Versatile Multi-stage Graph Neural Network for
Circuit Representation (Appendix)

Shuwen Yang Zhihao Yang
School of Intelligence Science and Technology School of Software and Microelectronics
Peking University Peking University
swyang@pku.edu.cn zhihaoyang@stu.pku.edu.cn
Dong Li Yingxue Zhang
Huawei Noah’s Ark Lab Huawei Noah’s Ark Lab
lidongl06@huawei.com yingxue.zhang@huawei.com
Zhanguang Zhang

Huawei Noah’s Ark Lab
zhanguang.zhang@huawei.com

Guojie Song* Jianye HAO*
School of Intelligence Science and Technology Huawei Noah’s Ark Lab
Peking University haojianye@huawei.com

gjsong@pku.edu.cn

A Featurization

The featurization of grid, cell, net and pin is shown in Tab[T|2|3|]

Table 1: Grid Features
Name Type Description

net density R? the density of nets in each grid (horizontally and vertically) [1]]
pin density R the density of pins in each grid [1]]
node density R the density of cells in each grid [[1]]

Table 2: Cell Features
Name Type Description

size R? width & height of the cell
degree N # of nets connected with the cell

When conducting experiments on circuits in placement stage, grid features in Tab[I] are borrowed to
supply node features by assigning each node with the features of the grid it’s located in.

*Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 3: Net Features
Name Type Description

degree N # of cells connected with the net
span N2 # of grids the net covers horizontally and vertically [2]

Note that the feature span is only available in placement stage.

Table 4: Pin Features
Name Type Description

pin offset R2 the offset position of the cell (horizontally and vertically)
signal direction 0/1 this pin input/output signal to the cell

B Graphization of Circuit Design

B.1 Graphize Geometrical Information

For circuit designs in placement stage, a universal solution of graphizing geometry is to link the
cell-pairs whose distances are lower than a threshold ¢ [3]]:

€= {(i.0)li. € VA Bali] — Bolil)? + Byli] - B, 11)? < 6}
ﬁx:Pa;-FSI/Q ﬁy:py+sy/2

ey

where (p,[i], py[i]) is the position of i-th cell’s center, and s, s, are the width/height of cells.
However, the time cost of this solution is O(|V|?) and makes it unpractical for very large circuits
with millions of cells and nets.

To accelerate the geometry graphization, we cut the circuit into windows with size (w,, w,), scatter
the cells into the windows and link the cells appearing in the same window, as it shows in Fig[I] Note
that every cell has its 2D structure and may appear in multiple windows e.g. cell 4 in Fig[T[b).

5 5
1 1
A 4
2 3 23 5
H H 1
(b) cut the circuit (c) window shifted
with windows horizontally 4
— B 5 2 3
1 1
(a) cells in circuit _— (f) graph with
4 4 geom-edges
.......) 3 g 3

(d) window shifted (e) window shifted
vertically diagonally

Figure 1: Link the adjacent cells by scattering them into shift windows.

However, it is still possible that two adjacent cells are incidentally split into different windows and
can’t get linked e.g. cell 2 and 3 in Figb). To avoid this, we shift the windows by w,, /2 horizontally
or wy /2 vertically and add new links (see Figc)(d)(e)). Finally, as it shows in Figf), we get
geom-edges Eg:

Ec ={(1,7)|i,5 € V Ai,j appear in the same window} 2)

& is actually a sampling of the cell-pairs with distance lower than 6 = | /w2 + wg, and the possibility

of being sampled is inversely proportional to their distance. However, the time consumption of
constructing &g is still O(|V|?/ |W|) To further lower the consumption, for every cell i, we only
link it to at most c others appearing in the same window and produce an £, C £¢ to substitute Eg.
As ¢ is a constant, the time cost of constructing £ is O(|V|) (see proof in Appendix[B.2). To further
enhance the information in geom-edges, we store the cell-pair distances as raw features in .

To show the robustness of our geometry graphization method, we test the sensitivity of window size
(wg, wy) and link capacity ¢ in Sec[C]

B.2 Time Consumption

Inside a circuit design, despite of several “macros” occupying the margins, most cells are not big
enough to appear in multiple windows in Fig[I] and they are normally distributed to the windows

to avoid placement conflicts [4]. Therefore, we assume that the average number of cells appear in a
window is |V|/|W)|. The time consumption of constructing £, is 4|WV| - (% -c) =4clV| = O(|V)).

Moreover, the time costs of constructing V,U, Er are O(|V|), O(JU]), O(|P|) respectively, so we
can produce circuit graph G in O(|V| + |U| + | P)).

C Parameter Sensitivity Experiment

Table 5: Congestion prediction result in placement stage under different window size (w, wy)

Time Cell-level Grid-level
(s/epoch)

(wmwy)
pearson spearman kendall pearson spearman kendall

(8,10) 28.46 0.889 0.721 0.584 0.692 0.742 0.549
(16,20) 27.85 0.889 0.729 0.591 0.694 0.740 0.547
(32,40) 27.07 0.887 0.714 0.575 0.697 0.770 0.577

(64,80) 23.96 0.888 0.717 0.578 0.698 0.762 0.570
(128,160) 25.06 0.888 0.724 0.584 0.694 0.758 0.564

Table 6: Congestion prediction result in placement stage under different link capacity ¢

Time Cell-level Grid-level
(s/epoch)

pearson spearman kendall pearson spearman kendall

2 23.97 0.889 0.724 0.586 0.695 0.742 0.549
5 27.07 0.887 0.714 0.575 0.697 0.770 0.577
10 29.15 0.881 0.707 0.569 0.694 0.762 0.566
20 30.96 0.889 0.725 0.587 0.697 0.745 0.552

We test the sensitivity of window size (w,,, w,) and link capacity c, as it shows in Tab and Tab@
The results indicate that the choice of these hyper-parameters has little influence on the model’s
function, so the robustness of Circuit GNN is claimed.

2|W)| is the average # of windows after splitting the circuit.

D Model Sensitivity Experiment

D.1 Message Function

£ &

The choice of @%S_TW and @%S_TW On the one hand, there are usually more geom-edges than
topo-edges in Circuit Graph (3.4M geom-edges and 1.9M topo-edges in superbluel9), so we use
edge-weight summation rather than inner product, which is Fy, (hidden dimension of net) times
more expansive in computation. On the other hand, it is also reasonable for geom-edges to use
edge-weight summation because geometrically closer cells have a stronger relationship. Still, we test
the performance when topo-edges use edge-weight summation (topo. e.) or geom-edges use inner
product (geom. i.):

Table 7: Result of exchanging topological and geometrical message functions.

Time Node-level Grid-level
(s/epoch)

Baseline

pearson spearman kendall pearson spearman kendall

topo. e. 25.35 0.886 0.707 0.570 0.694 0.743 0.552
geom. i. 37.71 0.886 0.717 0.579 0.689 0.734 0.542
Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577

D.2 Information Fusing Strategy

We hope to keep most of the informative values when fusing the topological and geometrical
information, while sum-pooling and mean-pooling may revise them. Concatenation is not considered
because we hope to keep the same hidden dimension in each layer. The results below show that
using sum-pooling and mean-pooling has worse spearman & kendall (Grid-level) and only marginal
improvement in other metrics:

Table 8: Result of different information fusing functions.

Time Node-level Grid-level
(s/epoch)

Baseline

pearson spearman kendall pearson spearman kendall

Ours (sum pool) 29.00 0.887 0.717 0.580 0.699 0.756 0.564
Ours (mean pool) 29.38 0.888 0.715 0.577 0.697 0.755 0.563
Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577

D.3 Readout Representation

We concatenate the raw features to enrich the representations. The results below show that excluding
raw features only causes a marginal performance drop:

Table 9: Result of removing raw features in readout representation.

Time Node-level Grid-level
(s/epoch)

Baseline

pearson spearman kendall pearson spearman kendall

Ours (w/o. raw feat.) 27.45 0.892 0.713 0.574 0.697 0.759 0.567
Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577

D.4 Position Encoding

Directly encoding the cell positions as features leads to very bad generalization because raw 3D
positions do not satisfy translation and rotation invariances[S]]. Here are the results: (Ours (pos.

encode) is the modification we made which encodes the cell positions into node features instead of
using geom-edges.)

Table 10: Result of using direct position encoding and geom-edges.

Time Node-level Grid-level
(s/epoch)

Baseline

pearson spearman kendall pearson spearman kendall

GAT 13.90 0.777 0.267 0.200 0.215 0.399 0.280
GAT (pos. encode) 16.21 0.777 0.263 0.197 0.210 0.397 0.279
Ours (w/o. geom.) 21.62 0.779 0.289 0.217 0.315 0.468 0.329
Ours (pos. encode) 22.55 0.766 0.328 0.292 0.228 0.475 0.411
Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577

E Additional Experiment Tables

Table 11: Net wirelength prediction in logic synthesis stage (] means “lower is better”)

Baseline Time (s/epcoh) pearson spearman kendall MAE] RMSE]|
MLP 2.16 0.150 0.192 0.096 0.633 0.854
Net* 15.29 0.225 0.362 0.248 0.606 0.830
Net?? 16.75 0.172 0.227 0.153 0.614 0.821
Ours (w/o. geom.) 15.66 0.484 0.547 0418 0.619 0.821

Table 12: Congestion prediction result in placement stage (in precision, recall and F1-score)

Time Cell-level Grid-level
(s/epoch)

Baseline

precision recall Fl-score precision recall Fl-score

GAT (w. geom.) 16.21 0.718 1.000 0.836 0.669 1.000 0.802
pix2pix 4.46 - - - 0.695 0.996 0.814
LHNN 305.47 - - - 0.807 0.907 0.855

Ours (w/o. topo.) 21.54 0.876 0.899 0.879 0.865 0.851 0.860

Ours 27.07 0.884 0.900 0.892 0.887 0.857 0.872

F Number of Parameters and Inference Time

The # of parameters and inference time on superbluel9 are listed below:

Table 13: # of parameters and inference time on congestion prediction in logic synthesis stage.

Model GCN GraphSAGE GAT CongestionNet Ours (w/o geom.)
parameter 205K 204K 205K 280K 426K
Inference Time (s) 2.74 2.69 3.18 2.99 3.09

Table 14: # of parameters and inference time on congestion prediction in placement stage.
Model pix2pix LHNN Ours

parameter 992K 54K 480K
Inference Time (s) 0.35 65.21 4.09

Table 15: # of parameters and inference time on wirelength prediction in logic synthesis stage.

Model MLP Net* Net?® Ours (w/o geom.)
parameter 4K 12K 37K 642K
Inference Time (s) 0.45 0.69 1.35 1.61

Table 16: # of parameters and inference time on wirelength prediction in placement stage.
Model MLP Net* Net?*® LHNN Ours

parameter 4K 13K 39K 54K 694K
Inference Time (s) 0.6 1.13 2.39 21.41 3.51

When working on superbluel9, DREAMPIlace spends around 285s to output congestion and wire-
length from netlist input, where it takes 226.2s to produce placement result of superbluel9, 55.2s to
output congestion and 3.63 to calculate wirelength, respectively.

References

[1] Mohamed Baker Alawieh, Wuxi Li, Yibo Lin, Love Singhal, Mahesh A. Iyer, and David Z. Pan.
High-definition routing congestion prediction for large-scale fpgas. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 26-31, 2020.

[2] Bowen Wang, Guibao Shen, Dong Li, Jianye Hao, Wulong Liu, Yu Huang, Hongzhong Wu, Yibo
Lin, Guangyong Chen, and Pheng Ann Heng. Lhnn: Lattice hypergraph neural network for vlsi
congestion prediction, 2022.

[3] Tong Xia, Junjie Lin, Yong Li, Jie Feng, Pan Hui, Funing Sun, Diansheng Guo, and Depeng Jin.
3dgcn: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction.
ACM Trans. Knowl. Discov. Data, 15(6), jun 2021.

[4] A. Mirhoseini, A. Goldie, M. Yazgan, and J. Jiang. A graph placement methodology for fast chip
design. In Nature 594, page 207-212, 2021.

[5] Shuwen Yang, Ziyao Li, Guojie Song, and Lingsheng Cai. Deep molecular representation learning
via fusing physical and chemical information. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 16346—16357. Curran Associates, Inc., 2021.

	Featurization
	Graphization of Circuit Design
	Graphize Geometrical Information
	Time Consumption

	Parameter Sensitivity Experiment
	Model Sensitivity Experiment
	Message Function
	Information Fusing Strategy
	Readout Representation
	Position Encoding

	Additional Experiment Tables
	Number of Parameters and Inference Time

