
Under review as a conference paper at ICLR 2022

Roadmap for Supplement In Section A we provide some additional technical preliminaries, in-
cluding background on Boolean circuits. In Section B we give the deferred proofs from Section 3 for
our main result, Theorem 3.1. In Section C.1 we give background on circuit lower bounds for TC0,
and in Section C we prove Theorem C.2 which effectively says that if one could exhibit genera-
tors with even logarithmic stretch which can fool constant-depth, sufficiently superlinear-size ReLU
networks, then this would imply breakthrough circuit lower bounds.

A ADDITIONAL TECHNICAL PRELIMINARIES

More Notation and Miscellaneous Tools Let 1n denote the all-ones vector in n dimensions;
when n is clear from context, we denote this by 1.

Given a vector v 2 Rd, we let kvk denote its Euclidean norm. Given r > 0, let B(v, r) ⇢ Rd denote
the Euclidean ball of radius r with center v. Given a matrix W, we let kWk denote its operator
norm. Let �min(W) denote its minimum singular value.

Given a distribution p, let p⌦n denote the product measure given by drawing n independent samples
from p.

Define the function sgn(x) ,
⇢
1 x � 0
�1 x < 0

.

Let � : R ! R denote the ReLU activation �(z) , max(0, z). Let � : R ! R denote the leaky
ReLU activation �(z) = z/2 + (1/2� �)|z|. Note that

 �(z) = (1� �)�(z)� ��(�z).

We will need the following well-known result:
Theorem A.1 (Kirszbraun extension). Given an arbitrary subset S ⇢ Rd

and f : S ! R which is

L-Lipschitz, there exists an L-Lipschitz extension ef : Rd ! R for which ef(y) = f(y) for all y 2 S.

We will need the following basic fact about composing Lipschitz functions:
Fact A.2. If g1, . . . , gr : Rd ! R are ⇤-Lipschitz and h : Rr ! R is ⇤0

-Lipschitz, then the function

x 7! h(g1(x), . . . , gr(x))

is ⇤⇤0pr-Lipschitz.

Proof. For any x, x0, we have |gi(x) � gi(x0)|  ⇤kx � x0k, so
�Pr

i=1(gi(x)� gi(x0))2
�1/2 

⇤
p
rkx� x0k. This implies that |h(g1(x), . . . , gr(x))� h(g1(x0), . . . , gr(x0))|  ⇤⇤0prkx� x0k

as desired.

Fact A.3. The volume of a d-dimensional Euclidean ball of radius 1 is at most (18/d)d/2.

Proof. It is a standard fact that the volume of the ball can be expressed as 2d · (⇡/2)bd/2c

d!! . If d is

even, then d!! = 2d/2 · (d/2)! � 2d/2 · e
�

d
2e

�d/2 � (d/e)d/2. If d is odd, then d!! = d!
bd/2c!!·2bd/2c �

e(d/e)d

e(d/2e)d/2·2d/2 = (d/e)d/2. We conclude that the volume is at most (2⇡e/d)d/2  (18/d)d/2.

A.1 CONCENTRATION OF MEASURE

We will use the following consequence of McDiarmid’s inequality:
Lemma A.4 (McDiarmid’s Inequality). Suppose F : {±1}n ! {±1} is such that for any x, x0 2
{±1}n differing on exactly one coordinate, |F (x)� F (x0)|  c. Then

P
x⇠{±1}n

[|f(x)� E[f(x)]| > s]  exp

✓
� 2s2

nc2

◆
.

13

Under review as a conference paper at ICLR 2022

Corollary A.5. Given F : {±1}n ! {±1} which is ⇤-Lipschitz, define the random variable

X , F (Un). Then X � E[X] is ⇤
p
2n-sub-Gaussian.

Proof. Because F is Lipschitz, it satisfies the hypothesis of Lemma A.4 with c = ⇤, so the corollary
follows by the definition of sub-Gaussianity.

Theorem A.6 (Theorem 1.1, (Rudelson & Vershynin, 2009)). For n, d 2 N with n � d, let W 2
Rn⇥d

be a random matrix whose entries are independent draws from N (0, 1). Then for every ✏ > 0,

P
h
�min(W)  ✏(

p
n�

p
d� 1)

i
 (C✏)n�d+1 + e�cn

for absolute constants C, c > 0.

A.2 BOOLEAN CIRCUITS

In the context of pseudorandom generators, the set of all polynomial-sized Boolean circuits is the
canonical family of discriminator functions to consider when formalizing what it means for a gen-
erator to fool all polynomial-time algorithms.

Here we review some basics about Boolean circuits; for a more thorough introduction to these
concepts, we refer the reader to any of the standard textbooks on complexity theory, e.g. (Arora &
Barak, 2009; Sipser, 1996).
Definition 7 (Boolean circuits). Fix a set G of logical gates, e.g. ^,_,¬. A Boolean circuit C
is a Boolean function {±1}n ! {±1} given by a directed acyclic graph with n input nodes with

in-degree zero and an output node with out-degree zero, where each node that isn’t an input node is

labeled by some logical gate in G. Unless otherwise specified, we will take G to be {^,_,¬}.

The size S of the circuit is the number of nodes in the graph, and the depth D is given by the length

of the longest directed path in the graph. The value of C on input x 2 {±1}n is defined in an

inductive fashion: the value at a node v in the graph is defined to be the evaluation of the gate at

v on the in-neighbors of v (as the graph is acyclic, this is well-defined), and the value of C on x is

then the value of the output node.

We will occasionally also be interested in the number W of wires in the circuit, i.e. the number of

edges in the graph. Note that trivially

S  W + 1. (2)
Definition 8 (P/poly). Given T : N ! N, let SIZE(T (n)) denote the family of sequences of Boolean

functions {fn : {±1}n ! {±1}} for which there exist Boolean circuits {Cn} with sizes {Sn} that

compute {fn} and such that Sn  T (n).

Let P/poly , S
c>1 SIZE(n

c). We refer to (sequences of) functions in P/poly as functions com-
putable by polynomial-sized circuits.

The following standard fact about bounded-depth Boolean circuits will make it convenient to trans-
late between them and neural networks.
Lemma A.7 (See Theorem 1.1 in Section 12.1 of (Wegener, 1987)). For any Boolean circuit C of

size S and depth D with gate set G, there is another circuit C 0
of size D · S and depth D with gate

set G which computes the same function as C but with the additional property that for any gate in

C 0
, all paths from an input to the gate are of the same length.

The upshot of Lemma A.7 is that for any length `, we can think of the gates of C 0 at distance ` from
the inputs as comprising a “layer” in the circuit.

A less combinatorial way of formulating the complexity class captured by polynomial-sized circuits
is in terms of Turing machines with advice strings.
Fact A.8 (See e.g. Theorem 6.11 in (Arora & Barak, 2009)). A sequence of Boolean functions

{fn : {±1}n ! {±1}} is in P/poly if and only if there exists a sequence of advice strings {↵n},

where ↵n 2 {±1}n for an  poly(n), and a Turing machine M which runs for at most poly(n)
steps and, for any n 2 N, takes as input any x 2 {±1}n and the advice string ↵n and outputs

M(x,↵n) = fn(x).

14

Under review as a conference paper at ICLR 2022

This fact will be useful for translating discriminators computed by neural networks into discrimina-
tors given by polynomial-sized Boolean circuits.

A.3 MORE ON GANS AND PRGS

In this section we fill in some additional details regarding the contents of Section 2.1. We begin with
a simple remark about Definition 1.
Remark A.9. In Definition 1, if L = 1, then S = 0 and the definition specializes to linear functions.
That is, C⌧,⇤

1,0,d is simply the class of affine linear functions F (x) = hw, xi + b for w 2 Rd
⌧ and

b 2 R⌧ satisfying kwk  ⇤.

Next, we fill in the proof of Lemma 2.1, which we restate below for the reader’s convenience.
Lemma A.10. Let J : Rs ! Rr

be a function each of whose output coordinates is computed

by some network in C⌧1,⇤1

L1,S1,s
, and let f 2 C⌧2,⇤2

L2,S2,r
. Then f � J 2 C⌧,⇤

L,S,s for ⌧ = max(⌧1, ⌧2),

⇤ = ⇤1⇤2
p
r, L = L1 + L2, and S = (S1 + 1)r + S2. Furthermore, for the network in C⌧,⇤

L,S,s

realizing f � J , the bias and weight vector entries in the output layer lie in R⌧2 .

Proof. Suppose that the i-th output coordinate of J is computed by a neural network with weight
matrices W(i)

1 2 Rk(i)
1 ⇥s, . . . ,W(i)

L1
2 R1⇥k(i)

L1�1 and biases b(i)1 2 Rk(i)
1 , . . . , b(i)L1

2 R.

Define the (
Pr

i=1 k
(i)
1) ⇥ s weight matrix W1 by vertically concatenating the weight matrices

W(1)
1 , . . . ,W(r)

1 . For every 1 < j < L1 define the (
Pr

i=1 k
(i)
j) ⇥ (

Pr
i=1 k

(i)
j�1) weight ma-

trix Wj by diagonally concatenating the weight matrices W(1)
j , . . . ,W(r)

j . Similarly, define the
r ⇥ (

Pr
i=1 k

(i)
L1
) matrix WL1 by diagonally concatening the column vectors W(1)

L1
, . . . ,W(r)

L1
. For

the bias vectors in these layers, for every 1  j  L1 define bj to be the vector given by concate-
nating b(1)j , . . . , b(r)j .

Now suppose that f is computed by a neural network with weight matrices WL1+1 2 RkL1+1⇥r,
. . . , WL1+L2 2 R1⇥kL1+L2�1 and biases bL1+1 2 RkL1+1 , . . . , bL1+L2 2 R. Then by design, for
any y 2 Rs we have

f(J(y)) = WL1+L2�(WL1+L2�1�(· · ·�(W1y + b1) · · ·) + bL1+L2�1) + bL1+L2 .

This network has depth L1 + L2 and size
0

@
L1�1X

j=1

rX

i=1

k(i)j

1

A+ r +
L1+L2X

j=L1+1

kj = r · S1 + r + S2 = S.

The bit complexity of the entries of the weight matrices and biases are obviously bounded by
max(⌧1, ⌧2), and the Lipschitzness of the network is bounded by ⇤1⇤2

p
r by Fact A.2.

Finally, we will also use the following standard tensorization property of Wasserstein distance later:
Fact A.11 (See e.g. Lemma 3 in (Mariucci & Reiß, 2018)). If p, q satisfy W1(p, q)  ✏, then

W1(p⌦n, q⌦n)  ✏/
p
n.

A.4 DIVERSE DISTRIBUTIONS: MISSING PROOFS

Here we fill in some missing details from Section 2.3. We first show that diverse distributions cannot
be approximated by pushforwards of Um if m is insufficiently large. This follows immediately from
the definition of diversity:
Lemma A.12. For any 0 < � < 1, if D⇤

is a (2m,�)-diverse distribution over Rd
, then for any

function G : {±1}m ! Rd
, W1(G(Um),D⇤) � �.

Proof. G(Um) is a uniform distribution on 2m points, with multiplicity if there are multiple points in
{±1}m that map to the same point in Rd under G, so the claim follows by definition of diversity.

15

Under review as a conference paper at ICLR 2022

Below we give some simple examples of diverse distributions.
Lemma A.13 (Discrete, well-separated distributions). For any ↵ > 0 and any N,N 0 2 N satisfying

N  N 0
. Let ⌦ ✓ Rd

be a set of points such that for any z, z0 2 ⌦, kz� z0k � ↵. Then the uniform

distribution µ on any N 0
points from ⌦ is (N,�)-diverse for � = ↵(1�N/N 0).

Proof. Take any discrete distribution ⌫ supported on at most N points y1, . . . , yN in Rd. Consider
the function f : Rd ! R: for any y in the support of ⌫, let f(y) = 0, and for any y not in the
support of ⌫, let f(y) = 1. As a function from ⌦ to R, where ⌦ inherits the Euclidean metric, f is
clearly 1/↵-Lipschitz over ⌦. By Theorem A.1, there exists a 1/↵-Lipschitz extension ef : Rd ! R
of f , and we have

|E[f(µ)]� E[f(⌫)]| = |E[f(µ)]| � 1�N/N 0,

so W1(µ, ⌫) � 1�N/N 0 as desired.

We now turn to examples of continuous distributions which are diverse. We first observe that a
distribution is (N,�)-diverse if it satisfies certain small-ball probability bounds.

Definition 9. For a distribution D over Rd
, define the Lévy concentration function QD(r) ,

supx02Rd Px⇠D[kx� x0k  r].

Lemma A.14. If a distribution D over Rd
satisfies QD(r)  ↵, then D is (N, r(1�N↵))-diverse.

Proof. Take any N points z1, . . . , zN 2 Rd. By the bound on QD(r), the union S of the
balls of radius r around these points has Lebesgue measure at most N↵. Define the function
f : {z1, . . . , zN} [(Rd\S) ! {0, 1} to be zero on {z1, . . . , zN} and one on Rd\S. This func-
tion is 1/r-Lipschitz on its domain, so by Theorem A.1 there is an extension f 0 : Rd ! R of f
which remains 1/r-Lipschitz on its domain. Define the function f⇤(x) , |f(x)|. Note that for µ
the uniform distribution on {z1, . . . , zN},

|E[f(µ)]� E[f(D)]| = |E[f(D)]| � 1�N↵,

so we conclude that W1(µ,D) � r(1�N↵).

Lemma A.15 (Uniform distribution on box). Id is (N, 1/2)-diverse for N  1
2 (d/18)

d/2
.

Proof. By Fact A.3, QId(r)  (18r2/d)d/2. Taking r = 1 and applying Lemma A.14 allows us to
conclude that W1(µ, Id) � 1�N(18/d)d/2, from which the lemma follows.

As we stated in Lemma 2.3, a large family of pushforwards of the uniform distribution over [0, 1]d
are similarly diverse. Below we restate this lemma and provide a complete proof.
Lemma A.16 (Random expansive leaky ReLU networks). Let � > 0. For k0, . . . , kL 2 N satisfying

ki � (1 + �)ki�1 for all i 2 [L], let W1 2 Rk1⇥k0 ,W2 2 Rk2⇥k1 , . . . ,WL 2 RkL⇥kL�1 be

random weight matrices, where every entry of Wi is an independent draw from N (0, 1/ki). For the

function F : Rk0 ! RkL given by

F (x) , WL � (WL�1 � (· · · �(W1x) · · ·)) ,

we have that F (Ik0) is (2m,�)-diverse for

m = (k0/2) log(k0/2)� kL/� � 1

� =
1

6

✓
�

2e1/�

◆L

.

So for example, if �,�, L are constants, then F (Ik0) is (2⌦(k0 log k0),⌦(1))-diverse for k0 sufficiently

large.

We will prove this inductively by first arguing that pushing anticoncentrated distributions through
leaky ReLU (Lemma A.17) or through mildly “expansive” random linear functions (Lemma A.18)
preserves anticoncentration to some extent:

16

Under review as a conference paper at ICLR 2022

Lemma A.17. Let 0 < �  1/2. If a distribution D over Rd
satisfies QD(r)  ↵, then the

pushforward D0 , �(D) also satisfies QD0(�r)  2d↵, where here �(· · ·) denotes entrywise

application of the leaky ReLU activation.

Proof. Consider any ball B(⌫,�r) in Rd. Take any orthant KS of Rd, given by points whose i-th
coordinates are nonnegative for i 2 S and negative for i 62 S. Let BS be the intersection of B with
this orthant. Then �1

� (BS) consists of points z 2 KS for which
X

i2S

(�zi � ⌫i)
2 +

X

i 62S

((1� �)zi � ⌫i)
2  �2r2. (3)

We can rewrite the left-hand side of (3) as

�2
X

i2S

(zi � ⌫i�)
2 + (1� �)2

X

i 62S

(zi � ⌫i/(1� �))2 � �2kz � ⌫(S)k2,

where in the last step we used �  1/2 and define the vector ⌫S 2 Rd by

⌫Si =

⇢
⌫Si /� i 2 S
⌫Si /(1� �) i 62 S

.

In other words, �1
� (BS) is contained in KS \B(⌫(S), r). In particular,

 �1
� (B) ⇢

[

S

KS \B(⌫(S), r),

so Px⇠D0 [x 2 B]  2d · ↵ by a union bound.

Lemma A.18. Suppose n, d 2 N satisfy n � (1 + �)d for some � > 0. Let W 2 Rn⇥d
be a matrix

whose entries are independent draws from N (0, 1/n). If a distribution D over Rd
satisfies QD(r) 

↵, then for the linear map f : x 7! Wx, the pushforward D0 , f(D) satisfies QD0

⇣
�r

2(1+�)

⌘
 ↵

with probability at least 1� exp(�⌦(�d)).

Proof. By Theorem A.6, for any ✏ > 0 we have that �min(W) � ✏ ·
✓
1�

q
d�1
n

◆
with probability

at least 1� (C✏)n�d+1 � e�cn. Taking ✏ = 1/2C and noting that 1�
q

d�1
n � �

1+� , we conclude
that

P

�min(W) � �

2(1 + �)

�
� 1� exp(�⌦(�d)).

Condition on this event. Now for any ⌫ 2 Rn, if we write ⌫ as Wµ+µ? where µ? is orthogonal to
the column span of W, then kWx�⌫k2 = kW(x�µ)k2+kµ?k2. So kWx�⌫k  �r

2(1+�) implies
that kW(x�µ)k  �r

2(1+�) . But because �min(W) � �
2(1+�) , we conclude that kx�µk  r, from

which the lemma follows.

We are now ready to prove Lemma 2.3:

Proof of Lemma 2.3. By Lemma A.14 it suffices to bound the Lévy concentration function. We will
induct on the layers of F . For i 2 [L], let F (i) denote the sub-network

Wi � (WL�1 � (· · · �(W1x) · · ·)) ,

and let Di denote the pushforward F (i)(Ik0), which is a distribution over Rki . We would like to
apply Lemma A.18 to each of the weight matrices W1, . . . ,WL, so condition on the event that the
lemma holds for these matrices, which happens with probability at least 1� L exp(�⌦(�d)).

Recalling from Fact A.3 that QIk0
(r)  (18r2/k0)k0/2 for any r > 0, we get from Lemma A.18

applied to W1 that QD1

⇣
�r

2(1+�)

⌘
 (18r2/k0)k0/2.

17

Under review as a conference paper at ICLR 2022

Suppose inductively that we have shown that QDi(ri)  ↵i for some ri,↵ > 0. Then by
Lemma A.17 and Lemma A.18 applied to weight matrix Wi+1, we conclude that

QDi+1(ri+1)  ↵i+1 for ri+1 =
��ri

2(1 + �)
,↵i+1 = 2ki↵i. (4)

Unrolling the recursion (4), we conclude that QDL(rL)  ↵L for

rL = r�L�1

✓
�

2(1 + �)

◆L

� r ·
✓

��

2(1 + �)

◆L

� r ·
✓

�

2 · e1/�

◆L

↵L = 2k1+···+kL�1(18r2/k0)
k0/2  2kL/�(18r2/k0)

k0/2, (5)
where the inequality in (5) follows from the fact that k1+ · · ·+kL�1  kL�1(1+1/�)  kL/�. By
Lemma A.14, F (Ik0) = DL is (N, rL(1 �N↵L))-diverse. The lemma follows by taking r = 1/3
and 2m = N = 1/2↵L.

B DEFERRED PROOFS FROM SECTION 3

B.1 PROOF OF COROLLARY 3.3

Corollary 3.3 is an immediate consequence of the following which appeared in (Chen et al., 2020b):
Lemma B.1. For any function P : {±1}k ! {±1}, there is a collection of k weight matrices

W1, . . . ,Wk with entries in RO(k) for which

P (x) = Wk�(· · ·�(W1x) · · ·) (6)

for all x 2 {±1}k, and for which kWik  O(1). Furthermore, the size of the network on the

right-hand side of (6) is at most O(2k · k).

We give a proof for completeness to make explicit the dependence of the parameters on k.

Proof. Consider the Fourier expansion F (x) =
P

S✓[k]
bF [S]

Q
i2S xi. We show how to represent

each Fourier basis function
Q

i2S xi as a ReLU network with at most k layers. Observe that for any
x1, x2 2 {±1},

x1 · x2 = �(x1 + x2) + �(�x1 � x2)� �(x2)� �(�x2), (7)

which is a two-layer neural network of size 4 whose two weight matrices have operator norm at
most 3. Suppose inductively that for some 1  m < n, there exist weight matrices W0

1, . . . ,W
0
m

for which
Qm

i=1 xi = W0
m�(· · ·�(W0

1x) · · ·) for all x 2 {±1}k, that this network has size 4m,
and that

Qm
i=1kW0

ik  6m.

We now show how to compute
Qm+1

i=1 xi. Define W00
1 by adding the m-th standard basis vector as a

new row at the bottom of W0
1. For every 1 < i  m, define W00

i to be the matrix given by appending
a column of zeros to the right of W00

i and then a new row at the bottom consisting of zeros except
in the rightmost entry. Note that kW00k1 = max(1, kW0

ik). Define the network Fm : Rk ! R2 by
Fm(x) = W00

m�(· · ·�(W00
1x) · · ·).

Letting v, e 2 R2 be the vectors (1, 1) and (0, 1), we can use (7) to conclude that

m+1Y

i=1

xi = �

mY

i=1

xi + xm+1

!
+ �

�

mY

i=1

xi � xm+1

!
� �(xm+1)� �(�xm+1)

= �(v>Fm(x)) + �(�v>Fm(x))� �(e>Fm(x))� �(�e>Fm(x)).

We can thus write
Qm+1

i=1 xi as the ReLU network

m+1Y

i=1

xi = W000
m+1�(· · ·�(W000

1 x) · · ·) (8)

18

Under review as a conference paper at ICLR 2022

where

W000
m+1 = (1, 1,�1,�1),W000

m =

0

BB@

v>W00
m

�v>W00
m

e>W00
m

�e>W00
m

1

CCA ,W000
i = W00

i 81  i < m.

Note that the entries of any W000
i are in {0,±1} and thus have bit complexity at most 2. Additionally,

kW000
m+1k  2, W000

m  3kW00
mk = 3 · max(1, kW0

mk), and kW00
i k = max(1, kW0

ik) for all
1  i < m, so

Qm+1
i=1 kW000

i k  6m+1. Furthermore, the size of the network in (8) is 4m + 4.
This completes the inductive step and we conclude that any Fourier basis function

Q
i2S xi can

be implemented by an |S|-layer ReLU network with size 4|S| and the product of whose weight
matrices’ operator norms is at most 6|S|.

In particular, as the biases in the network are zero, we can rescale the weight matrices so they have
equal operator norm, in which case they each have operator norm at most O(1) and entries in RO(k)

Finally note that because the Fourier coefficients are given by E[F (x)
Q

i2S xi], they are all multi-
ples of 1/2k and thus have bit complexity O(k). The proof follows from applying Lemma B.2 to
these Fourier basis functions and � given by the Fourier coefficients of P , as k�k = kPk = 1.

The above proof required the following basic fact:

Lemma B.2. Let ⌧, ⌧ 0 2 N, and let � 2 Rr
⌧ . Given neural networks F1, . . . , Fr : Rd ! R each

with L layers and whose weight matrices {W(1)
i }, . . . , {W(r)

i } have operator norm bounded by

some R > 0 and entries in R⌧ 0 , their linear combination
P

i �iFi is a neural network with L layers,

size given by the sum of the sizes of F1, . . . , Fr, and weight matrices W1, . . . ,WL with entries in

RO(⌧+⌧ 0) and satisfying kW1k  R
p
r, kWLk  Rk�k, and kWik  R for all 1 < i < L. Here

� 2 Rr
is the vector with entries �i.

Proof. Denote the i-th weight matrix of Fj by W(j)
i . Define W1 to be the vertical concatenation

of W(1)
1 , . . . ,W(r)

1 , and for every 1 < i < L, define Wi to be the block diagonal concatenation of
W(1)

i , . . . ,W(r)
i . Finally, define WL to be the row vector given by the product

�>

0

BBBB@

W(1)
L 0 · · · 0

0 W(2)
L · · · 0

... 0
. . . 0

0 0 · · · W(r)
L

1

CCCCA

For all 1 < i < L, kWik  maxj2[r]kW(i)k, and additionally kW1k2 
Pr

j=1kW
(j)
1 k2 and

kWLk  k�kmaxj2[r]kW
(j)
L k.

B.2 PROOF OF LEMMA 3.4

We will need the following helper lemma about means of truncations of sub-Gaussian random vari-
ables:

Lemma B.3. If Z is �2
-sub-Gaussian and mean zero, then for any interval I = [a, b] with a  0 

b, we have |E[Z · 1[Z 62 I]]|  O(b� a+ �) · exp(�min(�a, b)2/2�2).

19

Under review as a conference paper at ICLR 2022

Proof. Define the random variable Z 0 = Z · 1[Z 62 I]. Then by integration by parts,

E[Z 0]  E[Z · 1[Z > b]]

=

Z 1

0
P[Z 0 > t]dt

= bP[Z > b] +

Z 1

b
P[Z > t]dt

 b exp(�b2/2�2) +O(� · exp(�b2/2�2))

 O(b+ �) · exp(�b2/2�2).

and similarly, E[Z 0] � E[Z · 1[Z < �a]] � O(a� �) · exp(�b2/2�2), completing the proof.

We now complete the proof of Lemma 3.4.

Proof of Lemma 3.4. Without loss of generality we can assume that E[X] = 0 and E[Y] = ↵. If
↵ � c� for some sufficiently large absolute constant, then we can simply take t = ↵/2 and get that
|P[X > t]�P[Y > t]| � 1/2. Now suppose ↵ < c�, and let I = [�r, r+↵] for r = �

p
log(C�/↵)

for some large constant C > 0. Note that by this choice of r,

r exp(�r2/2�2)  O(↵),

where the constant factor can be made arbitrarily small by picking C sufficiently lage. Define the
random variables X 0 , X · 1[X 2 I] and Y 0 , Y · 1[Y 2 I]. Then

↵ = E[Y]� E[X] = E[Y 0]� E[X 0] + E[Y · 1[Y 62 I]]� E[X · 1[X 62 I]]. (9)

By Lemma B.3,

E[X · 1[X 62 I]]  O(2r+ ↵+ �) · exp(�(r+ ↵)2/2�2)  O(r) · exp(�r2/2�2)  O(↵) (10)

and similarly

E[Y · 1[Y 62 I]]  E[Y] · P[Y 62 I] +O(2r + ↵+ �) · exp(�(r + ↵)2/2�2).

 2↵ exp(�r2/2�2) +O(r) · exp(�(r + ↵)2/2�2)  O(↵). (11)

Additionally, we have

E[X 0]� E[Y 0] =

Z ↵+r

0
(�Y 0(z)� �X0(z))dz �

Z 0

�↵
(�X0(z)� �Y 0(z))dz (12)

where �Z(z) denotes the cdf at z of random variable Z. Putting (9), (10), (11), (12) together, we
conclude that

min

✓Z ↵+r

0
(�Y 0(z)� �X0(z))dz,

Z 0

�↵
(�X0(z)� �Y 0(z))dz

◆
� ⌦(↵),

where the constant factor can be made arbitrarily close to 1/2 by making C sufficiently small. By
averaging, we conclude that there exists t 2 [�↵,↵+ r] for which

|P[X 0 > t]� P[Y 0 > t]| � ⌦(↵/r).

But P[X 62 I],P[Y 62 I]  O(exp(�r2/2�2))  O(↵/r), where the absolute constant can be made
arbitrarily small by making C sufficiently small. The claim follows by a union bound, recalling the
definition of X 0, Y 0.

B.3 THRESHOLDS OF NETWORKS AS CIRCUITS

In the proof of Theorem 3.2, we also need the following basic fact that signs of ReLU networks can
be computed in P/poly.
Lemma B.4. For any f 2 F⇤

, there is a Turing machine that, given any input y, outputs sgn(f(y))
after poly(d) steps.

20

Under review as a conference paper at ICLR 2022

Proof. Recall that the weight matrices W1, . . . ,WL of f have entries in R⌧ for ⌧ = poly(d). So
for any 1  `  L, diagonal matrices D1 2 {0, 1}k1⇥k1 , . . . ,D`�1 2 {0, 1}k`�1⇥k`�1 , and vector
y 2 {±1}d, every entry of the vector

W`D`�1(W`�1D`�2(· · · (W1y + b1) · · ·) + b`�1) + b`

has bit complexity bounded by

log2

` · 2O(`⌧)

`�1Y

i=1

ki

!
= O(`⌧ + S) = poly(d),

where in the second step we used that log(ki)  ki for all i 2 [` � 1]. So for any input to f , every
intermediate activation has poly(d) bit complexity.

The Turing machine we exhibit for computing sgn(f(y)) will compute the activations in the network
layer by layer. The entries of W1y + b1 can readily be computed in poly(d) time. Now given the
vector of activations

v = W`�(· · ·�(W1y + b1) · · ·) + b`
for some ` � 1 (where v is represented on a tape of the Turing machine as a bitstring of length
poly(d)), we need to compute W`+1�(v) + b`+1. The ReLU activation can be readily computed
in poly(d) time, so in poly(d) additional steps we can form this new vector of activations at the
(` + 1)-layer. So within S · poly(d) = poly(d) steps the Turing machine will have written down
f(y) (represented as a bitstring of length poly(d)) on one of its tapes, after which it will return the
sign of this quantity.

B.4 PROOF OF THEOREM 3.2

We now give a complete proof of Theorem 3.2:

Proof. The parameter m will be clear from context in the following discussion, so for convenience
we will refer to d(m) and Gm as d and G. Let k, P,G be such that the outcome of Assumption 1
holds, and negl(·) denote the function indicating the extent to which G fools poly-sized circuits.
By Corollary 3.3, every output coordinate of G is computable by a network in C⌧,⇤

L,S,m for ⌧ =

O(k),⇤ = exp(O(k)), L = k, S = O(2kk).

We first check that W1(G(Um), Ud) > 1/3. Note that G(Um) has support of size 2m. In
Lemma A.13 we can take µ = Ud and conclude that µ is (2m, 2(1 � 2m�d))-diverse, so
W1(G(Um), Ud) � 2(1� 2m�d) = 2(1� 2m�mc

) � 1.

It remains to check that G fools F⇤ relative to Ud. Suppose to the contrary that there exists some
f 2 F⇤ and absolute constant a > 0 for which |E[f(G(Um))]� E[f(Ud)]| > 1/da. We will argue
that this implies there is a poly-sized circuit C : {±1}d ! {±1} distinguishing G(Um) from Ud.

First note that for any threshold t 2 R⌧ , by Lemma B.4 there is a Turing machine M⌧ : {±1}d !
{±1} that computes y 7! sgn(f(y)� t) with ⌧ bits of advice. So if there existed a threshold t 2 R⌧

for which
|E[M⌧ (G(Um))]� E[M⌧ (Ud)]| > 1/da

0
, (13)

for some constant a0 > 0, then by Fact A.8, there would exist a Boolean circuit C distinguishing
G(Um) from Ud with non-negligible advantage, contradicting Assumption 1 and concluding the
proof.

We will apply Lemma 3.4 to show the existence of such a threshold t. Specifically, define random
variables X = f(G(Um)) and Y = f(Ud). By Corollary A.5 applied to the poly(d)-Lipschitz
function f : {±1}d ! {±1}, Y � E[Y] is poly(d)-sub-Gaussian. And recalling that G 2 C⌧,⇤

L,S,m

for ⇤ = exp(O(k)), we can apply Corollary A.5 to the poly(d) · Ok(1)-Lipschitz function f �G :
{±1}m ! {±1} to conclude that X � E[X] is �2-sub-Gaussian for � , poly(m) · exp(O(k)) =
poly(d). By Lemma 3.4, there exists a threshold t for which the left-hand side of (13) exceeds
min(1/2, e⌦(n�a/�)), which is not negligible.

It remains to verify that t has bit complexity at most poly(d). As the entries in the weight matrices
and biases in f all have bit complexity poly(d) and f has size and depth poly(d), f(y) has bit

21

Under review as a conference paper at ICLR 2022

complexity poly(d) for any y 2 {±1}d. Similarly, the entries in the weight matrices and biases
in G all have bit complexity O(k) = O(1), so f(G(x)) has bit complexity poly(d) for any x 2
{±1}m. By the bound on t in Lemma 3.4 and our bound on � above, t therefore also has poly(d)
bit complexity.

B.5 PROOF OF LEMMA 3.6

Proof. Suppose to the contrary that there existed some function f 2 F 0 for which

|E[f(J(p))]� E[f(J(q))]| > 2✏ · ⇤0.

By Lemma 2.1 and our choice of S00, the composition f � J : Rs ! R can be computed by a
network in C⌧,⇤⇤0pr

L,S,s whose bias and weight vector entries in the output layer lie in R⌧ 0 .

We first show why this would lead to a contradiction. Consider the function h , 1
C · f � J for

C = 2dlog2 ⇤0pre 2 [⇤0, 2⇤0),

which can be computed by taking the network computing f�J and scaling the bias and weight vector
in the output layer by C. Note that this scaling results in bias and weight vector entries in the output
layer for h with bit complexity ⌧ 0 + dlog2 ⇤0pre = ⌧ . Furthermore, h is ⇤⇤0pr/C  ⇤-Lipschitz,
so h 2 C⌧,⇤

L,S,s. On the other hand, we would have

|E[h(p)]� E[h(q)]| > 2✏⇤0pr/C � ✏,

yielding the desired contradiction of the assumption that WF (p, q)  ✏.

B.6 PROOF OF FACT 3.7

Proof. Note that h(Un) is the uniform distribution over multiples of 1/2n in the interval [0, 1).
Given any such multiple z, let pz denote the uniform distribution over [z, z + 1/2n). One way of
sampling from I1 is thus to sample z from h(Un) and then sample from pz .

Now consider any 1-Lipschitz function f : R ! R. Note that for any z0 in the support of pz ,
|f(z)� f(z0)|  1/2n  ✏. We have

|E[f(h(Un))]� E[f(I1)]| =
���� E
z⇠h(Un)


E

z0⇠pz

[f(z)� f(z0)]

�����  ✏

as desired.

B.7 PROOF OF LEMMA 3.8

Proof. Let n , dlog(1/✏)e. For every i 2 [r], define Si , {(i � 1) · n + 1, . . . , i · n}. Take J to
be the linear function where for every i 2 [r], the i-th output coordinate of J is the linear function
which maps y 2 Rs to hwi, y + 1i where wi is zero outside of Si and, over coordinates indexed by
Si, equal to the vector (1/4, . . . , 1/2n+1). Note that each output coordinate of J is computed by a
function in Cn+1,O(1)

1,0,s .

By Fact 3.7 and Fact A.11,

WF⇤(J(Us), Ir)  poly(r) ·W1(J(Us), Ir)  poly(r) · ✏.

On the other hand, by Lemma 3.6 and the fact that the union of C⌧�dlog2 ⇤
p
re,⇤

L�1,S�r,r over ⌧,⇤, L, S =
poly(s) is still F⇤, we conclude that

WF⇤(J(eD), J(Us))  O(✏
p
r),

from which the lemma follows by triangle inequality.

22

Under review as a conference paper at ICLR 2022

B.8 PROOF OF LEMMA 3.9

Proof. Let J : Rs ! Rr be given by Lemma 3.8. We know that WF⇤(J(eD), Ir)  ✏ · poly(r).
By Lemma 3.6 applied to these two distributions and the generator function H , together with the
fact that the union of C⌧ 0�dlog2 ⇤

p
de,⇤

L�L0,S�d(S0+1),d over ⇤, L, S = poly(s) is still F⇤, we thus have that

WF⇤(H(J(eD)), H(Ir))  O(✏⇤0
p
d) · poly(r) = ✏⇤0 · poly(s).

We will thus take J 0 in the lemma to be H � J . By Lemma 2.1, each output coordinate of J 0 is
computed by a function in Cmax(O(log(1/✏)),⌧ 0),O(⇤0pd)

L0+1,r+S0,s as claimed.

B.9 PROOF OF THEOREM 3.5

Proof of Theorem 3.5. The parameter m will be clear from context in the following discussion, so
for convenience we will refer to r(m), d(m), ✏(m), Hm, Gm as r, d, ✏, H,G, and similarly for the
network parameters ⌧ 0,⇤0, L0, S0.

It is easy to verify condition 3 before we even define G: because G(Um) is a uniform distribution on
2m points (with multiplicity) and H(Ir) is (2m,⌦(1))-diverse, W1(G(Um), Id) � ⌦(1) as claimed.

Let s = r · dlog(1/✏)e. As we are assuming ✏ � exp(�O(m)), s  r · m = mc for some
constant c > 1. If s  m, then define G0 : Rm ! Rs to be the map given by projecting to
the first s coordinates so that G0(Um) and Us are identical as distributions. Otherwise, take G0 to
be the generator G : Rm ! Rs constructed in Theorem 3.2, recalling that WF⇤(G0(Um), Us) 
negl(m)  ✏.

Next, by applying Lemma 3.9 to eD = G0(Um), we get a function J 0 : Rs ! Rd each of whose
output coordinates is computed by a function in Cmax(O(log(1/✏)),⌧ 0),O(⇤0pd)

L0+1,r+S0,s such that

WFd(J
0(G0(Um)), H(Ir))  ✏⇤0 · poly(m)  ✏ · poly(m), (14)

where the second step follows by our assumption on ⇤0.

We will take G , J 0 �G0. (14) establishes condition 2 of the theorem. Finally, by Lemma 2.1, every
output coordinate of G can be realized by a network in C⌧,⇤

L,S,m for ⌧ = max(O(log(1/✏)), ⌧ 0, O(1)),
⇤ = O(⇤0

p
ds) = O(⇤0) · poly(m), L = L0 +O(1), and S = O(s) + r+ S0 = O(s) + S0 (where

we used the fact that r = s/dlog(1/✏)e < s). This establishes condition 1 of the theorem.

B.10 PROOF OF LEMMA 3.10

Proof. Note that
h⇠(x) = �(x/⇠ + 1)� �(x/⇠ � 1)� 1, (15)

so we can take weight matrices

W1 =

✓
1/⇠
1/⇠

◆
W2 = (1 �1)

and biases b1 = (1,�1) and b2 = �1. Note that h⇠ is 1/⇠-Lipschitz. We conclude that h⇠ 2
C⌧,1/⇠
2,2,1 .

B.11 PROOF OF LEMMA 3.11

Proof. We first verify that W1(G0(Um), G(�m))  ✏. Take any 1-Lipschitz function f . Note that
we can sample from Um by sampling a vector g from �m, applying h⇠ entrywise to g, and replacing
each resulting entry of h⇠(g) by its sign; importantly, the last step only affects entries i 2 [m] for
which |gi| < ⇠.

We will define E to be the event that |gi| � ⇠ for all i 2 [m], noting that

P[E] � 1�m · P
g⇠N (0,1)

[|g| < ⇠] � 1�m⇠
p
2/⇡.

23

Under review as a conference paper at ICLR 2022

We can thus write

|E[f(G0(Um))]� E[f(G(�m))]|

=

���� E
g⇠�m

[(f(G0(h⇠(g)))� f(G(g))) · 1[E] + (f(G0(sgn(h⇠(g))))� f(G(g))) · 1[Ec]]

����

=

���� E
g⇠�m

[(f(G0(sgn(h⇠(g))))� f(G0(h⇠(g)))) · 1[Ec]]

����. (16)

By Fact A.2, f � G0 is ⇤00
p
d-Lipschitz. Furthermore, because h⇠(g) 2 [�1, 1]m, ksgn(h⇠(g)) �

h⇠(g)k 
p
m. We can thus upper bound (16) by

 ⇤00
p
md · P[Ec]  ⇤00⇠

p
(2/⇡)m3d  ✏

so W1(G0(Um), G(�m))  ✏ as desired.

It remains to bound the complexity of G. For any i 2 [d], we can apply Lemma 2.1 with f given by
the i-th output coordinate of G0 and J given by the map which applies h⇠ to every entry of the input.
We thus conclude that G 2 C⌧,⇤

L,S,m for ⌧ = max(⌧ 00, log2(1/⇠)) = max(⌧ 00, O(log(⇤00md/✏))),
⇤ = ⇤00pm/⇠ = O(⇤002m2

p
d/✏), L = L00 + 2, S = 3m+ S00 as claimed.

C FOOLING RELU NETWORKS WOULD IMPLY NEW CIRCUIT LOWER
BOUNDS

In this section we show that even exhibiting generators with logarithmic stretch that can fool all
ReLU network discriminators of constant depth and slightly superlinear size would yield break-
through circuit lower bounds.

First, in Section C.1 we review basics about average-case hardness and recall the state-of-the-art for
lower bounds against TC0. Then in Section C.2 we present and prove the main result of this section,
Theorem C.2.

C.1 AVERAGE-CASE HARDNESS AND TC0

One of the most common notions of hardness for a class of functions F is worst-case hardness, that
is, the existence of functions which cannot be computed by functions in F .
Definition 10 (Worst-case hardness). Given a class of Boolean functions F , a sequence of functions

fn : {±1}n ! {±1} is worst-case-hard for F if for every f : {±1}n ! {±1} in F , there is some

input x 2 {±1}n for which f(x) 6= fn(x).

A more robust notion of hardness is that of average-case hardness, which implies worst-case hard-
ness. For any fn 2 F , rather than simply require that there is some input on which f and fn
disagree, we would like that over some fixed distribution over possible inputs, the probability that f
and fn output the same value is small. Typically, this fixed distribution is the uniform distribution
over {±1}n, but in many situations even showing average-case hardness with respect to less natural
distributions is open.
Definition 11 (Average-case hardness). Given a class of Boolean functions F , a function ✏ : N !
[0, 1/2), and a sequence of distributions {Dn}n over {±1}n, a sequence of functions fn : {±1}n !
{±1} is (1/2+✏(n))-average-case-hard for F with respect to {Dn} if for every f : {±1}n ! {±1}
in F ,

P
x⇠Dn

[f(x) = fn(x)] 
1

2
+ ✏(n).

By a counting argument, for any reasonably constrained class F there must exist functions which
are worst/average-case hard for F . A central challenge in complexity theory has been to exhibit
explicit hard functions for natural complexity classes. In the context of this work, by explicit we
simply mean that there is a polynomial-time algorithm for evaluating the function.

The complexity class we will focus on in this section is TC0, the class of constant-depth linear
threshold circuits of polynomial size:

24

Under review as a conference paper at ICLR 2022

Definition 12 (Linear threshold circuits). A linear threshold circuit of size S and depth D is any

Boolean circuit of size S and depth D whose gates come from the set G of all linear threshold

functions mapping x 2 {±1}n to sgn(hw, xi � b) for some arity n 2 N, vector w 2 Rn
, and bias

b 2 R. TC0
is the set of all linear threshold circuits of size poly(n) and depth O(1).6

The best-known worst-case hardness result for TC0 is that of (Impagliazzo et al., 1997) who showed:
Theorem C.1 ((Impagliazzo et al., 1997)). Let fn : {±1}n ! {±1} be the parity function on n

bits. For any depth D � 1, any linear threshold circuit of depth D must have at least n1+c✓�D

wires, where c > 0 and ✓ > 1 are absolute constants.

In (Chen et al., 2016) this worst-case hardness result was upgraded to an average-case hardness result
with respect to the uniform distribution over the hypercube. Remarkably, this slightly superlinear
lower bound from (Impagliazzo et al., 1997) has not been improved upon in over two decades!

We remark that the discussion about lower bounds for threshold circuits is a very limited snapshot
of a rich line of work over many decades. We refer to the introduction in (Chen & Tell, 2019) for a
more detailed overview of this literature.

C.2 HARDNESS VERSUS RANDOMNESS FOR GANS

For convenience, given sequences of parameters D(m), S(m) 2 N (these will eventually correspond
to the depth and size of the linear threshold circuits against which we wish to show lower bounds)
let

Cd(D,S) , Cpoly(d),poly(d)
⇥(D),3d+⇥(S),d.

This will comprise the family of ReLU network discriminators that we will focus on. We now
show that if one could exhibit generators that can provably fool discriminators in Cd(D,S), then
this would translate to average-case hardness against linear threshold circuits of depth D and size
D. Formally, we show the following:
Theorem C.2. There is an absolute constant c > 0 for which the following holds. Fix se-

quences of parameters D(m), S(m) 2 N. Suppose there is an explicit
7

sequence of generators

Gm : Rm ! Rd(m)
for d(m) � cm logm such that WCd(m)(D(m),S(m))(Gm(Im), Id(m))  ✏(m)

for some ✏(m) � 1/poly(m) and such that each output coordinate of Gm is computable by a net-

work in F⇤
, then there exists a sequence of functions hd(m) : {±1}d(m) ! {±1} in NP which are

(1/2+✏(m)/2+m�⌦(m))-average-case-hard with respect to some sequence of explicit distributions

{Dm} for linear threshold circuits of depth D(m) and size S(m).

Remark C.3. In particular, this shows that if we could exhibit explicit generators fooling all discrimi-
nators given by neural networks of polynomial Lipschitzness/bit complexity of depth D(m) and size
O(d(m)1+exp(�D(m).99)), then by (2) we would get new average-case circuit lower bounds for TC0.
In fact it was shown by (Chen & Tell, 2019) that such a result would imply TC0 6= NC1, which would
be a major breakthrough in complexity. This can be interpreted in one of two ways: 1) it would be
extraordinarily difficult to show that a particular generative model truly fools all constant-depth,
barely-superlinear-size ReLU network discriminators, or 2) gives a learning-theoretic motivation
for trying to prove circuit lower bounds.

Regarding the proof of Theorem C.2, note that the statement is closely related to existing well-
studied connections between hardness and randomness in the study of pseudorandom generators. In
fact, readers familiar with this literature will observe that Theorem C.2 is the GAN analogue of the
“easy” direction of the equivalence between hardness and randomness: an explicit pseudorandom
generator that fools some class of functions implies average-case-hardness for that class.

In order to leverage this connection however, we need to formalize the link between GANs (over
continuous domains) and pseudorandom generators (over discrete domains) in the next lemma. It

6Sometimes TC0 is defined with the gate set taken to consist of {^,_,¬} and majority gates, though these
two classes are equivalent up to polynomial overheads (Goldmann et al., 1992; Goldmann & Karpinski, 1998).
Moreover, because a circuit of size S and depth D using the latter gate set is clearly implementable by a circuit
of size S and depth D using the former gate set, so our lower bounds against the former gate set immediately
translate to ones against the latter.

7By explicit, we mean that we are provided a way to evaluate these functions in polynomial time.

25

Under review as a conference paper at ICLR 2022

turns out that in the preceding sections we already developed most of the ingredients for establishing
this connection.
Lemma C.4. Suppose there is an explicit sequence of generators Gm : Rm ! Rd(m)

such that

WCd(m)(D(m),S(m))(Gm(Im), Id(m))  ✏(m) for some ✏(m) = 1/poly(m) and such that each

output coordinate of Gm is computable by a network in F⇤
. Then there is an explicit sequence of

pseudorandom generators G0
m : {±1}n(m) ! {±1}d(m)

for n(m) = ⇥(m logm) that 2✏(m)-fool

linear threshold circuits of depth D(m) and size S(m).

Proof. As in the proofs of the theorems from Section 3, the parameter m will be clear from context,
so we will drop m from subscripts and parenthetical references.

Recall the function h⇠ from Lemma 3.10; we will take ⇠ = ✏/poly(m). Also define n ,
⇥(log(m/✏)) and recall from the proof of Lemma 3.8 the definition of the linear function J :
Rmn ! Rm: for every i 2 [m], the i-th output coordinate of J is the linear function which maps
x 2 Rmn to hwi, x + 1i, where wi is zero outside of indices {(i � 1) · n + 1, . . . , i · n} and equal
to the vector (1/4, 1/8, . . . , 1/2n+1) on those indices.

Given generator G fooling Cd, we will show that the Boolean function G0 : {±1}mn ! {±1}d
given by

G0 = h⇠ �G � J

is a pseudorandom generator that fools TC0 circuits. To that end, suppose there was a TC0 circuit
f : {±1}d ! {±1} for which |E[f(G0(Umn))] � E[f(Ud)]| > 2✏. We will show that this implies
the existence of a ReLU network f 0 2 Cd(D,S) for which |E[f 0(G(Im))]� E[f 0(Id)]| > ✏.

Our proof proceeds in three steps: argue that

1. f � h⇠ 2 Cd(D,S)

2. E[f(Ud)] ⇡ E[f(h⇠(Id))]

3. E[G0(Umn)] ⇡ E[f(h⇠(G(Im)))]

Note that 2 and 3, together with the fact that f is a discriminator for G0, imply that f 0 , f � h⇠

is a discriminator for G. 1 then ensures that this discriminator is a ReLU network with the right
complexity bounds, yielding the desired contradiction.

To show step 1, we will show that f can be computed by a network in Cpoly(d),poly(d)
O(1),poly(d),d and then apply

Lemma 2.1 and Lemma 3.10. Suppose the threshold circuit computing f has depth D, where D is
some constant. Recall from Lemma A.7 that we may assume, up to an additional blowup in size by
D, that the constant-depth threshold circuit C computing f is comprised of layers S1, . . . , SD such
that Si consists of all gates in C for which any path from the inputs to the gate is of length i.

Let ki denote the number of gates in Si (where kD = 1), and for each j 2 [ki], suppose the linear
threshold function computed by the j-th gate in Si is given by sgn(hwi,j , ·i� bi,j) for wi,j 2 Rki�1 .
As each linear threshold takes at most poly(d) bits as input, we can assume without loss of generality
that bi,j and the entries of wi,j lie in R⌧ for ⌧ = poly(d). For this ⌧ , note that for any w 2 Rk

⌧ , b 2
R⌧ , x 2 {±1}k,

sgn(hw, xi � b) = h⇠0 (hw, xi � b) ,

for some ⇠0 = 1/poly(d), where h1/poly(d)(·) is the function defined in Lemma 3.10, and recall
from the proof of Lemma 3.10 that it can be represented as a two-layer ReLU network via (15). For
every i 2 [D], we can thus define two weight matrices W(1)

i 2 R2ki⇥ki�1 and W(2)
i 2 Rki⇥2ki by

W(1)
i =

1

⇠0
·

0

BBBB@

wi,1

wi,1
...

...
...

wi,ki

wi,ki

1

CCCCA
W(2)

i =

0

BB@

1 �1 0 0 · · · 0 0
0 0 1 �1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 �1

1

CCA

26

Under review as a conference paper at ICLR 2022

and biases b(1)i 2 R2ki and b(2)i 2 Rki by

b(1)i = (1,�1, 1,�1, . . . , 1,�1) b(2)i = (�1, . . . ,�1)

so that for all x 2 {±1}d,

f(x) = W(2)
D �

⇣
W(1)

D �
⇣
· · ·�

⇣
W(2)

1 �
⇣
W(1)

1 x+ b(1)1

⌘
+ b(2)1

⌘
· · ·
⌘
+ b(1)D

⌘
+ b(2)D (17)

The entries of the weight matrices and bias vectors are clearly in Rpoly(d), and because each h⇠0

is poly(d)-Lipschitz and there are D = O(1) layers in the circuit, the function in (17) is poly(d)-
Lipschitz as a function over Rd. The size and depth of the network are within a constant factor of
the size S and depth D of the circuit. Lemma 2.1 and Lemma 3.10 then imply that f � h⇠ has depth
⇥(D) and size 3d + ⇥(S), as well as Lipshitzness and bit complexity polynomial in m because
✏ � 1/poly(m) so that ⇠ � 1/poly(m). Therefore, f � h⇠ 2 Cd(D,S).

To show step 2, recall from Lemma 3.11 and Remark 3.12 that W1(Um, h⇠(Im)) 
✏/poly(m). Recalling that f is poly(d) = poly(m)-Lipschitz, we obtain the desired inequality
|E[f(Ud)]� E[f(h⇠(Id))]|  ✏/2. Here the factor of 1/2 is an arbitrary small constant coming
from taking the poly(m) in the definition of ⇠ sufficiently large.

Finally, to show step 3, recall by Fact 3.7 that W1(J(Umn), Im)  ✏2/poly(m) by our choice of
n = ⇥(log(m/✏)) (the ✏2 comes from taking the constant factor in the definition of n sufficiently
large). By applying Fact A.2 to f �h⇠ and G, we know that the composition f �h⇠ �G is poly(m)/✏-
Lipschitz. It follows that |E[G0(Umn)]� E[f(h⇠(G(Im)))]|  ✏/2. The factor of 1/2 is an arbitrary
small constant coming from taking the constant factor in the definition of n sufficiently large.

Putting everything together, we conclude by triangle inequality that
|E[f(G(Im))]� E[f(Id)]| > ✏,

a contradiction.

The following lemma gives the standard transformation from pseudorandom generators to average-
case hardness. We include a proof for completeness.
Lemma C.5 (Prop. 5 of (Viola, 2009)). Suppose the sequence of functions Gm : {±1}m !
{±1}d(m) ✏(m)-fools a class of Boolean functions F . Define the function hd(m) : {±1}d(m) !
{±1} by

hd(m)(x) =

⇢
1 exists y 2 {±1}m such that G(y) = x
�1 otherwise

.

Let Dd(m) be the distribution over {±1}d(m)
given by the uniform mixture between Ud(m) and

G(Um).

Then the sequence of functions {hd(m)} is (1/2 + ✏0(m))-average-case-hard for F with respect to

{Dd(m)} for ✏0(m) = ✏(m)/4 + 2m�d(m)�1
.

Proof. As usual, we will omit most subscripts/parentheses referring to the parameter m. Let f :
{±1}d ! {±1} be any function in F . Then

P[f(D) = hd(D)] =
1

2
P[f(Ud) = hd(Ud)] +

1

2
P[f(G(Um)) = hd(G(Um))]

 1

2
(P[f(Ud) = 0] + P[hd(Ud) = 1]) +

1

2
P[f(G(Um)) = 1]

 1

2

�
P[f(Ud) = 0] + 2m�d

�
+

1

2
P[f(G(Um)) = 1]

 1

2

�
P[f(Ud) = 0] + 2m�d

�
+

1

2
(P[f(Ud) = 1] + ✏/2)

=
1

2
+
✏

4
+ 2m�d�1,

where in the second step we used a union bound and the fact that h(G(Um)) is deterministically 1
by construction, in the third step we used the fact that P[hd(Ud)]  2m�d because there are at most
2m elements in the range of G, and in the fourth step we used the fact that G ✏-fools functions in
F .

27

Under review as a conference paper at ICLR 2022

We are now ready to prove Theorem C.2.

Proof of Theorem C.2. By Lemma C.4, we can construct out of the generators Gm an explicit se-
quence of pseudorandom generators that stretch ⇥(m logm) bits to d(m) � c · m logm bits and
2✏(m)-fool linear threshold circuits of size S(m) and depth D(m). The theorem follows upon
substituting this into Lemma C.5, which implies (1/2 + ✏0(m))-average-case-hardness for such
circuits with respect to the explicit distributions Dd(m) defined in Lemma C.5, where ✏0(m) =

✏(m)/2+2⇥(m logm)�d(m)�1 = ✏(m)/2+m�⌦(m), provided the absolute constant c is sufficiently
large.

Finally, note that the average-case-hard functions hd(m) we get from Lemma C.5 are in NP because
given an input x and a certificate y, one can easily verify whether G(y) = x.

28

