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ABSTRACT

Scheduling computational workflows represented by directed acyclic graphs
(DAGs) is crucial in many areas of computer science, such as cloud/edge tasks
and data mining. The complexity of online DAG scheduling is compounded by the
large number of computational nodes, data transfer delays, and the non-uniform
arrival of tasks. This paper introduces the Multi-Agent Local Voting Protocol
(MLVP), a novel approach focused on dynamic load balancing for DAG schedul-
ing in heterogeneous computing environments, where executors represented as an
agents. The MLVP employs a local voting protocol to achieve effective load dis-
tribution by formulating the problem as a differentiated consensus achievement.
The algorithm calculates an aggregated DAG metric for each executor-node pair
based on node dependencies, node availability, and executor performance. These
metrics are optimized using a genetic algorithm to assign tasks probabilistically,
achieving efficient workload distribution across the system and thus improving
makespan. The effectiveness of the MLVP is demonstrated through comparisons
with state-of-the-art DAG scheduling algorithm and popular heuristics such as
DONF, FIFO, Min-Min, and Max-Min. Simulations show that MLVP achieves
makepsan improvements of up to 70% on specific graph topologies and an av-
erage makespan reduction of 23.99% over DONF across various random DAGs.
Notably, the algorithm’s scalability is evidenced by enhanced performance with
increasing numbers of executors and graph nodes.

1 INTRODUCTION

In heterogeneous computing systems, task scheduling and resource allocation present significant
challenges. These systems integrate various types of processors, such as CPUs, GPUs, and FPGAs,
to execute tasks efficiently and optimize resource utilization. Workflows in these systems are often
modeled as directed acyclic graphs (DAGs), which clearly represent task dependencies, where nodes
denotes individual tasks and edges reflect precedence and data transfer costs between tasks.

Numerous studies examine online and dynamic scheduling, often using the terms interchangeably.
Typically, papers specify the scheduling model and context, which depend on executor parameters,
especially in fog computing environments (Alizadeh et al. (2020)). Task arrival attributes, whether
random-based for non-DAG models (Alizadeh et al. (2020)) or involving random arrival times for
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known DAGs (Quintin & Wagner (2012)), also define this. When DAGs aren’t fully visible, sched-
ulers have limited visibility and cannot use heuristics like the Critical-Path method like CPOP and
its successors like HEFT (Ghose & Dey (2022); Grandl et al. (2014)).

Significant research on online and dynamic scheduling for DAG-modeled applications has been con-
tributed by major companies. Microsoft’s research team has focused on resource management (Mao
et al. (2016)) and cluster scheduling (Grandl et al. (2014)). Cloud providers, including Microsoft
(Jalaparti et al. (2015); Yan et al. (2016)), Amazon (Durillo & Prodan (2013)), Google (Soualhia
et al. (2015)), and IBM (Center & Feitelson (1994)), have published findings on process optimiza-
tion and scheduling. Distributed application frameworks like Spark (Duan et al. (2020)) and Flink
(Li et al. (2020)) utilize DAGs to depict applications and employ various online scheduling method-
ologies.

This paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach to DAG
scheduling in heterogeneous computing environments. The MLVP leverages a multi-agent frame-
work where executors, acting as agents, use a local voting protocol to dynamically balance loads
across the system and in turn reducing makespan. The protocol calculates an aggregated DAG met-
ric for each task-executor pair, optimized via a genetic algorithm, to ensure efficient task assignment.
This method addresses the limitations of traditional scheduling algorithms by accommodating the
dynamic and online nature of real-world computing tasks.

The remainder of this paper is organized as follows. Section 2 provides an overview of the on-
line scheduling problem and dynamic DAG scheduling approaches. Section 3 describes distributed
heterogeneous computing system, DAG model and performance criteria. Section 5 details the pro-
posed MLVP-based scheduling algorithm and its architecture. Section 6 evaluates the MLVP-based
scheduling algorithm performance under different workloads.

2 RELATED WORKS

In online scheduling in general, review by Alizadeh et al. (2020) identifies popular scheduling al-
gorithms: MCT, Min–Min, and Max–Min used in fog computing for task allocation based on task
size and completion times. Review by Khallouli & Huang (2022) assess scheduling methods in
YARN, Borg, and Kubernetes, and advocate for ”smarter” approaches, like reinforcement learning
and decision trees to refine multi-objective optimization in cloud resource allocation, addressing the
complexities of heterogeneous jobs and resources.

Online DAG scheduling often deals with incomplete knowledge of tasks and communications. To
address this, Quintin & Wagner (2012) introduces WSCOM, a variation of the work-stealing algo-
rithm, for scheduling file execution tasks. Grandl et al. (2014) tackles online task scheduling in
data-parallel clusters that require diverse resources such as CPU, memory, disk, and network. They
propose the Tetris scheduling method, which strives to optimally assigns tasks based on comprehen-
sive resource needs.

The consensus approach is increasingly popular for addressing various practical issues, such as
cooperative control in multi-vehicle networks (Granichin et al. (2012); Ren et al. (2007)), distributed
control of robotic networks (Bullo et al. (2009)), the flocking problem (Yu et al. (2010); Virágh et al.
(2013)), and optimizing sensor networks (Kar & Moura (2010)). It holds promise for load balancing
in computer, production, transport, logistics, and service networks by framing the problem as a
consensus issue among network nodes (Amelina et al. (2015)). The study in (Vergados et al. (2018))
examines optimal task redistribution in stochastic networks with variable priorities by determining
an ideal step-size for a consensus-type protocol.

3 ONLINE DAG SCHEDULING PROBLEM

This paper addresses the challenge of scheduling a single DAG within a distributed heterogeneous
system, specifically when executors have visibility limited to only the initial layers of the working
front. The scheduling model is composed of four distinct parts.

Directed acyclic graph G = (C,E), where C = 1, 2, 3...c is a set of nodes and E is the set of
edges, where:
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• Edge (v, s) ∈ E, v, s ∈ C denotes the precedence constraint such that node j must wait
until task v finishes its execution.

• Cost of communication bv,s between nodes v and s, (v, s) ∈ E should be taken into account
if node i and s assigned to different executors, otherwise there is no cost of communication.
If node s has several parents (v, ..., k), k ∈ O that were performed on executors other than
the executor assigned to node v, then the cost of communication are taken into account
from each parent bv,s +..+ bk,s.

• Each node v has a type that denotes on what type of executor should this node be executed.

• Set of immediate predecessors of node i in a DAG is expressed as pred(v). A node without
any predecessor is called an entry node. Multiple entry nodes may exist in a DAG.

• Set of immediate successors of node v is expressed as succ(v). A node without any suc-
cessor is called an exit node vexit. There may be multiple exit nodes in a DAG.

Distributed heterogeneous computing system is represented by the graph D = (N,L), where:

• Graph has N = 1, 2, 3...n executors that work in parallel, L bidirectional links exist be-
tween any two executors.

• In every moment of time t each executor performs his task or chooses a new one from the
DAG ready to perform nodes Ht = 1, 2, 3...ht, Ht ⊂ O.

• Each node i, i ∈ Ht of the DAG has Ri = 1, 2, 3...ri child nodes and each node jm, jm ∈
Ri could have not only node i as a mother nodes.

• Executor m,m ∈ N chooses the new node to perform in the state xm(t). The state of
executor m is the evaluation of the probability of choosing a node Pm

i for each DAG node
i, at each moment of time.

• τmi is the execution time for executor m to process the node i.

• All executors are divided in equal shares according to the types of DAG nodes.

• Each executor m has a type that denotes what type of tasks can be defined for this executor.
In order to assign a node i to a executor m, it is necessary that the type of node i and the
type of executor m match. Executor m receives a penalty wv,m for each parent node of v,
that is not perform by node m.

Online sliding informational window: at each given moment the scheduler observes only ready-
to-execute nodes and their immediate successors within the informational window with length 2.
This limits amount of information that can be utilized for scheduling and makes problem online, i.e.
scheduler cannot utilize information about nature of task arrival. So, on the one hand, in compari-
son with the static scheduling there are significantly less information, it makes impossible to utilize
classic DAG scheduling algorithms like CPOP or HEFT, that requires full information about DAG.
On the other hand, limited information about DAG topology and parameters of not yet observed
tasks combines limitations described in various online DAG scheduling papers (see introduction)
and makes problem more difficult. If compared with purely online scheduling, there are more in-
formation available such as dependencies and parameters of tasks that inside sliding informational
window.

Performance criterion for scheduling: before presenting the final scheduling objective function,
we first define the Makespan, Earliest Start Time(EST), Earliest Finish Time(EFT) attributes.

• Makespan is the finish time of the last node in the scheduled DAG. It is defined by
makespan = max{AFT (vexit)} where AFT (vexit) is the actual finish time (AFT) of
exit node vexit. In the case where there are multiple exit nodes, the makespan is the maxi-
mum AFT of all exit nodes.

• EST (v,m) denotes the earliest start time of node v on executor m and it is defined as
EST (v, n) = max{TAva(m),max{v∈pred(v)}{AFT (v)+ bv,s}}. TAva(m) is the earliest
ready time of executor m.

• EFT (v,m) denotes the earliest finish time of node v on executor m and is defined as
EFT (v,m) = EST (v,m) + wv,m.
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The objective function of the DAG scheduling is to determine the assignment policies of an appli-
cation’s node to heterogeneous executors so that the makespan is minimized.

4 GRAPH GENERATION

We utilize the open-source project DAGGEN to generate random DAGs (22). It is a popular tool for
generating DAGs to evaluate the performance of scheduling heuristics and has been used in studies
on DONF (Lin et al. (2019)), CPOP (Sih & Lee (1993)), HEFT (Topcuoglu et al. (1999)), and
PETS (E & Thambidurai (2007)). DAGGEN creates random, synthetic task graphs for simulation
purposes, with the process varying according to the configured parameters:

1. Generate the tasks according to -n, -fat, -regularity

2. Generate the dependencies according to -density, -jump, -ccr

3. Add transfer costs, these costs derive from the size of the data handled by the initiator of
the transfer

Table with all parameters used for DAG generation can be found in appendix A.

5 DAG SCHEDULING ALGORITHMS

The Multi-Agent Local Voting Protocol (MLVP) algorithm is designed to optimize task schedul-
ing for directed acyclic graphs (DAGs) in heterogeneous computing environments. The algorithm
achieves efficient task distribution by calculating an aggregated metric for each executor-DAG node
pair and assigning probability of given node execution on this executor. Aggregated metric is derived
from three key factors:

1. Incoming Connections: The ratio of the total incoming connections from unfinished DAG
nodes to their child nodes

2. Available Nodes: The number of DAG nodes currently available for execution compared
to nodes of the same type

3. Executor Performance: The performance capability of the executor in processing task

A genetic algorithm is employed to optimize the coefficients of these factors in a linear combination,
forming the aggregated DAG metric. This metric serves as a basis for determining the probability
of assigning a DAG node to a specific executor. By optimizing these coefficients, the genetic algo-
rithm ensures that the metric accurately reflects the importance of each factor, leading to better task
prioritization and scheduling efficiency.

During the Local Voting Procedure, the genetic algorithm further refines the assignment probabilities
by dynamically adjusting them to balance the workload across executors. This iterative optimization
process helps the system adapt to varying task and executor conditions, thereby reducing makespan
and enhancing overall performance.

Consensus plays a crucial role in the MLVP algorithm by coordinating task distribution among
executors. The local voting protocol (LVP) facilitates consensus by enabling executors to share their
current task assignment probabilities and states with neighboring executors. The protocol iteratively
adjusts these probabilities to ensure a balanced workload distribution, which is achieved when the
difference in task assignment states between any executor and its neighbors falls below a specified
threshold (ϵ), which in this case was 0.05. Algorithms pseudocode can be found in Appendix B.

5.1 EVALUATION OF PROBABILITY FOR NODES

At each moment of time t the executors choose |Ht|/0.8n nodes for estimation in time moment t
randomly. To synchronize the data of all nodes the local voting protocol (LVP) is used. The LVP is
necessary to reach a consensus on the state between the executors.

For each node i at time moment t the following values are calculated by the algorithm:
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1. Ratio of the sum of all incoming connections from not finished DAG node into child’s
nodes of node i to the number of child nodes of node i:

Wt =
∑

ji∈Ri

inpt(j
i)/Ri,

where Ri is the number of child nodes of i node, inpt(ji) is the number of not finished
mother nodes of ji node.

2. Sum of the ratio of DAG nodes number currently available for execution to the number of
the same as ji types:

Qi =
∑

ji∈Ri

(|Ht|/sizeji(|Ht|)),

where sizeji(Ht) is the number of DAG nodes ready to execute with the same type as node
ji.

3. Performance of executor m is taken into account. For executor m the rate of perform the
node i is compared with executor e ∈ N which is fastest executor for task i:

Zi = min
e∈N

(exT imee(i))− exT imem(i),

where exT ime is the time when the executor needs to finish the node i.

4. Sum of previous elements with coefficients:

resulti = wWi + qQi + zZi.

Coefficients w, u , z were defined using the genetic algorithm (Carson (2017)) for 2 types
of graph topologies. Random population of 100 elements is created, after testing the top
10 go to the next stage, we also take 40 crossed from the top 10, 39 crossed with additional
mutations, 10 copies of the top 10 with mutations and 1 random DNA, with the target
makespan −→ min and stopping condition if makespan improvement with previous is less
than 0.1%.

5. Probability of choosing the executor m to perform the node i is

Pm
i =

resulti(∑
j∈nodesToExecute resultj

) .
5.2 LOCAL VOTING PROTOCOL

The state of executor m is the evaluation of the probability of choosing a node Pm
i for each DAG

node i, at each moment of time. The dynamics of the state of the node i has the form:

xm
t+1 = xm

t + fm
t + um

t

where fm
t is the number of new nodes of DAG were opened for execution.

At time instant t executor m sends to the n/4 nodes its own load xt
m. We assume that to form the

control strategy each executor m has observations about its other agents state with noise and delay:

ym,c
t = xj

t−dm,c
t

+ wm,c
t , c ∈ N,

where dm,c
t is delay of transfer data, and wm,c

t is a noise.

The message exchange is undergone only once per system cycle. Applying the local voting algo-
rithm, we obtain a parameter characterizing the state of executor m relative to its neighbors:

um
t = γ

∑
c∈N

(ym,c
t − xm,m

t )

where γ > 0 is a step-size, which represents the sensitivity of the algorithm to the difference between
agents states. The consensus is achieved when the state of the last node (the node to which the
message was intended) differs from its neighbors by no more than a specified one ϵ - consensus.
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5.3 ALGORITHMS FOR COMPARISON

In this section consider a detailed description of the graph scheduling algorithm that we use to
compare with the proposed algorithm. Degree-of-Node-First algorithm selected in accordance with
the review article for graph scheduling in heterogeneous environments (Suman & Kumar (2018);
Murad et al. (2022); Li et al. (2010); Kanani et al. (2015); Hayatunnufus et al. (2020)). Selection
was based on following considerations: select state-of-the-art DAG scheduling (DONF) and online
scheduling heuristics (Optimized Min-Min and Max-Min), as well as widely used FIFO.

• Degree of Node First (DONF) algorithm (Lin et al. (2019)). It is feasible to maintain
higher parallelism during the scheduling process in order to make full use of heterogeneous
system resources. Thus the chosen node should have the property of enlarging parallelism
as much as possible. Degree-of-node scheduling procedure can be shortly described as
nodes with larger out-degree should be scheduled earlier. The weighted out-degree (WOD)
of node vi is defined by:

WOD(vi) =
∑

v∈succ(s)

1

ID(s)
, (1)

where ID(s) is the in-degree of node s. Each executor on it’s turn selects best node by
DONF algorithm, it’s so it will be until all nodes will be executed

• Optimized Min-Min task scheduling algorithm (Murad et al. (2022)). Min-Min does the
opposite by choosing and assigning small tasks in resources that can perform the task with
minimum execution time. The objective of the Min-Min algorithm is to ensure, firstly, that
all tasks with a minimum completion time are completed. The Min-Min has the following
steps:

1. For all nodes of DAG and all executors the time of perform is calculated.
2. Each executor on it’s turn selects and executes node with the lowest execution time.

• Max-Min Task scheduling Algorithm (Kanani et al. (2015)). The Max-Min is quite sim-
ilar with a previous algorithm, the main difference is in node selection criterion - in this
case executor should select the biggest node by weight. The Max-Min has the following
steps:

1. For all nodes of DAG perform weight is calculated.
2. Each executor on it’s turn selects and executes node with the biggest perform weight.

• FIFO (Hayatunnufus et al. (2020)). This is the default Scheduler. The tasks are placed in
a queue and the tasks are performed in their submission order. In this method, once the job
is scheduled, no intervention is allowed. The FIFO algorithm has the following steps:

1. Each node receives its place in the queue when ready for execution.
2. Each executor on it’s turn selects and executes first node in the queue.

6 NUMERICAL SIMULATION

In this section, the design of an experiment is explained and the performance of the proposed MLVP-
based algorithm is evaluated. The hardware used for computations is

• Server 1: CPU AMD 9 5950x 32 threads; GPU RTX 3080 ti; RAM 128 GB.
• Server 2: CPU AMD Ryzen Threadripper 3990X 128 threads; GPU RTX 3080 ti; RAM

192 GB.

6.1 SIMULATION ENVIRONMENT

The proposed Local Voting based algorithm is tested to measure its generalization and robustness
depending on different system configurations. The working environment is determined by different
heterogeneous configurations from three to twenty four executors are used, 4 configurations in total.
The types of executors are evenly distributed (equally for executors of types 1, 2, and 3), and their
powers were set randomly from a range of 10 to 300 GFlops. Each workspace is intended for testing
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on a fixed DAG dimension. The details of the configurations test cases are shown in Table 2 in
Appendix G.

In the simulation, the executors inside a computer node are “fully connected”: links between differ-
ent executors do not obstruct each other. Links between computer nodes also have similar properties,
however later data transmission starts only when all the former ones finish.

For testing and training algorithms, a real-time graph traversal C++ simulation environment was
developed (example can be seen at Appendix C). The logic of the simulation is as follows: after
starting the calculation, executors, working in parallel and exchanging service data, choose a node
for execution, and then work on it for the time period, depending on node weight and executor
power. After execution of a node the operation is repeated, and so on until the moment when all
nodes in the DAG are executed.

For training and evaluation of the proposed MLVP-based algorithm batch of random DAG are used
(described in Section 4). At fixed dimensions exists 48 topologies. For training, 3 graphs are gener-
ated for each topology for training (totally 144 for each dimension 3000, 6000, 12000, 24000) and
10 graphs for evaluation (totally 480 for each dimension 3000, 6000, 12000, 24000). Total of 1920
DAGs were tested. Example of DAG are shown in Fig.3. Comparative analysis is presented in the
Section 7

7 RESULTS

The comparison results between MLVP-based algorithm and state-of-the-art DAG scheduling algo-
rithms DONF, FIFO, Min-Min, Min-Max for different workspaces.

The comparison was carried out in accordance with the following metric for each tested graph:

p =
(makespanMLVP −makespanother) · 100%

makespanother
, (2)

where makespanother is the finish time of the last node in the scheduled DAG using one of the
algorithms from the list above, makespanMLVP is the finish time of the last node in the scheduled
DAG using the MLVP-based algorithm. Obtained values are summarized and averaged for each
workspace and DAG dimension DAG. The proposed MLVP-based algorithm is tested on a large-
scale DAGs and is compared to the state-of-the-art algorithms, to determine its generalization and
robustness depending on dimensions DAGs and different system configurations.

Fig. 1 shows a comparison of the MLVP-based approach compared to DONF, FIFO, Min-Min, Min-
Max algorithms for various test cases, where X-Axis is test cases and Y-Axis is the percentage of
how much the MLVP-based exceeds/inferior compared with state-of-the-art algorithms. On average,
the proposed approach outperforms the DONF by 23.99%, FIFO by 26.21%, Min-Min 26.61% Min-
Max 30.81% on all test cases.

Fig. 4 in Appendix F presents box plots illustrating the percentage improvements in makespans
of the MLVP algorithm relative to various scheduling algorithms—DONF, FIFO, Min-Min, and
Min-Max—across different workspaces and DAG dimensions. Each workspace, differentiated by
executor counts of 3, 6, 12, and 24, is analyzed separately to delineate the algorithm’s performance
under varying computational resources.

In the first workspace with three executors, the MLVP algorithm exhibits substantial variation in
performance relative to the reference algorithms, with a wider interquartile range. Conversely, in
workspaces with six, twelve, and twenty-four executors, the MLVP algorithm demonstrates more
consistent improvements, as indicated by the narrower interquartile ranges.

Observing the median values, it is evident that the MLVP algorithm tends to offer improvements in
makespan across all workspaces, albeit with variations in the magnitude of improvement. Particu-
larly, the algorithm shows consistent positive enhancements compared to the FIFO, Min-Min, and
Min-Max algorithms across all executor counts. In the three-executor workspace, MLVP presents
around a 10% improvement over DONF and FIFO and approximately a 5% improvement over Min-
Min and Min-Max. In the six-executor workspace, MLVP shows nearly 20% improvement across
all compared algorithms. In larger workspaces with twelve and twenty-four executors, MLVP con-
sistently exhibits around a 60% improvement over the reference algorithms.
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The MLVP algorithm demonstrates a promising capacity to improve makespan in various
workspaces across different topologies and against multiple scheduling algorithms. It exhibits con-
sistency and adaptability across different number of executions, underlining its potential to scale
effectively in heterogeneous computing environments Fig 5. Future work might focus on exploring
the robustness and scalability of MLVP in more diverse and complex scheduling scenarios to further
validate its applicability and performance.

Figure 1: Percentage improvements MLVP-based approach compared to other algorithms.

8 CONCLUSION

This paper presents the Multi-Agent Local Voting Protocol (MLVP), a novel approach to schedul-
ing tasks in directed acyclic graphs (DAGs) within heterogeneous computing environments. The
MLVP effectively addresses the challenges of online DAG scheduling by dynamically balancing the
load across multiple executors. This is achieved through a local voting protocol that calculates an
aggregated metric for each executor-DAG node pair, leveraging factors such as incoming connec-
tions, available nodes, and executor performance. The optimization of combination of these metrics
is performed using a genetic algorithm, allowing for probabilistic task assignment that improves
makespan.

The MLVP’s innovative approach demonstrates significant improvements over traditional scheduling
algorithms, with simulations showing up to a 70% reduction in makespan on specific graph topolo-
gies and an average performance gain of 23.99% over the Degree of Node First (DONF) algorithm.
These results highlight the MLVP’s scalability and effectiveness in various system configurations,
making it a promising solution for real-world applications in cloud computing, data mining, and
beyond.

Looking forward, future research could explore extending the MLVP to support multi-dimensional
executor requirements and handling dynamic conditions such as fluctuating numbers of executors.
Additionally, further exploration into optimizing resource reservation based on anticipated critical
system tasks could enhance the algorithm’s adaptability and efficiency.

8



Published as a conference paper at ICOMP 2024

REFERENCES

GitHub - frs69wq/daggen: DAGGEN: A synthethic task graph generator — github.com. https:
//github.com/frs69wq/daggen. [Accessed 03-08-2024].

Mohammad Reza Alizadeh, Vahid Khajehvand, Amir Masoud Rahmani, and Ebrahim Akbari.
Task scheduling approaches in fog computing: A systematic review. International Jour-
nal of Communication Systems, 33(16):e4583, 2020. doi: https://doi.org/10.1002/dac.4583.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4583. e4583
IJCS-19-0949.R2.

Natalia Amelina, Alexander Fradkov, Yuming Jiang, and Dimitrios J. Vergados. Approximate con-
sensus in stochastic networks with application to load balancing. IEEE Transactions on Informa-
tion Theory, 61(4):1739–1752, 2015. doi: 10.1109/TIT.2015.2406323.

F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic Networks: A Mathematical Ap-
proach to Motion Coordination Algorithms. Princeton Series in Applied Mathematics. Princeton
University Press, 2009. ISBN 9781400831470.

J. Carson. Genetic Algorithms: Advances in Research and Applications. Computer science, tech-
nology and applications. Nova Science Publishers, Incorporated, 2017. ISBN 9781536118926.

Thomas J. Watson IBM Research Center and D.G. Feitelson. A Survey of Scheduling in Multi-
programmed Parallel Systems. Research report. IBM T.J. Watson Research Center, 1994. URL
https://books.google.ru/books?id=4lRKHAAACAAJ.

Yubin Duan, Ning Wang, and Jie W. Reducing makespans of dag scheduling through interleaving
overlapping resource utilization. In 2020 IEEE 17th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), pp. 392–400, 2020. doi: 10.1109/MASS50613.2020.00055.

Juan Durillo and Radu Prodan. Multi-objective workflow scheduling in amazon ec2. Cluster Com-
puting, 17:169–189, 06 2013. doi: 10.1007/s10586-013-0325-0.

Ilavarasan E and Perumal Thambidurai. Low complexity performance effective task scheduling
algorithm for heterogeneous computing environments. Journal of Computer Science, 3, 02 2007.
doi: 10.3844/jcssp.2007.94.103.

Anirban Ghose and Soumyajit Dey. Fgfs: Feature guided frontier scheduling for simt dags. J. Super-
comput., 78(9):11702–11743, jun 2022. ISSN 0920-8542. doi: 10.1007/s11227-022-04323-8.
URL https://doi.org/10.1007/s11227-022-04323-8.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. SIGCOMM Comput. Commun. Rev., 44(4):
455–466, aug 2014. ISSN 0146-4833. doi: 10.1145/2740070.2626334. URL https:
//doi.org/10.1145/2740070.2626334.

O. Granichin, Petr Skobelev, Aleksandr Lada, Igor Mayorov, and Alexander Tsarev. Comparing
adaptive and non-adaptive models of cargo transportation in multi-agent system for real time
truck scheduling. pp. 282–285, 01 2012.

Hayatunnufus Hayatunnufus, Mardhani Riasetiawan, and Ahmad Ashari. Performance analysis of
fifo and round robin scheduling process algorithm in iot operating system for collecting landslide
data. pp. 63–68, 07 2020. doi: 10.1109/DATABIA50434.2020.9190608.

Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin Makarychev, and Matthew
Caesar. Network-aware scheduling for data-parallel jobs: Plan when you can. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM
’15, pp. 407–420, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450335423. doi: 10.1145/2785956.2787488. URL https://doi.org/10.1145/
2785956.2787488.

Bhavisha Kanani, Bhumi Maniyar, and Sameer Mohammad. Review on max-min task scheduling
algorithm for cloud computing. SSRN Electronic Journal, 2:781–784, 03 2015.

9

https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4583
https://books.google.ru/books?id=4lRKHAAACAAJ
https://doi.org/10.1007/s11227-022-04323-8
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/2785956.2787488
https://doi.org/10.1145/2785956.2787488


Published as a conference paper at ICOMP 2024
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A DAG GENERATION PARAMETERS

Table 1: DAG Generation Parameters

Parameter Description

n Number of computation nodes in the DAG (i.e., application ”tasks”).
Values: 3000, 6000, 12000, 24000.

fat Width of the DAG, the maximum number of tasks that can be executed concurrently.
A small value will lead to a thin DAG (e.g., chain) with low task parallelism, while
a large value induces a fat DAG (e.g., fork-join) with high parallelism.
Values: 0.2, 0.5.

density Determines the number of dependencies between tasks of two consecutive DAG levels.
Values: 0.1, 0.4, 0.8.

regularity Regularity of the distribution of tasks between the different levels of the DAG.
Values: 0.2, 0.8.

jump Maximum number of levels spanned by inter-task communications. This allows
generating DAGs with execution paths of different lengths.
Values: 2, 4.

ccr The ratio of the sum of edge weights to the sum of node weights.
Values: 0.2, 0.8.

B MLVP PSEUDOCODE

Algorithm 1 Multi-Agent Local Voting Protocol (MLVP)
1: Input: Set of executors E, Set of DAG nodes N
2: Output: Assignment probabilities for each DAG node to each executor
3: Initialize assignmentProbabilities to an empty data structure
4: for each executor e ∈ E do
5: for each node n ∈ N do
6: if n is not finished and n is ready for execution then
7: incomingConnections← Sum of weights of all incoming edges to n
8: availableNodes← Count of nodes ready for execution of the same type as n
9: executorPerformance← Performance metric of executor e

10: aggregatedMetric ← LinearCombination(incomingConnections,
availableNodes, executorPerformance)

11: assignmentProbabilities[e][n]← CalculateProbability(aggregatedMetric)
12: end if
13: end for
14: end for
15: Find coefficients for LinearCombination function based on historical data
16: for each node n ∈ N do
17: if n is ready for execution then
18: for each executor e ∈ E do
19: Tune assignmentProbabilities[e][n] using genetic algorithm to balance workload
20: end for
21: end if
22: end for
23: return assignmentProbabilities
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C SIMULATION EXAMPLE

Figure 2: An example of a C++ simulation environment

D SIMULATION CONFIGURATIONS

A total of 4 test cases were identified for large-scale DAGs:

1. 3 executors, 1 executor of each type (1 for 1 type, 1 for 2 type, 1 for 3 type) which dif-
fer in computational capabilities: randomly generated from 10 to 300 GFlops. Testing is
performed on DAGs of dimension 3000 nodes.

2. 6 executors, 2 executor of each type (2 for 1 type, 2 for 2 type, 2 for 3 type) which dif-
fer in computational capabilities: randomly generated from 10 to 300 GFlops. Testing is
performed on DAGs of dimension 6000 nodes.

3. 12 executors, 4 executor of each type (4 for 1 type, 4 for 2 type, 4 for 3 type) which
differ in computational capabilities: randomly generated from 10 to 300 GFlops. Testing
is performed on DAGs of dimension 12000 nodes.

4. 24 executors, 8 executor of each type (8 for 1 type, 8 for 2 type, 8 for 3 type) which
differ in computational capabilities: randomly generated from 10 to 300 GFlops. Testing
is performed on DAGs of dimension 24000 nodes.

Table 2: Description of Test Cases for Large-Scale DAGs

Workspace ID Total number of executors Number of executors of each type Dimension DAGs

1 3 1 3000
2 6 3 6000
3 12 4 12000
4 24 8 24000
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E DAG EXAMPLE

Figure 3: Examples of large-scale DAG

F BOX PLOTS

Workspace 1: 3 executor Workspace 2: 6 executor

Workspace 3: 12 executor Workspace 4: 24 executors

Figure 4: Box plot percentage improvements in makespans MLVP compared to DONF, FIFO, Min-
Min,Min-Max for each workspace and each DAG dimension.
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Figure 5: Box plot with MLVP and DONF comparisons for each workspace

G COMPLEXITY

Consider following table, where v is the number of nodes in DAG, p is the number of executors, o
where is the maximum out-degree of any node and k is the number of maximum number of ready-
to-execute nodes at any time.

Table 3: Time Complexity of Various Algorithms

Algorithm Time Complexity

FIFO O(v)
Optimized Min-Min O(v2)

Max-Min O(v2)
DONF O(v × o× p)
MLVP O(k × o× p2)

MLVP differs mainly in the stage of executor selection, where executors need to pass information
between each other in order to facilitate consensus and information exchange occurs only one once
per scheduling cycle. We use k instead of v primarily because each executor selects tasks (nodes)
to be scheduled after consensus is reached simultaneously, i.e. we are processing batch of nodes at
the same time. Worst case scenario can be considered in two aspects: if DAG is akin to a circle, i.e.
all nodes are ready to be executed from the start, that will yield complexity of O(v × o× p2). And
if out-degree of nodes is as large as v − 1 complexity will become O(v2 × p2), which is worse than
DONF worst-case scenario of O(v2 × p).
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