A Appendix / supplemental material
A.1 Proof [Proposition 2]
Consider a one layer network withou bias term. The input dimension of it is n. The output dimension of it is m. We can knoe

the shape of the weight matrix 1 is R™*". Since we have N data points, the input matrix X € RV*",
Forward FLOPs with full matrix
Proof. When using full weight matrix, the first step is to compute the output O € RV*™ ag
o=XxXw"T, (8)
The FLOPs of this step is Nm(2n — 1). Then we calculate the loss as
J=0-Yl, ©)

where Y € RYX™ s the label matrix. The FLOPs for this step is 3Nm — 1. Therefore, the FLOPs of the forward computation
is

Nm@2n—-1)+ (BNm —1) =0 (2Nm(n+1)). (10)
O
Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of 7 on IW. Using chain rule, the first step is to compute

0T _

— =2(0-Y). 11
55 = 20-Y) an
Since O — Y has been calculated in the forward pass, the FLOPs is Nm. The gradient of W is
oF  (0T\"
-~ (=) X. 12
o = (50) 12
The FLOPs for this step is mn(2N — 1). Therefore, the FLOPs for the backward pass is
Nm+mn(2N —1) = O (Nm(2n+1)). (13)
O

Forward FLOPs with sparse matrix ~With Kronecker product decomposition, we replace W by >_'_, (S ® A4;) ® B;. S and
A; e Rmixm B, ¢ R™2%X"2 where mimg = m, ning = n.

Proof. Tn the forward pass, we need to firstly reshape X € RN*™ into reshape(X) € R"2*"N"i Then we calculate

B;reshape(X) € R™2>*Nm1 with FLOPs Nnymg(2ns — 1). The result is reshape into reshape(B;reshape(X)) €
RNsznl.

Then we calculate S ® A; € R™*™1 with FLOPs min;. After this, we get
O; = reshape(B;reshape(X))(S ® 4;)T € RNmz2xm1, (14)
with FLOPs Nmima(2n1 — 1). We denote O as the output of the layer, which is to say

0= Z 0; = Z reshape(B;reshape(X))(S ® 4;)7T. (15)
i=1 i=1
The total FLOPs to get O is
r(Nmima(2ny — 1) + ming + Nnymae(2na — 1)) + (r = 1)Nm (16)

Then we reshape O in to reshape(0O) € RN*™, The loss is calculated as
J = ||reshape(O) — Y||%, (17)
The FLOPs for this step is 3Nm — 1. Therefore the FLOPs of the forward computation is

r(2Nmyimany — Nmymao + ming + 2Nmyning — Nmony) + (r — 1)Nm +3Nm — 1
=0 (2Nrmini(ms + ns) — Nr(m + 2many) + 3Nm) (18)



Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of 7 on S, A; and B;. Using chain rule, the first step is to
compute

oJ
o7, . 0 7). 19
Sreshape(O) (reshape(O) ) (19)
Since reshape(O) — Y has been calculated in the forward pass, the FLOPs is Nm. Then we reshape it 1nt0 c RNmaxm
Then we can get
d oT\"
8(57&)714@-) B (85) reshape(B;reshape(X)). 20

Since reshape(B;reshape(X)) has been obtained in the forward pass, the FLOPs for this step is minq (2Nmsg — 1). To get
the gradient on S and A;, we have

0T ~ 0J
95 ~ oo N @h
with FLOPs rmn; + (r — 1)miny, and
oJ oJ o 22)

04; ~ 9(S©A)

with FLOPs min;. The gradient on reshape(B;reshape(X)) is
N _aJ
J reshape(B;reshape(X)) 00
The FLOPs for this step is Nmani (2m; — 1). We reshape the gradient into W}{ape()() € Rm2xNn1 S0, we can get the
gradient on B; as

—(So4). (23)

oJ oJ
dB; 0 B;reshape(X)
with FLOPs of many(2Nn; — 1). Therefore, we can get the total FLOPs for the backward pass as
Nm +rmini(2Nmy — 1) + rming + (r — 1)myng + rmyng + rNmaong (2my — 1) + rmang(2Nng — 1)
=0 (Nm + Nr(dmimani — mang + 2maninsg)) (25)
O

reshape(X)7, (24)

A.2  Proof [Proposition 3]

Consider a two-layer network without bias term. The input dimension of the first linear layer is m[!l. The output dimension of
the linear layer is m[?. So, the input dimension for the second linear layer is m!2l. The output dimension of the linear layer
is m[3. With the network architecture, we can know that wil ¢ Rm Eeml] and W2 ] e R™ Beml2) . Since we have N data
points, for the input matrix of the first layer denoted by X!, we have, X[l ¢ RN xm We use o to represent the activation
function for the first layer.

Forward FLOPs with full matrix

Proof. When using full weight matrix, the first step is to compute the pre-activated output Ol*/ € RN xml ag

ol = x My T, (26)
The FLOPs of this step is Nm!?(2m[!] — 1). Then, we compute the activation X2l € RN xm® a5 follows,
X2 = g0l 27

The FLOPs for calculating the activation is Nm/?. For the second layer, we need to compute 02! € RN xmi s 0 =
XPIWERIT The FLOPs are Nm!3(2m!? — 1). The last step is calculating the loss as

7o -]

where Y € RY xml?l is the label matrix. The FLOPs for this step is 3NV mbBl — 1. Therefore, the FLOPs of the forward
computation is

Nm2@2mM — 1) + NmP + NmBlemP — 1) + 3NmB — 1 = aNmm B 4 oNmBEmBl 4 anmBl — 1
=0 (2N(mmm[2] + mPmB 4 m[?’])) . (29)
O



Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of 7 on W and W2, Using chain rule, the first step is to
compute

oJ

oY 2] _
S =200 =), (30)
Since O?l — Y has been calculated in the forward pass, the FLOPs is Nm/[3]. The gradient of W% is
0T _ (0T \" yp
oW (aom) o GD

The FLOPs for this step is m[m[? (2N — 1). To compute the gradient on W, we need to first compute

oJ B oT [2]
Xl = (ao[z]) W 2
with the FLOPs Nn[?(2m/[3] — 1). Then compute
oJ oJ
o = (BX[2]) ® (e(0My), (33)
with the FLOPs N'm!?. The final step is
oJ (0T \" .y
oW~ <aom> X G

The FLOPs is m!Um[? (2N — 1). Therefore, the FLOPs for the backward pass is
NmB 4+ mPmBlaN —1) + NmPlembBl — 1) + NmB + mBnllen —1)
=INmUm2 £ ANmEmBl £ Nl — 2 2, Bl
—0 (N(zm[”m[21 + 4P m[3])) . (35)
O

Forward FLOPs with sparse matrix With the Kronecker product decomposition, we replace W by Z:[:lll (steoahe
Bl[l] and W2l by Z:i(Sm @AEQ]) ® B In the first layer, Sl and AE” c R Xm[lll, Bz[l] c R™S Xm[zll, where m[ll]m[;] =

ml, mPmE = ml2 In the second layer, S/ and A/ € Ry xmi? B e R8> ms where mPml = mBl,

Proof. In the forward pass, we need to firstly reshape X1 ¢ RN xm™ into reshape(X[!) ¢ R xNmi Then
we calculate Bl[l]reshape(X )y e R XNmi with the FLOPs N m[ll]m[;}(Qm[;] — 1). The result is reshaped into
reshape(Bz[l]reshape(X[l])) e RNmS xmi!!,

Then we calculate S © AE” e R xmY with the FLOPs mgl]m[f]. After this, we get

[2]

01[1] = reshape(Bl[l]reshape(X[l]))(S[l] ® AEI])T € RN"”[22] xmy (36)

with FLOPs N m[22]m[12] (2m[11] —1). We denote O!) as the pre-activated result of the first layer, which is to say

ey A
ol = Z 02[1] = Z reshape(Bl[l]reshape(X[l]))(S[l] ) AEI])T. 37
i=1 i=1

The total FLOPs to get Ol!l is
7l (Nm[ll]m[QQ](?m[;] -1+ m[ll]m[lz] + Nm[;]m[f] (2m[11] - 1)) + (= 1ymlA N

=rll <2Nm[1]m[22] + 2Nm[2]m[11] — Nm[22} (m[ll] + m[12]) + m[ll]m[f])) + (rM = 1)ml N, (38)



The input for the second layer X2/ € RN mi xmi s obtained by
x[2 = 0(0[1])7 (39)

with FLOPs NmiZm? = Nml2. Then we reshape it into reshape(X) € R *Nm We calcu-
late B”reshape(X2) e R™xNm with the FLOPs Nm@mf!(2mi?) — 1). The result is reshaped into
reshape(Blmreshape(X[z]) e RNmS xmi?

Similar to the first layer, we calculate S!?! @AE e R™Y xmi” with the FLOPs m[l]m[l] After this, we get

3] 3]

01[2] = reshape(Bl[Q]reshape(Xm))(5[2] ©) AEZ])T e RNm3 xm] ; (40)

with FLOPs N m[gg]m[lg] (2m[12] — 1). We denote Ol as the output of the second layer, which is to say

2] 2]
oPl = Z 02[2] = Z reshape(B?]reshape(X[Q]))(5[2] O] AEQ])T. 41
i=1 i=1
The total FLOPs to get O] is
1 (NP 2m — 1)+ P + Nl o — 1)) + (7 = b
=rl2 (2Nm[2]m[23] + 2Nm[3]m[12] — ng]( 2] + m[3]) [12]m[13]) + (rm — 1)m[3]N. 42)
Then we shape O into reshape(0[2)) € RVN*™"" The loss is calculated as
J = Hreshape(0[2]) — YH? . (43)
The FLOPs for this step is 3V mbBl — 1. Therefore, the FOLPs of the forward computation is
(2Nm ml? + aNmEm — Nl () 4 ) 4 m[ll]m[f])) + 6 — mBP N 4+ Nl
(sz ml® 4 aNmHm? Nm[z (m? + m) + mP ]m[SI) F 0 — 1mPI N+ 3NmE 1
-0 (r[” (sz[” +2NmPml — N2 (Y 4 m! )) 47l (sz[Q]mE] + 2NmBlm? — Nl (ml? 4 m[S])) + Nm? 3Nm[3])
(44)
Let C1 = 2NmUm + oaNm@ml) — NmZ (! + ml?), ¢y = 2NmP2ml? + oaNmBm — Nm (m? + m!?), we have the
FLOPs as O (11 + 21 + Nmm +3Nml ) O

Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of 7 on S, AE”, Bz[l], Sel, A?] and Blm. Using chain rule,
the first step is to compute

oJ

—————— = 2(resh oy — ). 45
J reshape(O)2 (veshape(O™) ) )
Since reshape(O[?l) — Y has been calculated in the forward pass, the FLOPs is Nm[?l. Then we reshape it into ao\ljﬁ €
RV xm Then we can get
oJ _ (9T \r (2] 2]
250 @AEQ]) = (80[2]) reshape (B, 'reshape(X'*)). (46)
Since reshape(Bz[Q]reshape(X 21)) has been obtained in the forward pass, the FLOPs for this step is m[12]m[13]( [ ) -1).
To get the gradient on S[?! and A?], we have
07 g
= © AP (47)
052 ; 6(5[2] o AEQ])



with FLOPs r2m!Zm!® 4 721 — 1 and

0 0
A —cY L) (48)
0AL (s o AEQ])
with FLOPs m[1 } [ | The gradient on reshape(Bl[z]reshape(X ) is
0 0
mj j[]( Boal). “49)
0 reshape(Bz reshape(X[2])) ~ Q0P
The FLOPs for this step is N m[12]m[23]( — 1). We reshape the gradient into m e R™ XNmY o we can
get the gradient on BF] as
0 0
{2] ] J reshape(X[Q] )z, (50)
aBZ- OB, 'reshape(X[?])
with the FLOPs of m[2 ) [3] (2N m — 1). The gradient on reshape(X[?) is
121
0 0
N =2 B % 7 : (51)
O reshape(XP?) < 83[ Ireshape(X2)
with the FLOPs r[?] (m[12] Nm[22](2m[23] — 1) + (rI = 1)Nm!?. Then we reshape it to get ax‘{ﬂ e RV xm” Then we
calculate the gradient on O!) as
oT . oJ 1]
200 = <8X[2]) © (e(0™)), (52)
with FLOPs Nm/[?. Then we can get
oJ J \r (1]
= hape(B, 'reshape(X!")). 53
oS o AE]) <8O[1]) reshape(B;" reshape(X™)) (53)
The FLOP:s for this step is m[11]m[12} (2N m[22] — 1). So, the gradients on SI'l and AEI] are
ey
oJ 0T 1]
= A: 54
oSH] ; a(s @Agl]) ©4i S
with FLOPs r[l]m[ll]m[lz] + ([ — 1)m[ ]m[12], and
0 0
g T s, (55)
OS] 3(5[1] @A[l])
with FLOPs m[1 ] [ | The gradient on reshape(B[ ]reshape(X[”)
0 0
[1]‘7 ‘7} (s Ay, (56)
8reshape(Bl reshape(X[)) ~ gon
H : (1] [2] : 0. ml ml
The FLOP:s for this step is Nm; (2m3i™ — 1). Then we reshape it to get WZPG(X[”) e RS xNmy! . So, we can get
the gradient on Bz[l] as
0 0
‘{1] = —q] J reshape( X7 (57)
0B; OB, 'reshape(X 1)
with FLOPs mb miZ 2nml! — 1),
Therefore, we can get the total FLOPs for the backward pass as
NmbB 4 (m[12]m[13])(2Nm[3] —-1)+ T[Q]mmmm + (P —1)NmlF 4 T[Q]m[lz}m[f’] rl2 ]Nm[ ]m[3]( [ ] -+
r[z]m[;}m[;’] (2Nm[12] 1)+ ](mmm[z ](2m[ ] D+ (P —1)NmB + Nml 4 r[l](Nm m[ ](2Nm[2}) - 1)+

P20 4 Gy 021 ] 0,219 B gyl 1 ) o 1)
=0 (N(mm +mbl) + T[Q]Nm[ ](4m[ I m[23]) + 272 Nm 2 ]m[g] +rlt ]Nm[13](4m[ 1 m[Q]) + 2rt ]Nm[l]m[22]> . (58)
O



B Computation resource

we used a server with 64 CPUs of AMD EPYC 7313 16-Core Processor. The server has 8 RTX A5000 GPUs, with 24GB
memory for each one. For the experiment with linear model and LeNet, we used only one single GPU. And for the ViT-tiny
experiment, we use 2 GPUs at the same time.

C Experiment Setting

To get the linear and LeNet experiment result, cd into the folder 'Linear&LeNet’ and python kpd_lenet.py and python
kpd_one_layer.py.
To get the ViT-tiny experiment result, cd into the folder *ViT’ and use bash script/train_cifar_kron_rank4patch4x4.sh



