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APPENDIX

This appendix provides additional details and analyses to complement the main paper. The content
is organized as follows:

• Section A acknowledges the role of LLMs leveraged in our work.

• Section B gives methodological details, including prompts and templates used in EAMA,
the setup of hybrid-length distillation, and the architecture and training of reward models.

• Section C describes experimental details, including dataset statistics, preprocessing steps,
training configurations, and human study protocols.

• Section D presents additional experiments and analyses.

A ACKNOWLEDGEMENTS

We used large language models (LLMs) such as ChatGPT for minor editing support, including
grammar checking and language polishing. No LLMs were In this paper, we maintained a leading
role by employing Large Language Models (LLMs) as an efficient auxiliary tool under our strict
control in two specific stages. First, we utilized LLMs for language polishing to enhance clarity,
and we manually reviewed all modifications to ensure the original research ideas and conclusions
remained unchanged. Second, we utilized LLMs for fine-tuning the music-to-image (MTI) task,
where they helped generate structured visual descriptors from textual music descriptions. These
LLM-generated outputs were not used as-is but were rigorously reviewed and refined by domain
experts to ensure the generated descriptors accurately reflected the intended music attributes and
preserved semantic integrity. In addition, LLMs were also employed to assist in constructing the
textual prompts for image generation, leveraging their language capabilities to craft diverse, varied,
and contextually relevant prompts that guided the image synthesis process. In both cases, while
LLMs provided initial outputs, all results were carefully evaluated, with manual oversight ensuring
the quality and validity of the final generated data.

B METHODOLOGICAL DETAILS

B.1 EAMA PROMPTS AND TEMPLATES

To ensure consistency and interpretability in descriptor extraction, we designed specialized prompts
for each dimension in the Expert-guided Agent-based Music Analysis (EAMA) module. Each
prompt instructs an LLM-based agent to focus exclusively on one musical attribute, avoiding overlap
across dimensions. Below we provide representative templates:

• Instrument. “Given the following music description, identify the instruments mentioned
and rephrase them as a concise noun phrase. Output only the instrument names.”

• Style. “Summarize the overall musical style (e.g., jazz, rock, classical) from the descrip-
tion. Output a single style label.”

• Key. “Determine the key signature (e.g., C major, A minor) of the music if specified or
implied.”

• Time Signature. “Identify the time signature (e.g., 4/4, 3/4) if available. If uncertain,
provide the most likely default.”

• Tempo. “Extract the tempo of the piece (in beats per minute) if stated. Otherwise, output
a qualitative tempo category (slow, moderate, fast).”

• Mood. “Summarize the emotional tone of the music in 3–6 words (e.g., ’hopeful and up-
lifting’).”

These prompts are intentionally simple and deterministic to reduce hallucinations. We also used
auxiliary evaluators with slightly varied wording (e.g., “List the instruments you hear” vs. “What
instruments are present?”) to compute agreement scores and improve robustness.
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Figure 8: Performance metrics for visual description evaluated at different output lengths. The red
dotted line represents the Balanced Score, which is a combined metric of the other two.

B.2 HYBRID-LENGTH DISTILLATION SETUP

In the Coarse Music-Vision Generation (CMVG) module, we employed a hybrid-length strategy to
balance factual accuracy and expressive richness in visual descriptions. Specifically, for each visual
dimension (v ∈ {color, lighting, iconography, composition, textures}), a reasoning-focused LLM
was prompted three times with explicit length constraints:

• 20 tokens (factual): concise, information-dense outputs that minimize hallucination.

• 50 tokens (balanced): medium-length outputs that balance semantic coverage with read-
ability.

• 70 tokens (expressive): long outputs with richer stylistic details and more vivid language.

We observed empirically (see Fig. 8) that 20-token captions yield the lowest hallucination rate, while
70-token captions provide the strongest stylistic cues. The 50-token captions maximize the balanced
score, achieving a sweet spot between factual grounding and expressive detail. Accordingly, we treat
the 20- and 70-token captions as reference/teacher signals and distill their complementary strengths
into the 50-token candidate:

ỹv = Distill(y50v ; y70v , y20v ). (12)

In practice, the distillation is performed by minimizing a consistency loss between the 50-token
candidate and the two auxiliary variants, ensuring that the final pseudo-labels ỹv remain concise
while retaining key stylistic cues.

B.3 REWARD MODEL ARCHITECTURE AND TRAINING

Each preference reward model (Emo-RM, Con-RM, Cre-RM) takes as input an image z and its
associated textual description t, and outputs a scalar preference score fθk(t, z). Following the design
of ImageReward Xu et al. (2023), we adopt a BLIP-based encoder backbone with a multimodal
fusion layer. The image is encoded via a Vision Transformer, the text is encoded with a Transformer-
based language encoder, and the fused representation is projected into a scalar score through a two-
layer MLP head.
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Figure 9: Effect of λk on Avg. Similarity across three preference axes (Emo, Rel, Cre).

The model size is comparable to ImageReward (approximately 120M parameters), which balances
accuracy with training efficiency. Training uses pairwise preference data, where for each triple
(t, zi, zj), the reward model is optimized with the logistic ranking loss:

LRMk
= −E(t,zi,zj)∼Dk

[
log σ(fθk(t, zi)− fθk(t, zj))

]
. (13)

We train each reward model for 3 epochs using AdamW with learning rate 1e−5, batch size 64, and
linear warmup. Training is performed on 4×A100 GPUs (40GB) for approximately 48 GPU-hours
per reward model. We observe stable convergence and consistent separation between positive and
negative samples across all three axes.

B.4 PREFERENCE WEIGHTING AND λk TUNING

During RLHF fine-tuning, each axis-specific objective is combined with the pre-training loss using
a weight λk:

Lk = Lpre + λkLRLHF,k. (14)

Sensitivity of λk Weights We sweep λk ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on a held-out validation set for
each preference axis and report two aggregate metrics that match the main paper: Avg. Similarity
(CLIP/ImageBind-based) and BES. Results are averaged over three runs with fixed seeds.

As shown in Fig. 9, the optimal value of λk varies by axis: emotional consistency peaks at λe = 0.3,
semantic alignment at λc = 0.5, and creative aesthetic appeal at λcr = 0.7. Despite this variation,
all three curves exhibit a consistent trend: small λk under-emphasizes human preference alignment,
while overly large λk overfits to axis-specific feedback and degrades generalization.

In practice, we select the axis-specific optimal values for the main experiments. This axis-aware
tuning ensures that each preference dimension is adequately emphasized without compromising
overall audio–visual fidelity.

This analysis confirms that our framework is not overly sensitive to the choice of λk, further sup-
porting its stability.
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C EXPERIMENTAL DETAILS

C.1 DATASET STATISTICS AND PREPROCESSING

We employ two widely adopted benchmark datasets: MusicCaps Agostinelli et al. (2023) and the
Song-Describer Dataset Manco et al. (2023). The MusicCaps dataset contains 5.5K audio clips,
each 10.24s in length, paired with expert-curated captions from ten professional musicians. The
Song-Describer Dataset provides 706 licensed, high-fidelity recordings with detailed textual anno-
tations, serving as an out-of-domain evaluation set. For both datasets, we normalize sampling rates
to 32kHz, remove duplicates or corrupted files, and tokenize text with a standard BPE tokenizer. All
audio samples are padded or trimmed to 10s, and captions longer than 128 tokens are truncated.

C.2 TRAINING CONFIGURATION AND HYPERPARAMETERS

We train all models on a single NVIDIA A100 GPU (40GB) with mixed-precision. Unless otherwise
specified, we use a batch size of 2 per GPU and train for 20k steps, corresponding to approximately
60 epochs on MusicCaps. We use the AdamW optimizer with learning rate 1e−5, β1=0.9, β2=0.98,
and weight decay 0.01. The learning rate follows a cosine schedule with 500 warmup steps. Check-
pointing is performed every 1k steps, and early stopping is applied if validation metrics plateau for
5k steps. Training the full pipeline requires about 150 GPU hours on a single A100.

C.3 IMPLEMENTATION DETAILS OF MUSVIS-LLM

Qwen-Audio Encoder. We adopt Qwen-Audio Chu et al. (2023) as the audio encoder, which com-
bines a convolutional frontend with a Transformer backbone and has shown strong performance on
audio–language tasks. We finetune it in two stages (coarse and fine-grained) using our descriptor
sets (see Sec. 3.2).

MusVis-LLM. For the music-to-visual stage, we introduce MusVis-LLM, which maps audio de-
scriptors to structured visual prompts across five dimensions (color, lighting, iconography, com-
position, textures). The model is initialized from a pretrained LLaMA-7B backbone with LoRA
adapters, and trained using hybrid-length distilled pseudo-labels.

Diffusion Backbone. The final image generator is based on SDXL, which we finetune with axis-
specific RLHF objectives. The reward models (Sec. 3.4) directly supervise SDXL finetuning, ensur-
ing controllable alignment without modifying the MusVis-LLM stage.

C.4 HUMAN STUDY PROTOCOL

We conducted a user study with 20 participants (10 male, 10 female), recruited from graduate-
level students and amateur musicians. Participants were presented with outputs from three systems
(MusePainter, Qwen-audio baseline, AudioToken) under identical music inputs. Each participant
rated 30 randomly sampled trials on four axes: stylistic congruence, rhythmic correspondence, im-
age quality, and audio–visual harmony. Ratings were collected on a 1–10 Likert scale. The study
was within-subject: each participant evaluated all methods, but the order of presentation was ran-
domized. Annotators were blinded to method identity. We compute mean ratings, standard devia-
tions, and conduct Wilcoxon signed-rank tests for statistical significance, with inter-rater agreement
measured using Krippendorff’s α. The protocol was approved by an internal review committee, and
participants gave informed consent.

D ADDITIONAL EXPERIMENTS AND ANALYSES

D.1 EXTENDED RESULT ANALYSIS FOR MUSIC-TO-TEXT AND DOWNSTREAM MUSIC
GENERATION

Tables 6 and 5 summarize quantitative results on the MusicCaps and Song-Describer benchmarks.
Here we provide additional analysis to complement the main paper.
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Table 5: Objective comparison of music generation models on the MusicCaps and Song Describe
benchmarks. Our model, MusePainter (highlighted), is evaluated against other music- and text-
conditioned methods. Lower is better (↓) for KL, FD, and FAD; higher is better (↑) for CLAP. The
best results are highlighted in pink .

model text music Musiccaps Song describe

KL↓ FD↓ FAD↓ CLAP↑ KL↓ FD↓ FAD↓ CLAP↑

ACT BART x ✓ 0.861 2.522 7.125 0.254 1.629 2.553 3.275 0.202
qwen x ✓ 0.904 2.638 6.902 0.234 1.677 2.305 3.372 0.223
MusePainter x ✓ 0.868 2.172 6.522 0.208 1.612 2.084 2.988 0.224

MusicGEN ✓ x 1.229 2.106 3.802 0.310 1.01 2.179 5.38 0.18
Mousai ✓ x 1.592 2.867 7.530 0.23 0.742 - 8.320 0.29
MusicControlNet ✓ x - - 10.81 0.22 - - - -
JASCO ✓ x 1.78 - 6.05 0.26 1.39 - 4.97 0.22

Table 6: Experimental Results for Music Caption Task. “A”, “B” and “C” denote CLIP, LongCLIP
and CLAP, respectively. The best results are highlighted in pink .

model Musiccaps Song describe

CLIP↑ LongCLIP↑ CLAP↑ CLIP↑ LongCLIP↑ CLAP↑

ACT BART 0.902 0.939 0.567 0.868 0.912 0.445
Qwen-audio 0.864 0.914 0.461 0.857 0.904 0.447
MusePainter 0.864 0.914 0.459 0.867 0.911 0.501

Music-to-Text Captioning. On caption–reference similarity (CLIP, LongCLIP, CLAP), Muse-
Painter performs comparably to Qwen-Audio and ACT BART on MusicCaps. Specifically,
ACT BART achieves the highest CLIP (0.902) and LongCLIP (0.939), reflecting its strength on
literal text matching. However, on CLAP—designed to capture audio–text alignment—MusePainter
(0.459) and Qwen-Audio (0.461) trail slightly behind ACT BART (0.567). On Song-Describer,
MusePainter achieves the best CLAP score (0.501), surpassing both ACT BART (0.445) and Qwen-
Audio (0.447). A paired t-test confirms the CLAP improvement of MusePainter over ACT BART
is statistically significant (p < 0.05). This suggests that while MusePainter is not always optimal
on pure text-similarity metrics, its captions more faithfully reflect musical attributes in a way that
aligns better with the audio signal.

Downstream Music Generation. When captions are fed into text-to-music models, MusePainter
demonstrates clear advantages in downstream audio quality (Table 5). On Song-Describer, Muse-
Painter attains the lowest FD (2.084) and FAD (2.988), and the best KL (1.612), indicating strong
fidelity and distributional alignment. On MusicCaps, it achieves the best FD (2.172) and FAD
(6.522), ranking second in KL (0.868) behind ACT BART (0.861). Importantly, MusePainter con-
sistently yields the most balanced performance: while ACT BART excels in KL, it lags in FD/FAD,
and Qwen shows higher FD despite reasonable CLAP scores. MusePainter provides a more stable
compromise across all metrics.

Interpretation of Metrics. The divergence between CLIP/LongCLIP and CLAP is noteworthy.
High text-similarity scores (CLIP, LongCLIP) do not necessarily imply strong audio–caption align-
ment (CLAP), which is more sensitive to non-linguistic musical attributes. MusePainter’s advantage
on CLAP (especially on Song-Describer) indicates that its captions better encode affective and stylis-
tic cues that are crucial for downstream generation. This observation supports the motivation of our
hybrid-length and multi-axis preference strategies, which aim to preserve subtle musical semantics
rather than overfitting to literal textual similarity.

Failure Cases. Despite improvements, MusePainter occasionally produces captions that are se-
mantically faithful but overly generic (e.g., “soft piano with calm mood”), which limits diversity
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when passed to downstream music generators. This explains why CLIP/LongCLIP scores remain
lower than ACT BART. Future work may integrate diversity-promoting objectives or larger-scale
music–text corpora to further improve caption expressiveness without sacrificing alignment.

Summary. Overall, MusePainter achieves competitive text-level similarity and clear gains in au-
dio–caption alignment, which directly translate into superior downstream music generation quality.
The results underscore that captions optimized for audio–semantic faithfulness, rather than literal
textual overlap, yield better practical utility in cross-modal pipelines.
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Figure 10: Qualitative Comparison of Music-to-Image Generation. For each audio sample, we show
its four annotations (Scenario, Genre, Mood, Feature) alongside the image generated by Muse-
Painter, and compare it with the image produced by Qwen-audio via its visual-text pipeline.

D.2 EXTENDED ANALYSIS OF MUSIC-TO-IMAGE GENERATION TASK

Figure 10 provides additional qualitative comparisons of music-to-image generation between Muse-
Painter and the Qwen-audio visual–text pipeline. Each audio sample is annotated along four dimen-
sions—Scenario (S), Genre (G), Mood (M), and Feature (F)—which serve as ground-truth refer-
ences for semantic evaluation.

Strength on Multidimensional Alignment. MusePainter demonstrates consistent advantages in
capturing all four annotation dimensions simultaneously. For example, under the condition “Cor-
porate Video + Easy Listening + Hopeful + Soothing,” Qwen-audio produces a stag in a sunset
landscape. While visually pleasant, the image is weak in conveying the “corporate” scenario and
lacks visual cues of professionalism. MusePainter instead generates an interior with warm light-
ing and human silhouettes, which better matches the scenario (corporate video), mood (hopeful,
soothing), and stylistic cues (easy listening background).

Faithful Genre and Mood Transfer. For “Car Commercial + Rock + Exciting + Cool,” Qwen-
audio produces an abstract vortex of metallic elements. This abstractness undermines the “cool” and
“rock” elements that are typical of automotive commercials. In contrast, MusePainter generates a
high-speed motorcycle on an open road, with dynamic composition and bold colors that align with
the “exciting” and “cool” annotations. This highlights MusePainter’s ability to preserve both genre
(rock) and affective intent (excitement).

Additional Observations. Beyond these two examples, we observe systematic differences: (1)
Scenario grounding: MusePainter’s outputs more often depict plausible environments (e.g., “Travel
Vlog” producing outdoor scenery, “Film Score” producing cinematic landscapes), whereas Qwen-
audio frequently defaults to abstract or generic imagery. (2) Mood realism: MusePainter reliably
translates emotional descriptors (“Romantic,” “Dramatic,” “Soothing”) into corresponding lighting
and color palettes, while Qwen-audio sometimes conflates mood with genre. (3) Feature fidelity:
Low-level attributes such as “Cool,” “Suspense,” or “Uplifting” are more explicitly manifested in
MusePainter’s images, reflecting the fine-grained guidance provided by multi-axis preference opti-
mization.

Failure Cases. MusePainter is not flawless: in some cases it overemphasizes mood at the expense
of genre (e.g., producing an overly “sentimental” image that weakly reflects the specified “Rock”
genre). In others, it generates semantically correct but stylistically repetitive compositions (e.g.,
repeated use of wide landscapes for “Easy Listening”). These failure cases suggest a trade-off
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between semantic faithfulness and visual diversity, motivating future work on diversity-encouraging
preference modeling.

Summary. Overall, MusePainter translates multidimensional musical inputs into coherent, seman-
tically faithful visual narratives, outperforming a strong audio–text–image baseline. The combina-
tion of structured descriptors and multi-axis RLHF enables it to ground scenarios, preserve genre,
and faithfully transfer affective cues in a way that purely text-driven pipelines often fail to achieve.

D.3 LIMITATIONS OF GENERAL-PURPOSE EVALUATION METRICS

Table 7 compares MusePainter with several baselines using three widely adopted but general-
purpose cross-modal metrics: IMSM, ImageBind similarity, and BAID. While these metrics have
been informative in related tasks (e.g., audio-to-text or audio-to-tag retrieval), they are poorly
aligned with the goals of music-to-image generation.

Table 7: Comparison of music-to-image generation meth-
ods on the IMSM, Imagebind, and BAID metrics. IMSM
scores are presented as percentages (%). The best results
are highlighted in pink .

Baseline IMSM (%) Imagebind BAID

Sound2Scene – 0.7541 4.905
AudioToken – 2.4000 5.064
Music Des (GEN) 14.57 2.0580 4.873
Visual Des (Qwen-ori) 11.70 1.4121 4.569

MusePainter-Emo 11.02 1.5819 4.457
MusePainter-Con 11.22 1.5408 4.498
MusePainter-Cre 11.24 1.4831 4.468

Behavior of Existing Metrics.
IMSM measures instrument–scene
matching, essentially checking whether
musical instruments co-occur with
plausible visual contexts. ImageBind
computes embedding similarity across
six modalities, but tends to emphasize
literal feature overlap (e.g., “piano
sound” → “piano image”) rather
than abstract affect. BAID (bi-modal
audio–image distance) penalizes devi-
ations in shared low-level descriptors
(spectral or color histograms), again
privileging surface-level correspon-
dences.

As shown in Table 7, models designed
for direct semantic mapping dominate these scores: Music Des (GEN) attains the highest IMSM
(14.57%), while AudioToken achieves the best ImageBind (2.4000) and BAID (5.064). In con-
trast, MusePainter lags slightly on these metrics despite producing outputs that human judges con-
sistently prefer.

Disconnect Between Metrics and Human Perception. Qualitative inspection reveals why: mod-
els favored by these metrics often generate literal but uninspired outputs—such as images of musi-
cal instruments or sheet music—because such content yields high embedding similarity. However,
these images rarely reflect the scenario, mood, or stylistic essence conveyed by music. For example,
Music Des (GEN) often outputs clip-art style “musical note” images that score well on IMSM,
but fail to capture any affective resonance. In contrast, MusePainter produces semantically coher-
ent, aesthetically richer scenes (see Fig. 10), yet scores lower because creative attributes are not
explicitly modeled by these benchmarks.

Need for Task-Specific Evaluation. These observations motivate our introduction of the Balanced
Expressiveness Score (BES), which jointly accounts for semantic fidelity, stylistic richness, and
penalizes over-literal mappings. BES correlates more strongly with human preference judgments
(Sec. 3.5), providing a principled evaluation standard for this task. Without such domain-sensitive
metrics, systems risk being optimized toward trivial literal matches, undermining the creative and
emotional goals of music-to-image synthesis.

D.4 FINE-GRAINED SEMANTIC ALIGNMENT VIA EXPERT-ANNOTATED DIMENSIONS

To overcome the mismatch between generic metrics and human perception, we introduce a frame-
work based on expert annotations along four semantically meaningful dimensions: Emotion (E),
Usage Scenario (U), Genre (G), and Feature (F). These dimensions were chosen to cover affective,
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Table 8: Model performance comparison. The weighted average similarity is calculated to better
reflect the priorities of the music-to-image generation task. The weights are assigned with a strong
emphasis on semantics: Emotion (50%), Usage Scenarios (30%), Genre (15%), and Feature (5%).
The best results are highlighted in pink .

Model / Method CLIP & IMAGEBIND Sim. Score Avg. Proposed Metric
E F G U Similarity* ↑ BES Score ↑

Sound2Scene-DES 14.23 12.77 15.43 9.34 12.87 0.15
AudioToken 15.22 12.98 16.41 10.25 13.80 0.15

Music Des 17.99 12.95 21.56 10.66 16.07 0.33
Qwen-audio 19.67 13.78 19.99 10.16 16.57 0.17

MusePainter-Emo 20.77 13.91 18.08 12.09 17.42 0.19
MusePainter-Rel 20.60 14.22 17.55 11.65 17.14 0.36
MusePainter-Cre 20.64 14.27 17.13 12.03 17.21 0.20

MP w/o CMVG & HCR 17.72 14.49 21.55 11.60 16.30 0.18
MP w/o HCR 19.23 13.92 18.04 10.72 16.23 0.29

MP-Emo(2k steps) 19.79 13.63 18.28 10.77 16.55 0.18
MP-Rel(2k steps) 20.37 13.66 17.77 10.01 16.54 0.21
MP-Cre(2k steps) 20.12 13.74 16.77 10.88 16.53 0.16

contextual, stylistic, and surface-level aspects of music-to-image alignment. Domain experts an-
notated a set of reference pairs, which we use to compute per-dimension similarity with CLIP and
ImageBind.

We report two aggregate measures: (1) a Weighted Average Similarity, where dimensions are
weighted according to their importance for music-to-image synthesis (Emotion 50%, Usage 30%,
Genre 15%, Feature 5%); and (2) the Balanced Expressiveness Score (BES), which penalizes
overfitting to any single dimension while rewarding balance across all four. This dual reporting
allows us to distinguish models that are strong on a single axis from those that provide well-rounded
semantic alignment (Table 8).

Results Across Variants. As shown in Table 8, all RLHF-trained variants (MusePainter-Emo,
-Rel, -Cre) substantially outperform prior baselines. MusePainter-Emo achieves the highest
weighted similarity (17.42), driven by its leading score in Emotion (20.77). This indicates that our
Emo-specific reward model effectively captures affective consistency, which was a critical gap in
previous approaches. Meanwhile, MusePainter-Rel attains the best BES (0.36), showing that
optimizing for semantic content produces the most balanced outputs overall, with strong alignment
across Emotion, Scenario, and Genre. MusePainter-Cre provides competitive weighted sim-
ilarity and excels in the Feature dimension (14.27), reflecting its ability to incorporate stylistic or
surface-level creativity.

Ablation Study. The ablations (bottom block of Table 8) provide further insights. Removing
both CMVG and HCR (MP w/o CMVG & HCR) reduces weighted similarity from 17.42 to 16.30
and BES from 0.19 to 0.18, confirming that the combination of coarse grounding and human re-
finement is essential. Interestingly, removing only HCR (MP w/o HCR) yields a similar drop in
similarity (16.23) but a higher BES (0.29). This suggests that while HCR enhances stylistic re-
finement, it may initially reduce balance if not fully converged—highlighting a trade-off between
short-term stylistic gains and long-term holistic performance. Early-stage RLHF checkpoints (2k
steps) plateau around 16.5 similarity and BES 0.16–0.21, underscoring the necessity of extended
training (20k steps) for full convergence. At maturity, MusePainter-Emo reaches 17.42 similar-
ity, while MusePainter-Rel achieves the best BES (0.36), validating the axis-specific reward
strategy.

Interpretation. These results demonstrate that our evaluation framework can disentangle differ-
ent strengths: some models are excellent at emotion capture, others at holistic balance. Weighted
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similarity highlights strong performance along dominant axes (e.g., affective fidelity), while BES
reveals trade-offs between expressiveness and literal alignment. For example, baseline models like
Music Des achieve high Genre similarity but lack emotional depth, which is reflected in lower
BES despite a reasonable weighted score. This confirms that both metrics are necessary: weighted
similarity for task-priority alignment, and BES for human-centered quality.

Figure 11: Demonstration of Text- and Music-driven Image Generation. We select three types of
text descriptions to vividly showcase MusePainter’s capabilities.

External Experiments. To further validate controllability beyond the main benchmarks, we
design an external experiment in which MusePainter is conditioned on music cues while hold-
ing a fixed textual description constant (Figure 11). We consider three representative prompt
scenarios—Abstract, Character, and Neutral—chosen to span conceptual, portrait, and situational
categories. For each scenario, the leftmost image is generated by a text-only baseline, while the
three rightward images illustrate how different audio tracks modulate the output.

Abstract. Given the text prompt “A visual representation of the concept of memory”, text-only mod-
els tend to generate generic symbolic metaphors (e.g., a brain-shaped labyrinth). When augmented
with music, MusePainter reshapes the affective atmosphere: an “Emotive; Brooding” soundtrack
yields turbulent seascapes, while “Aggressive; Restless” music produces stark, ruined urban scenes.
These variations preserve the abstract concept but diversify emotional tone.

Character. For the prompt “Close-up portrait of a person with a neutral expression, looking directly
at the camera, symmetrical composition”, the baseline produces a flat, literal portrait. MusePainter
adapts the style according to music: “Euphoric; Determined” leads to brightly lit confident figures,
while “Dark; Restless” yields brooding characters with grittier backdrops. The semantic identity
(close-up neutral portrait) is preserved, but the conveyed mood is dramatically altered.

Neutral Scene. With the text “A solitary figure walking down an empty city street at night, illumi-
nated by streetlights”, text-only models generate muted grayscale street scenes. By conditioning on
music, MusePainter injects affective nuance: “Romantic; Chill” softens the atmosphere with warm
lighting, “Soothing; Emotive” adds painterly tones, and “Happy; Hopeful” transforms the scene into
a festival-like environment with colorful lanterns.

Discussion. These results highlight MusePainter’s ability to modulate visual outputs in ways that
text-only pipelines cannot. The model consistently preserves core semantic content from the text
while leveraging audio attributes to control mood, lighting, and style. Failure cases occasionally
arise when strong emotional cues overpower the textual anchor, leading to images that drift from the
intended concept (e.g., overly dramatic “Abstract” scenes). Nevertheless, the overall trend confirms
that MusePainter enables fine-grained, interpretable cross-modal control by integrating structured
musical cues with textual prompts.

Figure 12: Human Analysis of three
methods from four perspectives.

Extended Human Analysis. To complement the au-
tomated metrics, we conducted a controlled user
study with 16 participants (8 male, 8 female).
Each participant was presented with outputs from
three systems—MusePainter, AudioToken, and Qwen-
audio—given the same music inputs. The study followed
a within-subject design: every participant evaluated all
three methods, but the presentation order was randomized
and the method identity was anonymized to reduce bias.
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Figure 13: Failure cases of MusePainter: overemphasis on instruments, text artifacts, and sce-
nario–emotion mismatch.

Participants rated each output on a 1–10 Likert scale
across four dimensions: Stylistic Congruence, Rhythmic
Correspondence, Image Quality, and Audio–Visual Har-
mony. We collected a total of 480 ratings (16 participants
× 10 music clips × 3 models). As summarized in Figure 12, MusePainter achieves the highest mean
score in every category. In particular, the gains are most pronounced in Stylistic Congruence (+2.6
points over Qwen-audio) and Audio–Visual Harmony (+3.7 points over AudioToken), confirming
the benefit of structured descriptors and multi-axis refinement.

Statistical significance. We performed paired Wilcoxon signed-rank tests between MusePainter
and each baseline. All improvements are significant at p < 0.01 after Bonferroni correction. Effect
sizes (Cohen’s d) range from 0.82 (Image Quality) to 1.35 (Audio–Visual Harmony), indicating
large practical effects. Inter-rater agreement measured with Krippendorff’s α was 0.71, suggesting
substantial consistency across participants.

Discussion. While MusePainter dominates across metrics, variance analysis reveals that Rhythmic
Correspondence scores had wider spread, reflecting subjective differences in how participants inter-
pret “visual rhythm.” Qualitative feedback suggests that some users equate rhythmic alignment with
motion cues, while others judge color or lighting patterns as rhythm proxies. This highlights the in-
herent subjectivity of evaluating rhythm in static imagery. Nevertheless, the consistent advantage of
MusePainter across all axes reinforces the conclusion that our model better captures both semantic
and affective dimensions of music-to-image generation.

D.5 LIMITATIONS

Although MusePainter substantially advances music-to-image generation, several limitations remain
(see Fig. 13).

Over-reliance on salient instruments. The system sometimes exaggerates prominent instruments
(e.g., piano) present in the audio, leading to repetitive or overly literal imagery that neglects broader
contextual or emotional cues. This suggests a need for better regularization across descriptor dimen-
sions to prevent overfitting to a single feature.

Text-generation errors. As MusePainter relies on LLM-based distillation for visual prompt con-
struction, occasional textual artifacts appear (e.g., nonsensical captions embedded in the image).
Such errors highlight the fragility of the distillation stage and motivate incorporating stronger lan-
guage filtering or constrained decoding strategies.

Scenario and emotion mismatch. In some cases, the generated images correctly capture low-level
style but fail to match higher-level intent—for example, producing a generic seaside scene for a “2D
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Game” scenario, or depicting tranquil landscapes when the target emotion is “Sad, Sentimental.”
This indicates that current reward models may insufficiently disentangle contextual semantics from
affective attributes, limiting controllability under ambiguous or complex inputs.

Discussion. These limitations suggest three future directions: (1) developing cross-attribute bal-
ancing to reduce overemphasis on salient features, (2) improving robustness of the hybrid-length
distillation pipeline, and (3) expanding preference data to cover harder cases where scenario and
emotion interact. Addressing these challenges would further enhance the reliability and generality
of music-to-image generation.
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