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A APPENDIX

A.1 FEDERATED MARL

Though some work has implemented their federated MARL (FMARL) methods (Xu et al., 2023;
Kumar et al., 2017; Song et al., 2022) towards different environments, the specialty of FMARL with
respect to conventional MARL is not fully demonstrated. In this part, we induce a general formulation
of FMARL which integrates G with several new elements to derive Λ =< G, τ,K, ψ >. Here τ
indicates the number of local updates within each communication round while K is the termination
condition of the training process which is usually set as maximal communication rounds (Chen
et al., 2021; Khodadadian et al., 2022; Kumar et al., 2017). In addition, ψ denotes the system
communication efficiency. We use the parameter θ to represent the policy π for simplicity. F (·) is
used to represent the global objective function of the system whose minimization is equivalent to the
maximization of the expected return. Fi(·) stands for the local objective function for each agent i.
Their relationship between the global objective and the locals in (Song et al., 2022; Xu et al., 2023;
Chen et al., 2021) are the same: F (x) = 1

n

∑n
i=1 Fi(x).

The learning protocol is similar to federated learning in a supervised setting: in round k, all agents’
policies are synchronized as θ̄k which is drawn from the server agent. Then, each agent interacts
with the environment concurrently to accumulate local experience used for updating the local policy
indicated by {θk,τii }ni=1 with SGD (Bottou, 2010): g(θk,ji ; ξk,ji ) = 1

|ξk,j
i |

∑
ϕ∈ξk,j

i
∇Fi(ϕ), where ϕ

stands for a transition in mini-batch ξk,ji and j is the index of local updates. Next, the parameters
{θk,τii }ni=1 or stochastic gradients {g(θk,ji ; ξk,ji )}τij=1 for i ∈ 1, 2, · · · , n will be uploaded to the
server agent.

To sum up, the update rule on the server side is:

θ̄k+1 = θ̄k − η
1

n

n∑
i=1

τk
i∑

j=1

g(θk,ji ). (10)

And the update rule for clients i is:

θk+1,j
i =

{
θ̄k+1, j mod τi = 0,

θk,ji − ηg(θk,ji ), otherwise,
(11)

Since in real-world environments, agents with diverse devices may spend different time in interaction
and policy iteration, we enable τki to be different times across agents.

In real-world settings, the objective functions or loss functions are usually non-convex, so the global
policy optimized by SGD may fall into a local minimum or saddle point. To indicate the convergence
of the algorithm, we use the expected averaged gradient norm to guarantee convergence to a stationary
point (Wang et al., 2020; Bottou et al., 2018; Wang & Joshi, 2021; Xu et al., 2023; Lian et al., 2015):

E[
1

K

K−1∑
k=0

||∇F (θk)||2] ≤ ϵ, (12)

where || · || is the ℓ2-norm and ϵ is used to describe the sub-optimality. When the above condition
holds, we say the algorithm achieves an ϵ-suboptimal solution.

A.2 PROOF PRELIMINARIES

In this subsection, we introduce some notations to facilitate reading. Then, some key lemmas as well
as their proof will be provided.

To begin with, we define the sum of stochastic gradients and the full batch gradients at round

k as: Xk
i :=

∑τk
i
j=1 gi(θ

k,j
i ) and Yk

i :=
∑τk

i
j=1 ∇Fi(θ

k,j
i ), respectively. Recall that wi ∈ [0, 1]
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and we denote
∑n
i=1 w

k
i = Mk ≤ n,∀i ∈ [1, 2, · · · , n]. Besides, we assume τki ∈ [1, τ ],∀i ∈

{1, ..., n}, k ∈ [0,K]. To avoid being overly complicated, we omit superscripts or subscripts for
some expressions.

The Frobenius norm for matrix Zp×q is:

∥Z∥2F =
∣∣Tr(ZZ⊤)

∣∣ = p∑
i=1

q∑
j=1

|zi,j |2 =

q∑
j=1

∥∥∥Z⃗j∥∥∥2 , (13)

where Z⃗j is the j-th column vector of matrix Z. And the operator norm for Zp×q is:

∥Z∥op = max
∥x∥=1

∥Zx∥ =
√
λmax(Z⊤Z) (14)

where λmax is the maximal eigenvalue of Z. From Lemma 7 of (Wang & Joshi, 2021), we have the
following conclusion: suppose Zp×q , Dq×q are real matrices and D is symmetric, then we have:

∥ZD∥F ≤ ∥Z∥F ∥D∥op (15)

Besides, we can directly derive some intuitive equations that can simplify the subsequent proofs.

E

∥∥∥∥∥
n∑
i=1

wiX
k
i − E

[
n∑
i=1

wiX
k
i

]∥∥∥∥∥
2
 = E

∥∥∥∥∥
n∑
i=1

wiX
k
i

∥∥∥∥∥
2

+

(
E

[
n∑
i=1

wiX
k
i

])2

− 2E

[(
n∑
i=1

wiX
k
i

)
E

[
n∑
i=1

wiX
k
i

]]

= E

∥∥∥∥∥
n∑
i=1

wiX
k
i

∥∥∥∥∥
2
−

(
E

[
n∑
i=1

wkiX
k
i

])2

.

(16)

Based on the definition of Xk and Yk, under assumption 2 or assumption 3, we have

E
[
Xk
]
= E

[
Yk
]
= Yk, (17)

and
Ep ̸=q⟨gp(θp)−∇Fp(θp), gq(θq)−∇Fq(θq)⟩ = 0, (18)

Further, we can derive
Ep ̸=q

[
⟨Xk

p −Yk
p ,X

k
q −Yk

q ⟩
]
= 0. (19)

Lemma 1 bounds the variance of weighted sum stochastic gradients w.r.t. weighted sum full batch
gradients at round k.

Lemma 1. Under Assumptions 1, 3 and 4 in the non-i.i.d. setting, the variance of the weighted sum
of mini-batch gradients is bounded by

E

∥∥∥∥∥
n∑
i=1

wiX
k
i −

n∑
i=1

wiY
k
i

∥∥∥∥∥
2
 ≤ µ

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
n∑
i=1

w2
i . (20)

E

∥∥∥∥∥
n∑
i=1

wiX
k
i −

n∑
i=1

wiY
k
i

∥∥∥∥∥
2
 = E

 n∑
i=1

w2
i

(
Xk
i − Y ki

)2
+
∑
p ̸=q

wpwq
〈
Xk
p − Y kp , X

k
q − Y kq

〉
=

n∑
i=1

w2
iE
∥∥Xk

i − Y ki
∥∥2

=

n∑
i=1

w2
iE

∥∥∥∥∥∥
τk
i∑

j=1

(
gi

(
θk,ji

)
−∇Fi

(
θk,ji

))∥∥∥∥∥∥
2
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=

n∑
i=1

w2
iE

 τk
i∑

j=1

(
gi

(
θk,ji

)
−∇Fi

(
θk,ji

))2

+
∑
p ̸=q

〈
gi

(
θk,pi

)
−∇Fi

(
θk,pi

)
, gi

(
θk,qi

)
−∇Fi

(
θk,qi

)〉
=

n∑
i=1

w2
iE

 τk
i∑

j=1

(
gi

(
θk,ji

)
−∇Fi

(
θk,ji

))2
≤

n∑
i=1

w2
i

τk
i∑

j=1

[
µ
∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2

]

= µ

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
n∑
i=1

w2
i

≤ µ

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
(
Mk
)2
.

Lemma 2. Under assumption 1, 3 and 4 in the non-i.i.d. setting, the expected weighted sum of
mini-batch gradients is bounded by

E

∥∥∥∥∥
n∑
i=1

wiX
k
i

∥∥∥∥∥
2

≤ µ

n∑
i=1

w2
i

τk
i∑

i=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
n∑
i=1

w2
i +

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

(21)

According to equation (16), (17) and the definition of X(k), we have

E

∥∥∥∥∥
n∑
i=1

wiX
k
i

∥∥∥∥∥
2

= E

∥∥∥∥∥
n∑
i=1

wiX
k
i − E

[
n∑
i=1

wiX
k
i

]∥∥∥∥∥
2
+

(
E

[
n∑
i=1

wiX
k
i

])2

= E

∥∥∥∥∥
n∑
i=1

wiX
k
i −

n∑
i=1

wiY
k
i

∥∥∥∥∥
2
+

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

⩽ µ

n∑
i=1

w2
i

τk
i∑

i=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
n∑
i=1

w2
i +

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

≤ µ
n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + σ2
(
Mk
)2

+

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

.

Proposition 1. Under assumption 2 in the i.i.d. setting and assumption 3 in the non-i.i.d. setting, we
can obtain the same expected inner product between the weighted sum of stochastic gradients and the
full-batch gradients as

E

[〈
∇F

(
θ̄k
)
,

n∑
i=1

wiX
k
i

〉]
= E

[
n∑
i=1

wi
〈
∇F

(
θ̄k
)
, Xk

i

〉]

= E

[〈
∇F

(
θ̄k
)
,

n∑
i=1

wiY
k
i

〉]

=
1

2

∥∥∇F (θ̄k)∥∥2 + 1

2

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥∇F (θ̄k)−
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

.

(22)
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The last equation is due to 2 < a, b >= ||a||2 + ||b||2 − ||a− b||2.

Lemma 3. Under assumption 3 and 4 in the non-i.i.d. setting, we can obtain the variance upper
bound between the global gradient and the weighted sum of local gradients as

E

∥∥∥∥∥∇F (θ̄k)−
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

=
2

n

n∑
i=1

1

τki

τk
i∑

j=1

E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2+2A
(∥∥Y ki ∥∥2 ;n, τki , wi) ,

(23)

where A
(∥∥Y ki ∥∥2 ;n, τki , wi) = 2E

∥∥∥∑n
i=1

[
1
n

1
τk
i

− wi

]
Y ki

∥∥∥2. When wi closes to 1
nτk

i

, A can be
minimized.

E

∥∥∥∥∥∇F (θ̄k)−
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

=E[

n∑
i=1

1

n

1

τki

τk
j∑

j=1

∇Fi
(
θ̄k
)
−

n∑
i=1

1

n

1

τki

nk
i∑

j=1

∇Fi
(
θki
)
+

n∑
i=1

1

n

1

τki
Y ki −

n∑
i=1

wiY
k
i ]

2.

≤ 2E

∥∥∥∥∥∥
n∑
i=1

1

n

1

τki

τk
i∑

j=1

[
∇Fi

(
θ̄k
)
−∇Fi

(
θk,ji

)]∥∥∥∥∥∥
2

+

2E

∥∥∥∥∥
n∑
i=1

[
1

n

1

τki
− wi

]
Y ki

∥∥∥∥∥
2

⩽ 2E

 n∑
i=1

1

n

∥∥∥∥∥∥ 1

τki

τk
i∑

j=1

[
∇Fi

(
θ̄k
)
−∇Fi

(
θk,ji

)]∥∥∥∥∥∥
2
+

2A
(∥∥Y ki ∥∥2 ;n, τki , wi)

⩽
2

n

n∑
i=1

1

τki

τk
i∑

j=1

E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2 +
2A
(∥∥Y ki ∥∥2 ;n, τki , wi) .

The first inequality is obtained by < a, b >≤ ||a||2 + ||b||2, while the last two inequalities is derived
by Jensen’s inequality.

A.3 PROOF OF THEOREMS

Theorem 2 Under Assumptions 1, 3 and 4 in the non-i.i.d. setting, the expected weighted sum of
mini-batch gradients is bounded by

4
(
E
[
F
(
θ̄1
)
− E

[
F
(
θ̄k
)])

Kη
+ 4

(
Ā+ C +D + E + F + µηC

K∑
k=0

1

K

n∑
i=1

w2
i τ
k
i

)
(24)

Based on the Lipschitz smoothness, we can obtain an intermediate result

E
[
F
(
θ̄k+1

)]
− E

[
F
(
θ̄k
)]

≤ E
[
< ∇F

(
θ̄k
)
, θ̄k+1 − θ̄k >

]
+
L

2
E
∥∥θ̄k+1 − θ̄k

∥∥2
≤ −ηE

[〈
∇F

(
θ̄k
)
,

n∑
i=1

wiX
k
i

〉]
+
L

2
η2E

∥∥∥∥∥
n∑
i=1

wiX
k
i

∥∥∥∥∥
2

≤ −η
2

∥∥∇F (θ̄k)∥∥2 − η

2

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

+
η

2
E

∥∥∥∥∥∇F (θ̄k)−
n∑
i=1

wiY
k
i

∥∥∥∥∥
2
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+
µL

2
η2

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 + L

2
η2σ2

n∑
i=1

w2
i +

Lη2

2

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

≤ −η
2

∥∥∇F (θ̄k)∥∥2 + η

2
(Lη − 1)

∥∥∥∥∥
n∑
i=1

wiY
k
i

∥∥∥∥∥
2

+ η · 1
n

n∑
i=1

1

τki

τk
i∑

j=1

E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2

+ ηE

∥∥∥∥∥
n∑
i=1

[
1

nτki
− wi

]
Y ki

∥∥∥∥∥
2

+
µL

2
η2

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2
+
L

2
η2σ2

n∑
i=1

w2
i

As for E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2, due to the Lipschitz smoothness again, we have

E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2 ≤ L2E
∥∥∥θ̄k − θk,ji

∥∥∥2
= L2η2E

∥∥∥∥∥
j∑
s=1

gi

(
θk,si

)∥∥∥∥∥
2

≤ 2L2η2E

∥∥∥∥∥
j∑
s=1

[
gi

(
θk,si

)
−∇Fi

(
θk,si

)]∥∥∥∥∥
2

+ 2L2η2E

∥∥∥∥∥
j∑
s=1

∇Fi
(
θk,si

)∥∥∥∥∥
2

= 2L2η2E

[
j∑
s=1

[
gi

(
θk,si

)
−∇Fi

(
θk,si

)]2]

+ 2L2η2E

∥∥∥∥∥
j∑
s=1

∇Fi
(
θk,si

)∥∥∥∥∥
2

≤ 2L2η2
j∑
s=1

[
µ
∥∥∥∇Fi (θk,si )∥∥∥2 + σ2

]

+ 2L2η2jE

[
j∑
s=1

∥∥∥∇Fi (θk,si )∥∥∥2]

≤ 2L2η2σ2 +
(
2µL2η2 + 2jL2η2

) τk
i∑

j=1

E
∥∥∥∇Fi (θk,ji )∥∥∥2

Based on the above expressions, we can obtain

E
∥∥∥θ̄k − θk,ji

∥∥∥2 ≤ 2η2σ2 +
(
2µη2 + 2jη2

) τk
i∑

j=1

E
∥∥∥∇Fi (θk,ji )∥∥∥2 , (25)

In addition, ∥∥∥∇Fi (θk,ji )∥∥∥2 ≤ 2
∥∥∥∇Fi (θk,ji )

−∇Fi
(
θ̄k
)∥∥∥2 + 2

∥∥∇Fi (θ̄k)∥∥2
≤ 2L2

∥∥∥θk,ji − θ̄k
∥∥∥2 + 2

∥∥∇Fi (θ̄k)∥∥2 (26)
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Take (32) back to (31), then

E
∥∥∥θ̄k − θk,ji

∥∥∥2 ≤ 2η2σ2 + 2η2(µ+ j)

τk
i∑

j=1

E

[
2L2

∥∥∥θk,ji − θ̄k
∥∥∥2 + 2

∥∥∇Fi (θ̄k)∥∥2] (27)

Take the sum within two communication rounds,

τk
i∑

j=1

E
∥∥∥θ̄k − θk,ji

∥∥∥2 ≤ 2τki η
2σ2 + 2η2

(
µτki +

τki
(
1 + τki

)
2

) τk
i∑

j=1

E

[
2L2

∥∥∥θk,ji − θ̄k
∥∥∥2 + 2

∥∥∇Fi (θ̄k)∥∥2]

= 2τki η
2σ2 + 2L2η2

[
2µτki + τki

(
1 + τki

)] τk
i∑

j=1

E
∥∥∥θk,ji − θ̄k

∥∥∥2
+ 2η2

[
2µτki + τki

(
1 + τki

)]
· τki

∥∥∇Fi (θ̄k)∥∥2 .
(28)

After minor rearranging, we derive

[
1− 2L2η2τki

(
2µ+ 1 + τki

)] τk
i∑

j=1

E
∥∥θ̄k − θki

∥∥2 ≤ 2τki η
2σ2 + 2η2

(
τki
)2 (

2µ+ 1 + τki
) ∥∥∇Fi (θk)∥∥2.

(29)
If we define Bki = 2L2η2τki

[
2µ+ 1 + τki

]
⩽ 2L2η2τ(2µ+ 1 + τ) := B, then it follows that,

(1−Bki )

τk
i∑

j=1

E
∥∥∥θ̄k − θk,ji

∥∥∥2 ⩽ 2τki η
2σ2 +

τki
L2

·Bki
∥∥∇Fi (θ̄k)∥∥2 , (30)

L2

τki

τk
i∑

j=1

E
∥∥∥θ̄k − θk,ji

∥∥∥2 ⩽
2η2σ2L2

1−Bki
+

Bki
1−Bki

∥∥∇Fi (θ̄k)∥∥2
⩽

2η2σ2L2

1−B
+

B

1−B

∥∥∇Fi (θ̄k)∥∥2 .
(31)

Take (37) back to (30), then

1

τki

τk
i∑

j=1

E
∥∥∥∇Fi (θ̄k)−∇Fi

(
θk,ji

)∥∥∥2 ≤ L2

τki

τk
i∑

j=1

E
∥∥∥θ̄k − θk,ji

∥∥∥2
≤ 2η2σ2L2

1−B
+

B

1−B

∥∥∇Fi (θ̄k)∥∥2 .
(32)

With the help of (32) and (37), we can further obtain

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 ⩽ 2L2

τk
i∑

j=1

∥∥∥θk,ji − θ̄k
∥∥∥2 + 2τki

∥∥∇Fi (θ̄k)∥∥2
⩽ 2τki

(
2η2σ2L

1−B
+

B

1−B

∥∥∇Fi (θ̄k)∥∥2)+ 2τki
∥∥∇Fi (θ̄k)∥∥2

=
4τki Lη

2σ2

1−B2
+

2τki
1−B

∥∥∇Fi (θ̄k)∥∥2
(33)

Further,

µLη

2

n∑
i=1

w2
i

τk
i∑

j=1

∥∥∥∇Fi (θk,ji )∥∥∥2 ⩽
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Take (38) and (40) to the intermediate result (29), and if Lη ≤ 1,
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With the assumption 4 of bounded dissimilarity, we can further simplify the above expression
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If µLητβ2+2Bβ2
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2 , then 2
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)
≤ 1 − B. Next, we take the average across all

communication rounds, we obtain
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where
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Intuitively, we can find that the convergence upper bound increases along with the value β2, L, σ2, κ2.
They are all parameters related to the quality of local objectives, local gradients, and local stochastic
gradients. In addition, by applying F1(·) = F2(·) = · · · = Fn(·) = F (·) and wi = 1

nτk
i

, we can
easily obtain the result in Theorem 1 and Theorem 3, respectively.

A.4 EXTENDED RELATED WORK

Cooperative MARL Cooperative MARL is one of the most prevalent categories of MARL research
whose applications range from multi-player games (Samvelyan et al., 2019; Mordatch & Abbeel,
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2018; Bard et al., 2020) to industrial simulations (Vinitsky et al., 2018; Li et al., 2022a; Zhou et al.,
2020; Peng et al., 2021a). Considering the complexity of cooperative tasks and partial observability
of learning agents, much research (Lowe et al., 2017; Rashid et al., 2020; Sunehag et al., 2017; Qiu
et al., 2021; Yu et al., 2022a; Hu et al., 2021) adopts some simplified practices to facilitate policy
learning. The two most frequent common practices are parameter sharing (PS) and centralized training
with decentralized execution (CTDE). PS means all agents share the same network architectures as
well as network parameters. CTDE treats the training phase and the evaluation phase differently:
in the training phase, a centralized structure can accept global state information rather than local
observation information to improve cooperation while in the evaluation phase, the agents make
decisions only based on their local observations. Although these practices work well in game
environments, when it comes to deploying MARL methods into real-world environments where 1)
multiple devices are available to necessitate scalability, 2) the information transmission relies on
cross-device communication, and 3) user privacy are critical, PS is no longer practical. An intuitive
thought is letting each agent learn its policy. Actually, some research (de Witt et al., 2020; Kuba et al.,
2022; Yu et al., 2022a; Christianos et al., 2021) have considered non-PS settings. MAPPO (Yu et al.,
2022a), HATRPO and HAPPO (Kuba et al., 2022) find that for some tasks on SMAC (Samvelyan
et al., 2019) micromanagement environment and multi-agent MuJoCo (Peng et al., 2021a), non-PS
can help to learn more agent-specialized policies to achieve better cooperation. SePS (Christianos
et al., 2021) details the influence of PS on training efficiency and performance. However, most
of these methods are still developed for game environments aiming at improving task-oriented
performance. Though they pose a potential way to protect user privacy and support scalability
on multiple devices, the high-frequency information transmission causes unaffordable bandwidth
overload and communication costs in the perspective of realistic scenarios.

Distributed MARL Aiming at bringing MARL into real-world applications, an increasing number
of research (Yu et al., 2022b; Raffard et al., 2004; Xu et al., 2023; 2022; Li et al., 2022b; Khodadadian
et al., 2022; Chen et al., 2021; Zhuo et al., 2019; Kumar et al., 2017; Wang et al., 2022) explore diverse
paradigms of distributed MARL. They mainly form two categories. One is a fully decentralized
setting where agents learn policies associated with the information transferred from other agents (Yu
et al., 2022b; Raffard et al., 2004; Wang et al., 2022). This category usually requires predefined
or learned communication protocols drawn from prior knowledge. Thus, intricate synchronization
mechanisms need to be introduced, which can impact the communication efficiency and be unstable
due to the fluctuations in agents’ presence.

Alternatively, other distributed MARL approaches (Xu et al., 2023; Song et al., 2022; Li et al., 2022b;
Chen et al., 2021; Kumar et al., 2017) employ federated learning, instituting a client-server paradigm
to develop Federated MARL. FCRL (Kumar et al., 2017) combines hierarchical RL with federated
learning. It uses a centralized controller for subtask assignment and allows direct agent-to-agent
communication, which is not the general paradigm we considered in this paper. LAPG (Chen
et al., 2021) proposes a distributed policy gradient method that can be applied in distributed RL and
MARL. It uses a condition that controls the parameter uploading process to enhance communication
efficiency. LAPG focuses more on distributed RL since the condition only utilizes information from
the current agent rather than combining it with information from other agents. FMARL (Xu et al.,
2023), Fed-MADRL (Song et al., 2022) and Fed-MARL (Li et al., 2022b) all adopt the conventional
federated learning scheme that the training parameters, i.e., stochastic gradients for FMARL, model
parameters for Fed-MARL and quantified model parameters for Fed-MADRL, are uploaded to
the server for aggregation during client-server communication. Then, the updated global model
will be broadcast to the agents. The difference is that Fed-MARL’s aggregation is weighted by
relative mini-batch size while Fed-MADRL utilizes a momentum aggregation mechanism. FMARL
provides two optimization methods: one is weight decay during aggregation, and the other is through
agent-to-agent communication. However, their aggregation does not take the diversity of learning
agents’ local environments into account. To be specific, each agent has different local observation in
real-world settings like cooperative exploration and navigation, which leads to non-i.i.d. problem
and necessitates the importance of the centralized coordination in the centralized training phase
in MARL. In addition, current methods mostly focus on optimizing a singular target rather than
a composite one to ensure simultaneous optimization of task-oriented performance and system
efficiency.
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A.5 BASELINE METHODS

IPPO (de Witt et al., 2020) demonstrates an intuitive application of single-agent RL methods into
multi-agent systems by sharing the parameters of agents’ actors and critics. In the federated learning
setting, the sharing of these parameters happens during the communication between the server and the
clients. We also notice a similar potential baseline, MAPPO (Yu et al., 2022a), the main difference
between IPPO and MAPPO is the input to the critics. While IPPO only takes the local observation as
input, MAPPO additionally requires the global state. It is hard to adapt to a federated learning setting.

RIAL and DIAL (Foerster et al., 2016) are strong baselines for MARL communication. They both
incorporate the last communication signals from other agents as additional observation to assist policy
learning and produce communication messages to maintain the scheme. Thus, the communication
messages are step-wise. RIAL can work in CTDE or a fully decentralized manner, and in our
implementation, we choose the latter serving as a decentralized baseline with communication. As
for DIAL, it enables differentiable communication by maintaining the gradients with respect to the
network parameters and the communication signals, which means that each local update requires the
other agents’ accumulated gradients.

CoPO (Peng et al., 2021b) achieves state-of-the-art performance on the original MetaDrive multi-
agent tasks. It employs a meta-learning approach to bundle local policy learning with global reward
optimization. Owing to its unique characteristics, we only changed it into a non-parameter sharing
scheme. It totally has four networks in its original version.

FMARL (Xu et al., 2023) is a strong baseline in the domain of federated MARL, which is also
experimentally evaluated in a multi-vehicle autonomous driving simulation benchmark (Vinitsky
et al., 2018). We notice that there are two methods proposed in (Xu et al., 2023). The first one can
be regarded as federated IPPO with weight decay while the second method requires agent-to-agent
communication, which is not compatible with our pure client-server setting, so we implement the
first method as our baseline.

A.6 MORE EXPERIMENTS

The cooperative navigation results are exhibited in Tab. 2 and Tab. 3, while the cooperative exploration
results are reported in Tab. 4 and Tab. 5.

Table 2: For cooperative navigation tasks, the detailed system performance and efficiency on the first
three scenarios

scenarios scenario1 scenario2 scenario3
methods\metrics success safety speed ψ1 utility success safety speed ψ1 utility success safety speed ψ1 utility

IPPO 0.487 0.621 0.382 0.513 0.501 0.586 0.308 0.449 0.435 0.445 0.507 0.546 0.439 0.586 0.520
RIAL 0.588 0.362 0.412 0.632 0.499 0.473 0.283 0.365 0.610 0.433 0.601 0.616 0.380 0.620 0.554
DIAL 0.665 0.431 0.496 0.227 0.455 0.549 0.512 0.580 0.251 0.473 0.696 0.652 0.493 0.264 0.526
CoPO 0.623 0.678 0.530 0.372 0.551 0.679 0.464 0.516 0.379 0.510 0.574 0.477 0.573 0.386 0.503

FMARL 0.699 0.513 0.511 0.508 0.558 0.577 0.378 0.643 0.461 0.514 0.490 0.637 0.649 0.566 0.586
FMRL-LA 0.737 0.650 0.548 0.456 0.598 0.754 0.574 0.617 0.548 0.623 0.653 0.716 0.644 0.513 0.632

In the first three scenarios in Tab. 2, FMRL-LA has achieved the best system utility. RIAL, due to its
fully decentralized training paradigm and unique communication mechanism, reaches the highest
communication efficiency. However, the success rate, safety, and speed of RIAL in the three scenarios
are not very high. It proves that currently, fully decentralized training in MAS is extra difficult.

Table 3: For cooperative navigation tasks, the detailed system performance and efficiency on the last
three scenarios

scenarios scenario4 scenario5 scenario6
methods\metrics success safety speed ψ1 utility success safety speed ψ1 utility success safety speed ψ1 utility

IPPO 0.425 0.240 0.213 0.483 0.340 0.376 0.400 0.250 0.372 0.350 0.399 0.259 0.296 0.437 0.348
RIAL 0.322 0.371 0.318 0.643 0.414 0.214 0.228 0.317 0.558 0.329 0.271 0.226 0.212 0.593 0.326
DIAL 0.457 0.594 0.465 0.202 0.430 0.445 0.397 0.380 0.195 0.354 0.524 0.506 0.541 0.153 0.431
CoPO 0.664 0.619 0.631 0.380 0.574 0.485 0.469 0.475 0.485 0.479 0.513 0.576 0.533 0.269 0.473

FMARL 0.519 0.529 0.524 0.447 0.505 0.391 0.301 0.370 0.350 0.353 0.460 0.489 0.481 0.418 0.462
FMRL-LA 0.632 0.644 0.621 0.395 0.573 0.553 0.507 0.448 0.504 0.503 0.611 0.639 0.504 0.502 0.564
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In Tab. 3, these three scenarios are more difficult than the former three. We can tell it from the
performance of the methods. In particular, the average speed of all methods in scenarios 5 and 6 is
relatively low.

Table 4: For cooperative exploration tasks, the detailed system performance and efficiency on the
first three scenarios

scenarios scenario1 scenario2 scenario3
methods\metrics explore safety speed ψ1 utility explore safety speed ψ1 utility explore safety speed ψ1 utility

IPPO 0.425 0.309 0.422 0.559 0.429 0.417 0.297 0.319 0.420 0.363 0.484 0.398 0.500 0.424 0.452
RIAL 0.431 0.417 0.332 0.678 0.465 0.619 0.356 0.179 0.650 0.451 0.523 0.260 0.412 0.706 0.475
DIAL 0.705 0.507 0.557 0.337 0.523 0.707 0.493 0.356 0.176 0.433 0.651 0.552 0.521 0.275 0.500
CoPO 0.581 0.606 0.628 0.472 0.572 0.564 0.489 0.560 0.398 0.503 0.593 0.577 0.580 0.379 0.532

FMARL 0.535 0.515 0.523 0.561 0.534 0.504 0.538 0.469 0.479 0.498 0.669 0.407 0.561 0.487 0.531
FMRL-LA 0.714 0.645 0.617 0.519 0.624 0.687 0.598 0.528 0.500 0.578 0.696 0.659 0.664 0.467 0.622

In Tab. 4, by comparing the performance with cooperative navigation on the same scenarios in Tab. 2,
we observe that on the two tasks, our method performs robustly with respect to all evaluation metrics.

Table 5: For cooperative exploration tasks, the detailed system performance and efficiency on the last
three scenarios

scenarios scenario4 scenario5 scenario6
methods\metrics explore safety speed ψ1 utility explore safety speed ψ1 utility explore safety speed ψ1 utility

IPPO 0.528 0.477 0.564 0.619 0.547 0.117 0.122 0.330 0.608 0.294 0.513 0.228 0.438 0.564 0.436
RIAL 0.353 0.238 0.280 0.710 0.395 0.273 0.162 0.213 0.671 0.330 0.314 0.375 0.280 0.677 0.412
DIAL 0.432 0.312 0.490 0.316 0.388 0.547 0.385 0.283 0.202 0.354 0.366 0.440 0.451 0.308 0.391
CoPO 0.717 0.594 0.591 0.487 0.597 0.528 0.481 0.474 0.461 0.486 0.603 0.519 0.501 0.438 0.515

FMARL 0.657 0.416 0.538 0.646 0.564 0.358 0.185 0.349 0.578 0.368 0.593 0.334 0.460 0.549 0.484
FMRL-LA 0.699 0.548 0.660 0.558 0.616 0.531 0.467 0.428 0.521 0.487 0.629 0.567 0.533 0.599 0.582

In Tab. 5, comparing the performance of our method with other baselines, we find that FMRL-LA
suffers less from the complexity of the maps. In addition, we find the baseline CoPO, which is the
state-of-the-art on the original MetaDrive also performs well in these complex scenarios. We believe
it is because of the explicit modeling of the neighbour agents.

Table 6: Average client selection effectiveness in navigation task on scenarios 1, 2, and 3 with varying
number of agents.

Scenarios Scenario1 Scenario2 Scenario3
total agent number 3 6 9 12 3 6 9 12 3 6 9 12
average selected 2.75 ± 0.32 5.16 ± 0.83 7.22 ± 1.09 8.85 ± 1.66 2.91 ± 0.15 5.47 ± 0.86 7.48 ± 1.49 9.14 ± 1.79 2.81 ± 0.42 5.00 ± 1.02 7.19 ± 1.14 8.75 ± 1.59

average selected at last 2.32 ± 0.69 4.45 ± 0.92 7.04 ± 1.01 8.56 ± 1.43 2.59 ± 0.57 4.90 ± 0.89 7.16 ± 1.01 8.67 ± 1.42 2.38 ± 0.64 4.59 ± 0.92 7.07 ± 0.98 8.42 ± 1.44

Table 7: Hyperparameter settings for experiments
Hyperparameters Value Hyperparameters Value
Critic lr 5e-4 Hidden layer 1
Activation ReLU Hideen layer dim 32
GAE lambda 0.95 Number of random seeds 5
Gamma 0.99 Network initialization Orthogonal
Hypernet embed 32 Maximal environment steps for each trial [1M, 5M]
Batch size 1024 Maximal local updates τ [5, 10]
Mini batch size 512 Maximal communication round K maximal environment steps / maximal local updates
Optimizer Adam Optimizer episilon 1e-5

In Tab. 6, we show the client selection effect. We can find an obvious trend that the selected agents’
ratio is decreasing with the number of initial agents. It is consistent with our intuition since the
more learning agents involved in a scenario, the higher the probability that agents can make similar
decisions.
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