log d
, with probability at least 1 − 1

d5
,
∑K−1

j=0 R(j) ≤ −0.002η2κd (the expectation term

dominates). By Lemma 22, with probability at least 1− 1
d5

, the other terms in Lemma 20 have

ηK ‖v0‖2 max
0≤j≤K

‖∇f(xj)−∇f(x̃j)‖2 +
1

2
η2K2 max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2

+
1

2
η2K2 max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2

≤ 4ηK
√
d log d · κη2

K ‖∇f(x0)‖2 +
∑

j∈[K−1]

(K − j) ‖∇f(xj)‖2


+η2K2 · 11

√
κd · κ

ηK ‖v0‖2 + η2K ‖∇f(x0)‖2 + η2
∑

j∈[K−1]

(K − j) ‖∇f(xj)‖2


≤ 44η3K3κ1.5d log d+ 44η3K3κ1.5d log d+ 121η4K4κ2d ≤ 0.001η2κd.

The last inequality used the assumption η ≤ 1
100000K3

√
κ log d

. Combining the above bounds with

Lemma 20 yields the claim.

Proposition 5. For η2K = O
(√

log d

κ
√
d

)
and K = O

(
d0.099

)
, there is a target density on Rd whose

negative log-density is κ smooth, such that relaxation time of HMC is Ω
(
κd
K2

)
.

Proof. It is straightforward to check that such a range of η and K satisfies the assumptions of
Lemma 23. Applying Lemma 23 with the hard function fhard, the remainder of the proof follows
analogously to that of Theorem 4.

We give a brief discussion of the implications of Proposition 5. For η2K = ω(
√

log d

κ
√
d

), the proof of

Theorem 4 rules out a polynomial relaxation time. In the remaining range, Proposition 5 implies
that for small K = O

(
d0.099

)
, the most we can improve the relaxation time of MALA (Theorem 2)
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by taking multiple steps in HMC is by a K2 factor. Since each iteration takes K gradients, this is
roughly an improvement of K in the query complexity, and strengthens Theorem 4 for small K.

B.2 Mixing time lower bound for small K

In this section, we first use prior results to narrow down the range of η we consider (assuming K is
small). We then generalize the ideas of Section 5, our MALA mixing lower bound, to this setting.

Mixing time lower bound for large η. Suppose K = O
(
d0.099

)
throughout this section. The

arguments of Section 6, specifically Proposition 4 and Lemma 18, imply mixing time lower bounds
for all ηK = Ω( 1√

κ
) (using the “boosting constants” argument of Section 6.2.2 for sufficiently large

κ as necessary). For ηK = O( 1√
κ

), the proof of Theorem 4 further implies mixing time lower

bounds for all η2K = ω(
√

log d

κ
√
d

). Hence, we can assume ηK = O( 1√
κ

) and η2K = O(
√

log d

κ
√
d

).

Next, under the further assumption that K = O
(
d0.099

)
, it is easy to check under the specified

assumptions on η and K, the preconditions of Lemma 23 are met. This implies that we can rule
out η2 = ω( log d

κd ) for polynomial-time mixing. Thus, in the following discussion we assume

K = O
(
d0.099

)
, η2 = O

(
log d

κd

)
. (36)

Mixing time lower bound for small η. Let π∗ = N (0, I) be the standard d-dimensional
multivariate Gaussian. We will let π0 be the marginal distribution of π∗ on the set

Ω :=

{
x | ‖x‖22 ≤

1

2
d

}
.

Recall from Lemma 4 that π0 is a exp(d)-warm start. Our main proof strategy will be to show that
for small η and K as in (36), after T = O( κd

K2 log3 d
) iterations, with constant probability both of

the following events happen: no rejections occur throughout the Markov chain, and ‖xt,K‖22 ≤
9
10d

holds for all t ∈ [T ]. Combining these two facts will demonstrate our total variation lower bound.

Lemma 24. Let {xt,k, vt,k}0≤t<T,0≤k≤K be the sub-iterates generated by the HMC Markov chain

with step size η2 = O
(

log d
κd

)
and η2K2 ≤ 1, for T = O( κd

K2 log3 d
) and x0 ∼ π0; we denote the actual

HMC iterates by {xt}0≤t<T . With probability at least 99
100 , both of the following events occur:

1. Throughout the Markov chain, ‖xt‖2 ≤ 0.9
√
d.

2. Throughout the Markov chain, the Metropolis filter never rejected.

Proof. Let h = 1
2η

2. We inductively bound the failure probability of the above events in every
iteration by 0.01

T , which will yield the claim via a union bound. Take some iteration t+ 1, and note
that by triangle inequality, and assuming all prior iterations did not reject,

‖xt+1,K‖2 ≤ ‖x0,0‖2 + ηK

∥∥∥∥∥
t∑

s=0

vs,0

∥∥∥∥∥+ η2K
t∑

s=0

K∑
k=1

‖xs,k‖2 ≤ ‖x0,0‖2 + 0.9η2K2T
√
d+ ηK ‖Gt‖2

≤ 0.8
√
d+ ηK ‖Gt‖2 .

Here, we applied the inductive hypothesis on all ‖xs,k‖2, the initial bound ‖x0,0‖2 ≤
√

1
2d, and
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that η2K2T = o(1) by assumption. We also defined Gt =
∑t

s=0 vt,0, where vt,0 is the random
Gaussian used by HMC in iteration k; note that by independence, Gt ∼ N (0, t + 1). By Fact 2,
with probability at least 1

200T , ‖Gt‖2 ≤ 2
√
Td, and hence 0.8

√
d+ ηK ‖Gt‖2 ≤ 0.9

√
d, as desired.

Next, we prove that with probability ≥ 1− 1
200T , step t does not reject. This concludes the proof

by union bounding over both events in iteration t, and then union bounding over all iterations. By
Corollary 4 and the calculation in Lemma 15, when η2K2 ≤ 1, the accept probability is

min

(
1, exp

(
h

4

((
2α− α2

)
‖xt,0‖22 − β

2 ‖vt,0‖22 − 2(1− α)β 〈xt,0, vt,0〉
)))

,

for some α ∈
[
0.8hK2, hK2

]
and β ∈

[
0.8
√

2hK,
√

2hK
]
. We lower bound the argument of the

exponential as follows. With probability at least 1− d−5 ≥ 1− 1
400T , Facts 1 and 2 imply both of

the events ‖vt,0‖22 ≤ 2d and 〈xt,0, vt,0〉 ≤ 10
√

log d ‖xt,0‖2 occur. Conditional on these bounds, we

compute (using 2α ≥ α2 and the assumption ‖xt‖2 ≤ 0.9
√
d)(

2α− α2
)
‖xt,0‖22 − β

2 ‖g‖22 − 2(1− α)β 〈xt,0, g〉 ≥ −4hK2d− 40
√
hK
√
d log d ≥ −O(K2 log d).

Hence, the acceptance probability is at least

exp
(
−O

(
η2K2 log d

))
≥ 1− 1

400T
,

by our choice of T with Tη2K2 log d = o(1), concluding the proof.

Proposition 6. The HMC Markov chain with step size η2 = O
(

log d
κd

)
and η2K2 ≤ 1 requires

Ω( κd
K2 log3 d

) iterations to reach total variation distance 1
e to π∗, starting from π0.

Proof. The proof is identical to Proposition 3, where we use Lemma 24 instead of Lemma 11.
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