
A Appendix / supplemental material
A.1 Proof [Proposition 2]
Consider a one layer network withou bias term. The input dimension of it is n. The output dimension of it is m. We can knoe
the shape of the weight matrix W is Rm×n. Since we have N data points, the input matrix X ∈ RN×n.

Forward FLOPs with full matrix

Proof. When using full weight matrix, the first step is to compute the output O ∈ RN×m as

O = XWT . (8)

The FLOPs of this step is Nm(2n− 1). Then we calculate the loss as

J = ∥O − Y ∥2F , (9)

where Y ∈ RN×m is the label matrix. The FLOPs for this step is 3Nm− 1. Therefore, the FLOPs of the forward computation
is

Nm(2n− 1) + (3Nm− 1) = O (2Nm(n+ 1)) . (10)

Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of J on W . Using chain rule, the first step is to compute

∂J
∂O

= 2(O − Y ). (11)

Since O − Y has been calculated in the forward pass, the FLOPs is Nm. The gradient of W is

∂J
∂W

=

(
∂J
∂O

)T

X. (12)

The FLOPs for this step is mn(2N − 1). Therefore, the FLOPs for the backward pass is

Nm+mn(2N − 1) = O (Nm(2n+ 1)) . (13)

Forward FLOPs with sparse matrix With Kronecker product decomposition, we replace W by
∑r

i=1(S⊙Ai)⊗Bi. S and
Ai ∈ Rm1×n1 , Bi ∈ Rm2×n2 , where m1m2 = m, n1n2 = n.

Proof. In the forward pass, we need to firstly reshape X ∈ RN×n into reshape(X) ∈ Rn2×Nn1 . Then we calculate
Bireshape(X) ∈ Rm2×Nn1 with FLOPs Nn1m2(2n2 − 1). The result is reshape into reshape(Bireshape(X)) ∈
RNm2×n1 .

Then we calculate S ⊙Ai ∈ Rn1×m1 with FLOPs m1n1. After this, we get

Oi = reshape(Bireshape(X))(S ⊙Ai)
T ∈ RNm2×m1 , (14)

with FLOPs Nm1m2(2n1 − 1). We denote O as the output of the layer, which is to say

O =

r∑
i=1

Oi =

r∑
i=1

reshape(Bireshape(X))(S ⊙Ai)
T . (15)

The total FLOPs to get O is

r(Nm1m2(2n1 − 1) +m1n1 +Nn1m2(2n2 − 1)) + (r − 1)Nm (16)

Then we reshape O in to reshape(O) ∈ RN×m. The loss is calculated as

J = ∥reshape(O)− Y ∥2F (17)

The FLOPs for this step is 3Nm− 1. Therefore the FLOPs of the forward computation is

r(2Nm1m2n1 −Nm1m2 +m1n1 + 2Nm1n1n2 −Nm2n1) + (r − 1)Nm+ 3Nm− 1

=O (2Nrm1n1(m2 + n2)−Nr(m+ 2m2n1) + 3Nm) (18)



Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of J on S,Ai and Bi. Using chain rule, the first step is to
compute

∂J
∂reshape(O)

= 2(reshape(O)− Y ). (19)

Since reshape(O)− Y has been calculated in the forward pass, the FLOPs is Nm. Then we reshape it into ∂J
∂O ∈ RNm2×m1 .

Then we can get

∂J
∂(S ⊙Ai)

=

(
∂J
∂O

)T

reshape(Bireshape(X)). (20)

Since reshape(Bireshape(X)) has been obtained in the forward pass, the FLOPs for this step is m1n1(2Nm2 − 1). To get
the gradient on S and Ai, we have

∂J
∂S

=

r∑
i=1

∂J
∂(S ⊙Ai)

⊙Ai, (21)

with FLOPs rm1n1 + (r − 1)m1n1, and
∂J
∂Ai

=
∂J

∂(S ⊙Ai)
⊙ S, (22)

with FLOPs m1n1. The gradient on reshape(Bireshape(X)) is
∂J

∂ reshape(Bireshape(X))
=

∂J
∂O

(S ⊙Ai). (23)

The FLOPs for this step is Nm2n1(2m1 − 1). We reshape the gradient into ∂J
∂ Bireshape(X) ∈ Rm2×Nn1 . So, we can get the

gradient on Bi as
∂J
∂Bi

=
∂J

∂ Bireshape(X)
reshape(X)T , (24)

with FLOPs of m2n2(2Nn1 − 1). Therefore, we can get the total FLOPs for the backward pass as
Nm+ rm1n1(2Nm2 − 1) + rm1n1 + (r − 1)m1n1 + rm1n1 + rNm2n1(2m1 − 1) + rm2n2(2Nn1 − 1)

=O (Nm+Nr(4m1m2n1 −m2n1 + 2m2n1n2)) (25)

A.2 Proof [Proposition 3]
Consider a two-layer network without bias term. The input dimension of the first linear layer is m[1]. The output dimension of
the linear layer is m[2]. So, the input dimension for the second linear layer is m[2]. The output dimension of the linear layer
is m[3]. With the network architecture, we can know that W [1] ∈ Rm[2]×m[1]

and W [2] ∈ Rm[3]×m[2]

. Since we have N data
points, for the input matrix of the first layer denoted by X [1], we have, X [1] ∈ RN×m[1]

. We use σ to represent the activation
function for the first layer.

Forward FLOPs with full matrix

Proof. When using full weight matrix, the first step is to compute the pre-activated output O[1] ∈ RN×m[2]

as
O[1] = X [1]W [1]T . (26)

The FLOPs of this step is Nm[2](2m[1] − 1). Then, we compute the activation X [2] ∈ RN×m[2]

as follows,
X [2] = σ(O[1]). (27)

The FLOPs for calculating the activation is Nm[2]. For the second layer, we need to compute O[2] ∈ RN×m[3]

as O[2] =
X [2]W [2]T . The FLOPs are Nm[3](2m[2] − 1). The last step is calculating the loss as

J =
∥∥∥O[2] − Y

∥∥∥2
F
, (28)

where Y ∈ RN×m[3]

is the label matrix. The FLOPs for this step is 3Nm[3] − 1. Therefore, the FLOPs of the forward
computation is

Nm[2](2m[1] − 1) +Nm[2] +Nm[3](2m[2] − 1) + 3Nm[3] − 1 = 2Nm[1]m[2] + 2Nm[2]m[3] + 2Nm[3] − 1

= O
(
2N(m[1]m[2] +m[2]m[3] +m[3])

)
. (29)



Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of J on W [1] and W [2]. Using chain rule, the first step is to
compute

∂J
∂O[2]

= 2(O[2] − Y ). (30)

Since O[2] − Y has been calculated in the forward pass, the FLOPs is Nm[3]. The gradient of W [2] is

∂J
∂W [2]

=

(
∂J
∂O[2]

)T

X [2]. (31)

The FLOPs for this step is m[2]m[3](2N − 1). To compute the gradient on W [1], we need to first compute

∂J
∂X [2]

=

(
∂J
∂O[2]

)
W [2], (32)

with the FLOPs Nm[2](2m[3] − 1). Then compute

∂J
∂O[1]

=

(
∂J
∂X [2]

)
⊙ (σ(O[1])), (33)

with the FLOPs Nm[2]. The final step is

∂J
∂W [1]

=

(
∂J
∂O[1]

)T

X [1] (34)

The FLOPs is m[1]m[2](2N − 1). Therefore, the FLOPs for the backward pass is

Nm[3] +m[2]m[3](2N − 1) +Nm[2](2m[3] − 1) +Nm[2] +m[1]m[2](2N − 1)

=2Nm[1]m[2] + 4Nm[2]m[3] +Nm[3] −m[1]m[2] −m[2]m[3]

=O
(
N(2m[1]m[2] + 4m[2]m[3] +m[3])

)
. (35)

Forward FLOPs with sparse matrix With the Kronecker product decomposition, we replace W [1] by
∑r[1]

i=1(S
[1] ⊙A

[1]
i )⊗

B
[1]
i and W [2] by

∑r[2]

i=1(S
[2]⊙A

[2]
i )⊗B

[2]
i . In the first layer, S[1] and A

[1]
i ∈ Rm

[2]
1 ×m

[1]
1 , B[1]

i ∈ Rm
[2]
2 ×m

[1]
2 , where m[1]

1 m
[1]
2 =

m[1], m[2]
1 m

[2]
2 = m[2]. In the second layer, S[2] and A

[2]
i ∈ Rm

[3]
1 ×m

[2]
1 , B[2]

i ∈ Rm
[3]
2 ×m

[2]
2 , where m

[3]
1 m

[3]
2 = m[3].

Proof. In the forward pass, we need to firstly reshape X [1] ∈ RN×m[1]

into reshape(X [1]) ∈ Rm
[1]
2 ×Nm

[1]
1 . Then

we calculate B
[1]
i reshape(X [1]) ∈ Rm

[2]
2 ×Nm

[1]
1 with the FLOPs Nm

[1]
1 m

[2]
2 (2m

[1]
2 − 1). The result is reshaped into

reshape(B
[1]
i reshape(X [1])) ∈ RNm

[2]
2 ×m

[1]
1 .

Then we calculate S[1] ⊙A
[1]
i ∈ Rm

[2]
1 ×m

[1]
1 with the FLOPs m[1]

1 m
[2]
1 . After this, we get

O
[1]
i = reshape(B

[1]
i reshape(X [1]))(S[1] ⊙A

[1]
i )T ∈ RNm

[2]
2 ×m

[2]
1 , (36)

with FLOPs Nm
[2]
2 m

[2]
1 (2m

[1]
1 − 1). We denote O[1] as the pre-activated result of the first layer, which is to say

O[1] =

r[1]∑
i=1

O
[1]
i =

r[1]∑
i=1

reshape(B
[1]
i reshape(X [1]))(S[1] ⊙A

[1]
i )T . (37)

The total FLOPs to get O[1] is

r[1]
(
Nm

[1]
1 m

[2]
2 (2m

[1]
2 − 1) +m

[1]
1 m

[2]
1 +Nm

[2]
2 m

[2]
1 (2m

[1]
1 − 1)

)
+ (r[1] − 1)m[2]N

=r[1]
(
2Nm[1]m

[2]
2 + 2Nm[2]m

[1]
1 −Nm

[2]
2 (m

[1]
1 +m

[2]
1 ) +m

[1]
1 m

[2]
1 )

)
+ (r[1] − 1)m[2]N. (38)



The input for the second layer X [2] ∈ RNm
[2]
2 ×m

[2]
1 is obtained by

X [2] = σ(O[1]), (39)

with FLOPs Nm
[2]
2 m

[2]
1 = Nm[2]. Then we reshape it into reshape(X [2]) ∈ Rm

[2]
2 ×Nm

[2]
1 . We calcu-

late B
[2]
i reshape(X [2]) ∈ Rm

[3]
2 ×Nm

[2]
1 with the FLOPs Nm

[2]
1 m

[3]
2 (2m

[2]
2 − 1). The result is reshaped into

reshape(B
[2]
i reshape(X [2]) ∈ RNm

[3]
2 ×m

[2]
1 .

Similar to the first layer, we calculate S[2] ⊙A
[2]
i ∈ Rm

[3]
1 ×m

[2]
1 with the FLOPs m[2]

1 m
[3]
1 . After this, we get

O
[2]
i = reshape(B

[2]
i reshape(X [2]))(S[2] ⊙A

[2]
i )T ∈ RNm

[3]
2 ×m

[3]
1 , (40)

with FLOPs Nm
[3]
2 m

[3]
1 (2m

[2]
1 − 1). We denote O[2] as the output of the second layer, which is to say

O[2] =

r[2]∑
i=1

O
[2]
i =

r[2]∑
i=1

reshape(B
[2]
i reshape(X [2]))(S[2] ⊙A

[2]
i )T . (41)

The total FLOPs to get O[2] is

r[2]
(
Nm

[2]
1 m

[3]
2 (2m

[2]
2 − 1) +m

[2]
1 m

[3]
1 +Nm

[3]
2 m

[3]
1 (2m

[2]
1 − 1)

)
+ (r[2] − 1)m[3]N

=r[2]
(
2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 −Nm

[3]
2 (m

[2]
1 +m

[3]
1 ) +m

[2]
1 m

[3]
1

)
+ (r[2] − 1)m[3]N. (42)

Then we shape O[2] into reshape(O[2]) ∈ RN×m[3]

. The loss is calculated as

J =
∥∥∥reshape(O[2])− Y

∥∥∥2
F
. (43)

The FLOPs for this step is 3Nm[3] − 1. Therefore, the FOLPs of the forward computation is

r[1]
(
2Nm[1]m

[2]
2 + 2Nm[2]m

[1]
1 −Nm

[2]
2 (m

[1]
1 +m

[2]
1 ) +m

[1]
1 m

[2]
1 )

)
+ (r[1] − 1)m[2]N +Nm[2]+

r[2]
(
2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 −Nm

[3]
2 (m

[2]
1 +m

[3]
1 ) +m

[2]
1 m

[3]
1

)
+ (r[2] − 1)m[3]N + 3Nm[3] − 1

=O
(
r[1]

(
2Nm[1]m

[2]
2 + 2Nm[2]m

[1]
1 −Nm

[2]
2 (m

[1]
1 +m

[2]
1 )

)
+ r[2]

(
2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 −Nm

[3]
2 (m

[2]
1 +m

[3]
1 )

)
+Nm[2] + 3Nm[3]

)
(44)

Let C1 = 2Nm[1]m
[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m

[1]
1 + m

[2]
1 ), C2 = 2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m

[2]
1 + m

[3]
1 ), we have the

FLOPs as O
(
r[1]C1 + r[2]C2 +Nm[2] + 3Nm[3]

)
.

Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of J on S[1], A
[1]
i , B

[1]
i , S[2], A

[2]
i and B

[2]
i . Using chain rule,

the first step is to compute

∂J
∂ reshape(O)[2]

= 2(reshape(O[2])− Y ). (45)

Since reshape(O[2]) − Y has been calculated in the forward pass, the FLOPs is Nm[3]. Then we reshape it into ∂J
∂O[2] ∈

RNm
[3]
2 ×m

[3]
1 . Then we can get

∂J
∂(S[2] ⊙A

[2]
i )

= (
∂J
∂O[2]

)T reshape(B
[2]
i reshape(X [2])). (46)

Since reshape(B[2]
i reshape(X [2])) has been obtained in the forward pass, the FLOPs for this step is m[2]

1 m
[3]
1 (2Nm

[3]
2 − 1).

To get the gradient on S[2] and A
[2]
i , we have

∂J
∂S[2]

=

r[2]∑
i=1

∂J
∂(S[2] ⊙A

[2]
i )

⊙A
[2]
i , (47)



with FLOPs r[2]m[2]
1 m

[3]
1 + r[2] − 1, and

∂J
∂A[2]

=
∂J

∂(S[2] ⊙A
[2]
i )

⊙ S[2], (48)

with FLOPs m[2]
1 m

[3]
1 . The gradient on reshape(B

[2]
i reshape(X [2])) is

∂J
∂ reshape(B

[2]
i reshape(X [2]))

=
∂J
∂O[2]

(S[2] ⊙A
[2]
i ). (49)

The FLOPs for this step is Nm
[2]
1 m

[3]
2 (2m

[3]
1 − 1). We reshape the gradient into ∂J

∂B
[2]
i reshape(X[2])

∈ Rm
[3]
2 ×Nm

[2]
1 . So, we can

get the gradient on B
[2]
i as

∂J
∂B

[2]
i

=
∂J

∂B
[2]
i reshape(X [2])

reshape(X [2])T , (50)

with the FLOPs of m[2]
2 m

[3]
2 (2Nm

[2]
1 − 1). The gradient on reshape(X [2]) is

∂J
∂ reshape(X [2])

=

r[2]∑
i=1

B
[2]T
i

∂J
∂B

[2]
i reshape(X [2])

, (51)

with the FLOPs r[2](m
[2]
1 Nm

[2]
2 (2m

[3]
2 − 1) + (r[2] − 1)Nm[2]. Then we reshape it to get ∂J

∂X[2] ∈ RNm
[2]
2 ×m

[2]
1 . Then we

calculate the gradient on O[1] as
∂J
∂O[1]

=

(
∂J
∂X [2]

)
⊙ (σ(O[1])), (52)

with FLOPs Nm[2]. Then we can get
∂J

∂(S[1] ⊙A
[1]
i )

= (
∂J
∂O[1]

)T reshape(B
[1]
i reshape(X [1])). (53)

The FLOPs for this step is m[1]
1 m

[2]
1 (2Nm

[2]
2 − 1). So, the gradients on S[1] and A

[1]
i are

∂J
∂S[1]

=

r[1]∑
i=1

∂J
∂(S[1] ⊙A

[1]
i )

⊙A
[1]
i , (54)

with FLOPs r[1]m[1]
1 m

[2]
1 + (r[1] − 1)m

[1]
1 m

[2]
1 , and

∂J
∂S[1]

=
∂J

∂(S[1] ⊙A
[1]
i )

⊙ S[1], (55)

with FLOPs m[1]
1 m

[2]
1 . The gradient on reshape(B

[1]
i reshape(X [1]) is

∂J
∂ reshape(B

[1]
i reshape(X [1]))

=
∂J
∂O[1]

(S[1] ⊙A
[1]
i ). (56)

The FLOPs for this step is Nm
[1]
1 m

[2]
2 (2m

[2]
1 − 1). Then we reshape it to get ∂J

∂B
[1]
i reshape(X[1])

∈ Rm
[2]
2 ×Nm

[1]
1 . So, we can get

the gradient on B
[1]
i as

∂J
∂B

[1]
i

=
∂J

∂B
[1]
i reshape(X [1])

reshape(X [1])T , (57)

with FLOPs m[1]
2 m

[2]
2 (2Nm

[1]
1 − 1).

Therefore, we can get the total FLOPs for the backward pass as

Nm[3] + r[2](m
[2]
1 m

[3]
1 )(2Nm

[3]
2 − 1) + r[2]m

[2]
1 m

[3]
1 + (r[2] − 1)Nm[2] + r[2]m

[2]
1 m

[3]
1 + r[2]Nm

[2]
1 m

[3]
2 (2m

[3]
1 − 1)+

r[2]m
[2]
2 m

[3]
2 (2Nm

[2]
1 − 1) + r[2](m

[2]
1 m

[2]
2 (2m

[3]
2 − 1) + (r[2] − 1)Nm[2] +Nm[2] + r[1](Nm

[1]
1 m

[2]
1 (2Nm

[2]
2 )− 1)+

r[1]m
[1]
1 m

[2]
1 + (r[1] − 1)m

[1]
1 m

[2]
1 + r1m

[1]
1 m

[2]
1 + r[1]Nm

[1]
1 m

[2]
2 (2m

[2]
1 − 1) + r[1]m

[1]
2 m

[2]
2 (2Nm

[1]
1 − 1)

=O
(
N(m[2] +m[3]) + r[2]Nm

[2]
1 (4m[3] −m

[3]
2 ) + 2r[2]Nm[2]m

[3]
2 + r[1]Nm

[3]
1 (4m[2] −m

[2]
2 ) + 2r[1]Nm[1]m

[2]
2

)
. (58)



B Computation resource
we used a server with 64 CPUs of AMD EPYC 7313 16-Core Processor. The server has 8 RTX A5000 GPUs, with 24GB
memory for each one. For the experiment with linear model and LeNet, we used only one single GPU. And for the ViT-tiny
experiment, we use 2 GPUs at the same time.

C Experiment Setting
To get the linear and LeNet experiment result, cd into the folder ’Linear&LeNet’ and python kpd lenet.py and python
kpd one layer.py.

To get the ViT-tiny experiment result, cd into the folder ’ViT’ and use bash script/train cifar kron rank4patch4x4.sh


