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A ALGORITHM FOR CALCULATING THE FEATURE ATTRIBUTION
CORRELATION MATRIX

We present the complete algorithm of calculating the feature attribution correlation matrix in Al-
gorithm 2. For each class, we first calculate the feature attribution vectors for each test adversarial
sample, then calculate the mean of these vectors as the feature attribution vector of this class. Finally,
we calculate the cosine similarity of the vectors as the measure of cross-class feature usage for each
pair of two classes.

Algorithm 1: Feature Attribution Correlation Matrix
Input: A DNN classifier f with feature extractor g and linear layer W ; Test dataset

D = {Dy : y 2 Y}; Perturbation margin ✏;
Output: A correlation matrix C measuring the cross-class feature usage
/* Record robust feature attribution */

for y 2 Y do
Ay  (0, · · · , 0) /* initialization as a n-dim vector */

for x 2 Dy do
�  argmaxk�k✏ `CE(f(x+ �), y) /* untargeted PGD Attack */

Ay += g(x+ �)�W [y] /* point-wise multiplication */

Ay  Ay / |Dy| /* Average */

for 1  i, j  |Y| do
C[i, j] Ai·Aj

kAik2·kAjk2
/* Cosine similarity */

return C

B MORE FEATURE ATTRIBUTION CORRELATION MATRICES AT DIFFERENT
EPOCHS

Epoch 10 Epoch 30 Epoch 50 Epoch 70 Epoch 90
CAS= 16.7 CAS= 17.8 CAS= 17.9 CAS= 18.2 CAS= 19.7
RA=36.9% RA=41.2% RA=41.5% RA=42.6% RA=42.8%

Epoch 110 Epoch 130 Epoch 150 Epoch 170 Epoch 190
CAS= 23.6 CAS= 18.9 CAS= 15.6 CAS= 13.8 CAS= 9.1
RA=47.5% RA=46.4% RA=44.7% RA=43.3% RA=42.8%

Figure 5: Feature attribution correlation matrices, and their corresponding robust accuracy (RA),
CAS at different epochs.

We present more feature attribution correlation matrices at different epochs in Figure 5. The training
detail is the same as that of our experiment (Section 5.2), and the test robust accuracy is plotted in
Figure 1(b) (red line, ✏ = 8/255). From the matrices we can see that at the initial stage of AT (10th -
90th Epochs), the model has already learned several cross-class features, and the overlapping effect
of class-wise feature attribution achieves the highest at the 110th epoch among the shown matrices.
However, for the later stages, where the model starts overfitting, this overlapping effect gradually
vanishes, and the model tends to make decisions with fewer cross-class features.
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C REGARDING EXTREMELY LARGE ✏

While our interpretation is consistent with the fact that for practically used ✏ 2 [0, 8/255], larger ✏
leads to more significant robust overfitting in AT, it is also compatible with the phenomenon of for
extremely large ✏(> 8/255), the effect of robust overfitting begins to decline (Wei et al., 2023a). We
justify this below.

Recall that our main interpretation for robust overfitting is that during the initial stage of AT, the
model learns both class-specific and cross-class features. As training progresses and the robust loss
decreases, the model begins to forget cross-class features, which leads to robust overfitting. Regarding
AT with extremely large ✏ , as we proved in Theorem 1, the more rigid robust loss makes the model
even harder to learn cross-class features at the initial stage of AT. Given that fewer cross-class features
are learned, the forgetting effect of these features is weakened, thus mitigating robust overfitting.

This claim is verified by the following study. We conduct additional experiments on AT with extremely
large perturbation bounds ✏ = 12/255 and 16/255, and compare them with ✏ = 8/255. We report
the CAS and robust accuracy at the 10th, best, and last epochs in the following table.

Table 2: Comparison of robust accuracy (RA) and CAS on AT with large ✏.
Epoch 10 Best Last

✏ for AT CAS / RA CAS / RA CAS / RA

8/255 16.7/36.9% 25.6/47.8% 9.0/42.5%
12/255 15.6/29.8% 18.9/38.7% 8.7/34.1%
16/255 14.4/23.8% 17.5/31.3% 8.4/28.1%

The table shows that the CAS (usage of cross-class features) of large ✏ is less than that of ✏ = 8/255
during the initial stage of AT (10th Epoch). This verifies our claim that the more rigid robust loss
of large ✏ makes it even harder for the model to learn cross-class features at the initial stage of AT.
Furthermore, the CAS of the best Epoch for large ✏ is significantly smaller than that of ✏ = 8/255,
further supporting our claim that these models struggle to learn cross-class features. Comparing the
gap of CAS between the best and last epochs, we find that the gap for large ✏ is smaller than that of
✏ = 8/255, which is consistent with the gap between the best and last robust accuracy. Therefore,
we can conclude that the mitigation of robust overfitting with large ✏ can be explained by the less
forgetting of cross-class features, which is compatible with our interpretation.

D MORE COMPARISON UNDER VARIOUS SETTINGS

D.1 COMPARISON ON MORE DATASETS

We illustrate the comparison of the feature attribution correlation matrices and the corresponding
robust accuracy and CAS of the best checkpoint and the last checkpoint on the CIFAR-100 and
the TinyImagenet datasets in Figure 6 and Figure 7, respectively. We can see that there are still
significant differences between matrices and CAS derived from the best and the last checkpoint of
AT on other datasets.

D.2 COMPARISON ON `2-NORM AT

We show the comparison of the feature attribution correlation matrices of the best checkpoint and the
last checkpoint of `2-norm AT (✏ = 128/255) on CIFAR-10 dataset in Figure 8 (a)(b). We can see
that there are still significant differences between matrices and CAS derived from the best and the
last checkpoint of `2-norm AT.

D.3 COMPARISON ON TRANSFORMER ARCHITECTURE

We show the comparison of the feature attribution correlation matrices of the best checkpoint and the
last checkpoint of AT on CIFAR-10 dataset with Vision Transformer architecture (Deit-Ti Touvron
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(a) CIFAR-100 Best (b) CIFAR-100 Last
RA= 24.7%, CAS= 569 RA= 19.6%, CAS= 352

Figure 6: Feature attribution correlation matrices on CIFAR-100 dataset.

(a) TinyImagenet Best (b) TinyImagenet Last
RA= 18.0%, CAS= 1548 RA= 14.4%, CAS= 998

Figure 7: Feature attribution correlation matrices on `2-norm AT and Visual Transformer architecture.

(a) `2-AT best (b) `2-AT last (c) DeiT-Ti best (d) DeiT-Ti last

Figure 8: Feature attribution correlation matrices on `2-norm AT and Visual Transformer architecture.
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et al. (2021)) in Figure 8 (c)(d). We can see that there are still significant differences between matrices
and CAS derived from the best and the last checkpoint of AT with transformer architecture.

D.4 INSTANCE-WISE ANALYSIS

We also conduct a similar study by calculating the feature attribution correlation matrices for the best
and the last checkpoints of `1 and `2-AT and their corresponding CAS instance-wisely, and the
results are shown in Figure 9. When considering classes i and j, for each sample x from class i, we
identify its most similar counterpart x0 from class j. We then calculate their cosine similarity and
average the results over all samples in class i.

In this context, x0 can be interpreted as the sample in class j that shares the most cross-class features
with x among all samples in class j. This metric provides a meaningful way to quantify the utilization
of cross-class features. We did attempt to average over all sample pairs (x, x0) in classes i and j,
but due to high variance among samples, each element in the correlation matrix C hovered near 0
throughout all epochs in adversarial training, rendering it unable to provide meaningful information.

(a) `1-AT best (b) `1-AT last (c) `2-AT best (d) `2-AT last
CAS=34.9 CAS=25.6 CAS=27.0 CAS=14.9

Figure 9: Instance-wise feature attribution correlation matrices

Consistent with the results for class-wise attribution vectors, it is still observed that there is a
significant decrease in the usage of cross-class features from the best checkpoint to the last for both
`1 and `2-AT. This observation further substantiates our understanding of robust overfitting.

D.5 REGULAR TRAINING

We also extend our experimental scope to include regular training on the CIFAR-10 dataset. The
experimental settings mirror those outlined in Section 5, with the sole distinction being the absence
of perturbations in regular training. The results are shown in Figure 10. Specifically, considering that
regular training prioritizes natural generalization and exhibits minimal robustness, we have calculated
the feature attribution vectors using clean examples. These vectors were computed for epochs
{50, 100, 150, 200}. Notably, the results reveal a lack of clear differences between them, particularly
in the latter stages (150th and 200th), where the training tends to converge. This observation is
consistent with the characteristic of regular training, which typically does not exhibit overfitting.

(a) Epoch 50 (b) Epoch 100 (c) Epoch 150 (d) Epoch 200
CAS=7.3 CAS=8.4 CAS=9.8 CAS=10.2

Figure 10: Feature attribution correlation matrices for regular training at different stages. Color bar
scaled to [0, 0.5].
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D.6 CATASTROPHIC OVERFITTING IN FAST-AT

In addition to robust overfitting in adversarial training, there is also a phenomenon called Catastrophic

Overfitting (Wong et al., 2020) observed in Fast (single step) adversarial training, where the model
quickly decreases its robustness after a certain epoch of training. We also extend our investigations to
include Fast-AT for the CIFAR-10 dataset, employing an `1-norm perturbation bound of ✏ = 8/255.
The feature attribution correlation matrices before and after the catastrophic overfitting are shown in
Figure 11. It is clear that after catastrophic overfitting, there is a significant reduction in the usage of
cross-class features. This observation aligns with our understanding, indicating that the model also
tends to forget cross-class features after exhibiting catastrophic overfitting.

(a) Before Catastrophic Overfitting (b) After Catastrophic Overfitting

Figure 11: Feature attribution correlation matrices for Fast adversarial training before and after
catastrophic overfitting happens.

E PROOFS FOR THEOREMS

E.1 PRELIMINARIES

First we present some preliminaries, and then review the data distribution, the hypothesis space and
the optimization objective.

Notations Let N (µ,�) be the normal distribution with mean µ and variance �2. We denote
�(x) = 1p

2⇡
e�

x2

2 and �(x) =
R x
�1

1p
2⇡

e�
t2

2 dt = Pr .(N (0, 1) < x) as its probability density
function and distribution function.

Data distribution For i 2 {1, 2, 3}, the sample of the i-th class is

(xE,1, xE,2, xE,3, xC,1, xC,2, xC,3) 2 R6, (12)
follows a distribution

⇢
xE,j |(yi = j) ⇠ N (µ,�2)
xE,j |(yi 6= j) = 0

,

⇢
xC,j |(yi 6= j) ⇠ N (µ,�2)
xC,j |(yi = j) = 0

, (13)

and µ,� > 0. We also assume � <
p
⇡µ to control the variance.

Hypothesis space The hypothesis space is {fw : w = (w1, w2), w1, w2 � 0} and fw(x) calculates
its i-th logit by

fw(x)i = w1xE,i + w2(xC,j1 + xC,j2), where {j1, j2} = {1, 2, 3}\{i}. (14)

Optimization objective Consider adversarially training fw with `1-norm perturbation bound
✏ < µ

2 . We hope that given sample x ⇠ Di, under any perturbation {� : k�k1  ✏}, the f(x+ �)i is
larger than any f(x+ �)j as much as possible. We also add a regularization term �

2 kwk
2
2 to the loss

function.

Overall, the loss function can be formulated as

L(fw) = Ei[Ex⇠Di max
k�k1✏

(max
j 6=i

fw(x+ �)j � fw(x+ �)i)] +
�

2
kwk22. (15)

17



Under review as a conference paper at ICLR 2024

E.2 PROOF FOR THEOREM 1

Theorem 1 There exists a ✏0 2 (0, 1
2µ), for AT by optimizing the robust loss (15) with ✏ 2 (0, ✏0), the

output function obtains w2 > 0; for AT with ✏ 2 (✏0,
1
2µ), the output function returns w2 = 0. By

contrast, AT with ✏ 2 (0, 1
2µ) always obtains w1 > 0.

To prove Theorem 1, we need the following lemmas.

Lemma 1 Suppose that X,Y ⇠ N (0, 1), and they are independent. Let Z = max{X,Y }, then

E[Z] = 1p
⇡

.

proof. Let p(·) and F (·) be the probability density function and distribution function of Z, respectively.
Then, for any z 2 R,

F (z) = Pr(Z < z) = Pr(max{X,Y } < z) = Pr(X < z) · Pr(Y < z) = �2(z), (16)

and we have
p(z) = F 0(z) = [�2(z)]0 = 2�(z)�(z). (17)

Thus,

E[Z] =

Z +1

�1
2z�(z)�(z)dz

= 2

Z +1

�1
z · 1p

2⇡
e�

z2

2 (

Z z

�1

1p
2⇡

e�
t2

2 dt)dz

= � 1

⇡

Z +1

�1
(

Z z

�1
e�

t2

2 dt)d(e�
z2

2 )

= � 1

⇡
[e�

z2

2

Z z

�1
e�

t2

2 dt]+1
�1 +

1

⇡

Z +1

�1
e�

z2

2 e�
z2

2 dz

= 0 +
1

⇡

Z +1

�1
e�z2

dz =
1p
⇡
.

(18)

Lemma 2 Given x = (xE,1, xE,2, xE,3, xC,1, xC,2, xC,3) ⇠ D1, ✏ 2 (0, µ
2 ) and w = (w1, w2),

then � = (�✏, ✏, ✏, ✏,�✏,�✏) is a solution for � = arg max
k�k1✏

[max
j 6=1

fw(x+ �)j � fw(x+ �)1].

proof. Denote � = (�E,1, �E,2, �E,3, �C,1, �C,2, �C,3). Note that for x ⇠ D1, we have xE,2 = xE,3 =
xC,1 = 0. Then,

max
j 6=1

fw(x+ �)j � fw(x+ �)1

= max
j2{2,3}

[w1�E,2 + w2�C,1 + w2(xC,3 + �C,3), w1�E,3 + w2�C,1 + w2(xC,2 + �C,2)]

� w1(xE,1 + �E,1)� w2(xC,2 + �C,2 + xC,3 + �C,3)

=w2�C,1 + max
j2{2,3}

[w1�E,2 + w2(xC,3 + �C,3), w1�E,3 + w2(xC,2 + �C,2)]

� w1(xE,1 + �E,1)� w2(xC,2 + �C,2 + xC,3 + �C,3).

(19)

Since w1, w2 � 0, it is clear that �E,1 = �✏, �E,2 = �E,3 = �C,1 = ✏ are the optimal values for
maximizing (19). As for �C,2 and �C,3, to prove that �C,2 = �C,2 = �✏ are the optimal values, by
variable simplification (a0 = �C,2, b0 = �C,3) and dividing by w2 we only need to show that

max{a+ a0, b+ b0}� a0 � b0  max{a� ✏, b� ✏}+ 2✏ (20)

under the constraint |a0|  ✏ and |b0|  ✏. Note that (20) is equivalent to

max{a+ a0, b+ b0}� a0 � b0  max{a, b}+ ✏

,max{a+ a0, b+ b0}  max{a, b}+ a0 + b0 + ✏

,max{a+ a0, b+ b0}  max{a+ a0 + b0 + ✏, b+ a0 + b0 + ✏}.
(21)
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Since |b0|  ✏, we have b0+✏ � 0 and hence a+a0  a+a0+b0+✏  max{a+a0+b0+✏, b+a0+b0+✏}.
Similarly, b+ b0  max{a+ a0 + b0 + ✏, b+ a0 + b0 + ✏} and finally we have max{a+ a0, b+ b0} 
max{a+ a0 + b0 + ✏, b+ a0 + b0 + ✏}. Clearly when a0 = b0 = �✏, the equal sign holds.

Proof for Theorem 1. First, due to symmetry, optimizing (15) is equivalent to optimize

Ex⇠D1 [ max
k�k1✏

(max
j 6=1

fw(x+ �)j � fw(x+ �)1)] +
�

2
kwk22. (22)

Further, by Lemma 2 we can replace � with its optimal value and transform the optimization objective
above as

Ex̂⇠D̂1
(max
j 6=i

fw(x̂)j � fw(x̂)i)] +
�

2
kwk22, (23)

where D̂1 is the adversarial data distribution:

x̂E,j ⇠
⇢
N (µ� ✏,�2), j = 1
✏, j 6= 1

, x̂C,j ⇠
⇢
N (µ� ✏,�2), j 6= 1
✏, j = 1

. (24)

Now we calculate the expectation in (23).

Ex̂⇠D̂1
[(max fw(x̂)j � fw(x̂)i)] +

�

2
kwk22

=Ex̂⇠D̂1
[max(w1✏+ w2✏+ w2x̂C,3, w1✏+ w2✏+ w2x̂C,2)� w1x̂E,1 � w2(x̂C,2 + x̂C,3)] +

�

2
kwk22

=Ex̂⇠D̂1
[w1✏+ w2✏+ w2 max(x̂C,3, x̂C,2)� w1x̂E,1 � w2(x̂C,2 + x̂C,3)] +

�

2
kwk22

=w1✏+ w2✏+ w2Ex̂⇠D̂1
[max(x̂C,3, x̂C,2)] + Ex̂⇠D̂1

[�w1x̂E,1 � w2(x̂C,2 + x̂C,3)] +
�

2
kwk22

=w1✏+ w2✏+ w2Ex̂⇠D̂1
[max(x̂C,3, x̂C,2)] + [�w1(µ� ✏)� 2w2(µ� ✏)] +

�

2
kwk22.

(25)

Finally, since x̂C,3, x̂C,2 ⇠ (µ� ✏,�2) and they are independent, by Lemma 1 we have

E[max(
x̂C,3 � (µ� ✏)

�
,
x̂C,2 � (µ� ✏)

�
)] =

1p
⇡
, (26)

hence Ex̂⇠D̂1
[max(x̂C,3, x̂C,2)] = µ� ✏+ �p

⇡
.

Therefore, the optimizing objective can be simplified as

L(fw) = (�µ+ 2✏)w1 + (�µ+ 2✏+
�p
⇡
)w2 +

�

2
(w2

1 + w2
2). (27)

For w2, we have
@L
@w2

= �µ+ 2✏+
�p
⇡
+ �w2. (28)

Recall that � <
p
⇡µ. Let ✏0 = 1

2 (µ�
�p
⇡
) 2 (0, µ

2 ). By analysing the sign of (28), it is clear that
for ✏ 2 (0, ✏0), the optimal w2 for minimizing the loss function (27) is

w2 =
µ� 2✏� �p

⇡

�
. (29)

However, for ✏ 2 (✏0,
µ
2 ),

@L
@w2

is always negative, thus the returned w2 by AT is w2 = 0 under the
constraint w2 � 0.

By contrast,
@L
@w1

= �µ+ 2✏+ �w1, (30)
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and for ✏ 2 (0, µ
2 ), the optimal w1 for minimizing the loss function (27) is always positive:

w1 =
µ� 2✏

�
> 0. (31)

This ends our proof.

E.3 PROOF FOR THEOREM 2

Theorem 2 For any w1 > 0 and ✏ 2 (0, µ
2 ), if w2 2 [0, w1], a larger w2 increases the possibility of

the model distinguishing the adversarial examples from any other given class.

To prove Theorem 2, we need the following lemma.

Lemma 3 Suppose that X,Y ⇠ N (1,�2
1) and they are independent, �1 > 0. Let Zt = X + tY

where t > 0. Denote u(t) = Pr(Zt > 0), then u(t) is monotonically increasing at t for t 2 [0, 1].

proof. Note that Zt = X + tY ⇠ N (1 + t, (1 + t2)�2
1). Thus, the distribution function of Zt is

�t(z) = �( z�1�tp
1+t2�1

), and

u(t) = 1� �t(0) = 1� �(
�1� tp
1 + t2�1

) = �(
1 + tp
1 + t2�1

),

u0(t) = p(
1 + tp
1 + t2�1

)

p
1 + t2�1 � (1 + t) t�1p

1+t2

(1 + t2)�2
1

= p(
1 + tp
1 + t2�1

)
(1 + t2)� (1 + t)t

(1 + t2)
p
1 + t2�1

= p(
1 + tp
1 + t2�1

)
1� t

(1 + t2)
p
1 + t2�1

.

(32)

Therefore, for t 2 (0, 1), u0(t) > 0 and u(t) is monotonically increasing at t for t 2 [0, 1].

Proof for Theorem 2. Due to symmetry, it’s suffice to show that given w1, for w2 2 [0, w1], the
probability

Pr(fw(x̂)1 > fw(x̂)2), x̂ ⇠ D̂1 (33)
is monotonically increasing at w2. Note that

fw(x̂)1 � fw(x̂)2 = w1(x̂E,1 � x̂E,2) + w2(x̂C,2 � x̂C,1),

x̂E,1 � x̂E,2 ⇠ N (µ� 2✏, 2�2),

x̂C,2 � x̂C,1 ⇠ N (µ� 2✏, 2�2).

(34)

By dividing w1 · (µ� 2✏), and let t = w2
w1

, X = x̂E,1�x̂E,2

µ�2✏ and Y = x̂C,2�x̂C,1

µ�2✏ , from Lemma 3 we
know that the probability

Pr(fw(x̂)1 � fw(x̂)2 > 0) (35)
is monotonically increasing at t = w2

w1
, and hence increasing at w2. This ends our proof.

E.4 PROOF FOR THEOREM 3 AND COROLLARY 1

Simplification of knowledge distillation as label smoothing. In this context, the term ’symmetry’
specifically refers to the symmetry of logits for the other two classes when taking the expectation
in the loss function (equation 10). When considering data from class y, both the distribution of
features xE,i and xCi for the other two classes, as well as their respective weights w1 and w2, exhibit
symmetry respectively. Consequently, after applying knowledge distillation, the expectation for logits
of the other two classes in the objective loss function (equation 10) becomes identical. To simplify
this process, we can employ label smoothing.

We prove Theorem 3 and Corollary 1 in the following. Recall that we define the robust loss under
knowledge distillation as

LLS(fw) = Ei{Ex⇠Di(1��)[ max
k�k1✏

(max
j 6=i

fw(x+�)j�fw(x+�)i)]�
�

2

X

j 6=i

fw(x+�)j}+
�

2
kwk22.

(36)
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Theorem 3 Consider AT with knowledge distillation loss (36). There exists an ✏1 > ✏0, such that for
✏ 2 (0, ✏1), the output function obtains w2 > 0; for ✏ 2 (✏1,

1
2µ), the output function returns w2 = 0.

Proof for Theorem 3. Similar to the proof for Theorem 1, the optimization objective (36) can be
simplified as

LLS(fw) = (1� �)[(�µ+ 2✏)w1 + (�µ+ 2✏+
�p
⇡
)w2]� �[✏w1 + µw2] +

�

2
(w2

1 + w2
2)

= [(1� �)µ+ (2� 3�)✏]w1 + [(1� �)(2✏+
�p
⇡
)� µ]w2 +

�

2
(w2

1 + w2
2).

(37)

Thus
LLS

w2
= (1� �)(2✏+

�p
⇡
)� µ+ �w2, (38)

and let ✏1 = 1
2 (

µ
1�� �

�p
⇡
) > ✏0, similar to the analysis for ✏0, we have for ✏ 2 (0, ✏1), the output

function obtains w2 > 0; for ✏ 2 (✏1,
1
2µ), the output function returns w2 = 0. This ends our proof.

Corollary 1 Let w⇤
2(✏) be the value of w2 returned by AT with (15), and wLS

2 (✏) be the value of w2

returned by label smoothed loss (36). Then, for ✏ 2 (0, ✏1), we have wLS
2 (✏) > w⇤

2(✏).

Proof for Corollary 1. For ✏ 2 (0, ✏1), by analysing the sign of (38), we have

wLS
2 (✏) =

µ� (1� �)(2✏+ �p
⇡
)

�
, (39)

and recall that in the proof for Theorem 1 we have

w⇤
2(✏) =

µ� (2✏+ �p
⇡
)

�
, (40)

thus it is clear that

wLS
2 (✏)� w⇤

2(✏) =
�(2✏+ �p

⇡
)

�
> 0. (41)

This ends our proof.

F MORE EXPERIMENTS OF WAKE

We also conduct experiments comparing WAKE and baselines in other settings to further demonstrate
its effectiveness in terms of improving robustness and mitigating robust overfitting.

F.1 `2-NORM AT

We conduct experiments on `2-norm AT with ✏ = 128/255 on CIFAR-10 dataset. The settings are
the same as those of CIFAR-10 in Section 5.2. The results are shown in Table 3.

Table 3: Comparison of WAKE with vanilla AT and AT+KDSWA on `2-norm.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
AT 67.3 64.5 88.6 88.7
AT + KDSWA 68.9 68.3 89.4 89.7
AT + WAKE 70.4 70.2 89.9 90.1

Results clearly show the advantage of WAKE over vanilla AT and KDSWA in terms of mitigating
robust overfitting for `2-norm AT.

21



Under review as a conference paper at ICLR 2024

F.2 COMBINATION WITH OTHER METHODS

We conduct experiments on TRADES (Zhang et al., 2019) on CIFAR-10 dataset. The settings are
the same as those of CIFAR-10 in Section 5.2. We follow the hyperparameters of TRADES from its
original papers. The results are shown in Table 4.

Table 4: Comparison of WAKE with vanilla AT and AT+KDSWA combined with TRADES.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
TRADES 48.3 46.9 82.5 83.7
TRADES + KDSWA 50.1 49.5 82.9 83.3
TRADES + WAKE 50.7 50.4 83.8 84.1

Consistent with the results in the paper, these results clearly show that WAKE can also be combined
with other advanced methods to further mitigate robust overfitting and improve adversarial robustness.

F.3 TRANSFORMER ARCHITECTURE

We conduct experiments on transformer architecture DeiT-Ti (Touvron et al., 2021) on CIFAR-10
dataset. The settings are the same as those of CIFAR-10 in Section 5.2, and the robustness is evaluated
using PGD-20. The results are shown in Table 5.

Table 5: Comparison of WAKE with vanilla AT and AT+KDSWA on DeiT-Ti architecture.

Dataset Method Robust Acc. (%) Clean Acc. (%)
Best Last Best Last

CIFAR-10
AT 50.0 47.7 79.4 79.6
AT + KDSWA 50.4 49.5 79.6 79.8
AT + WAKE 50.6 50.3 80.1 80.4

Consistent with the results in the paper, these results clearly show that WAKE can also work on
transformer architecture to further mitigate robust overfitting and improve adversarial robustness.

G DETAILS FOR WAKE IMPLEMENTATION

G.1 ALGORITHM FOR WAKE

We provide a detailed implementation algorithm of WAKE in Algrithm 2.

G.2 DETAILS OF THE KNOWLEDGE DISTILLATION FUNCTION

Following Chen et al. (2021), the knowledge distillation (Hinton et al., 2015) function can be defined
as:

KD(f(✓student;x), f(✓teacher;x)) = KL[softmax(
f(✓student;x)

T
), softmax(

f(✓teacher;x)

T
)], (42)

where KL(·, ·) is the Kullback-Leibler divergence and T is the distillation temperature.

H ADDITIONAL RELATED WORK
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Algorithm 2: Weight Average guided KnowledgE Distillation (WAKE)
Input: A DNN classifier f✓(·) with parameter ✓; Train dataset D = {(xi, yi)}Ni=1; Batch size m;

Initial perturbation margin ✏; Train epochs N ; Learning rate ⌘; Weight average decay rate
↵; Knowledge distillation warm-up start epoch ts and end epoch te; hyper-parameter �.

Output: A robust classifier f̄✓̄ with less overfitting
for t 1, 2, · · · , T do

for Every minibatch (x,y) in trainset D do
�  maxk�kp✏ `CE(f(✓, x+ �), y);
if t > ts then

ỹ  f(✓̄, x+ �)(stop gradient);
if t < te then

�t  t�ts
te�ts

· �;

else
�t  1;

✓  ✓ � ⌘r✓[(1� �t)`CE(f(✓, x+ �), y) + �t · KD(f(✓;x+ �), ỹ))].;
else

✓  ✓ � ⌘r✓[`CE(f(✓, x+ �), y)];
if t < te then

✓̄  ↵✓̄ + (1� ↵)✓;

return f✓̄;

H.1 ADVERSARIAL TRAINING AND ADVERSARIAL ROBUSTNESS

The adversarial robustness and adversarial training has become popular research topic since the
discovery of adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014), which uncovers that
DNNs can be easily fooled to make wrong decisions by adversarial examples that are crafted by adding
small perturbations to normal examples. The malicious adversaries can conduct adversarial attacks
by crafting adversarial examples, which cause serious safety concerns regarding the deployment of
DNNs. Following this discovery, various types of adversarial attack methods have been proposed,
including gradient-based (Carlini & Wagner, 2017b; Liu et al., 2022), query-based (Andriushchenko
& Flammarion, 2020; Bai et al., 2019), decision-based (Brendel et al., 2017; Chen et al., 2020) and
demonstration-based (Wang et al., 2023; Wei et al., 2023b) attacks on various models and tasks.

In response to such adversarial threats, numerous defense approaches have also been proposed, such
as adversarial example detection (Grosse et al., 2017; Tian et al., 2018) and purification (Bai et al.,
2019; Nie et al., 2022), parameter regularization (Jakubovitz & Giryes, 2018; Wei et al., 2023c),
randomized smoothing (Cohen et al., 2019; Levine & Feizi, 2020), among which adversarial training
methods (Madry et al., 2017; Wang et al., 2019) has been considered as the most promising defending
method against adversarial attacks (Carlini & Wagner, 2017a; Athalye et al., 2018). Through
this research thread, there are also other perspectives on improving adversarial training, including
architecture design (Huang et al., 2021; Mo et al., 2022), data augmentation (Rebuffi et al., 2021b;a),
optimization objective design (Wang et al., 2020; Pang et al., 2022).

H.2 ADVERSARIAL ROBUSTNESS DISTILLATION

Besides adversarial training, there are also several papers on distilling adversarial robustness from
teacher models (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021; Huang et al., 2023; Yue et al.,
2023). Similar to conventional knowledge distillation (Hinton et al., 2015; Gou et al., 2021), this
thread works toward training an adversarially robust student model with a robust teacher model. By
designing proper distilling objectives and algorithms, these works can enhance the robustness of the
trained student model.

There are several differences between our proposed WAKE method and these adversarial robustness
distillation methods. First, WAKE is designed to mitigate robust overfitting in adversarial training,
which is different from existing work typically for improving adversarial robustness. To the best of
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our knowledge, the KDSWA (Chen et al., 2021) is the only existing distillation method designed
for the same purpose, thus we only include KDSWA and the vanilla adversarial training method as
baselines in experiments. Moreover, WAKE uses the weight-averaged model as the teacher model,
which does not require a given robust teacher model. Therefore, not only WAKE can save large
amounts of computational resources, but also its robustness is not dependent on another teacher
model.
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