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A DERIVATION OF RESULT 2.1

In this appendix, we detail the heuristic derivation of Result (2.1), which provides a sharp asymptotic
characterization of the parameters ĉt, ŵt of the DAE (9) minimizing the time t risk R̂t (10). In the
following, the time index t ∈ [0, 1] is considered fixed.

In order to characterize observables depending on the minimizers ĉt, ŵt of the risk R̂t (10), observe
that for any test function ϕ(ct, wt):

ϕ(ĉt, ŵt) = lim
γ→∞

1

Z

∫
dwdcϕ(c, w)e−γR̂t(w,c), (28)

where the normalization Z is

Z (D) =
∫

dc dwe−
γ
2 ∥xµ

1−[c×(β(t)xµ
1+α(t)xµ

0 )+wφ(w⊤(β(t)xµ
1+α(t)xµ

0 ))]∥2− γλ
2 ∥w∥2

. (29)

We emphasized the dependence on the train set D = {xµ
0 , x

µ
t }nµ=1. lnZ(D) can then be studied as a

moment generating function, and integrals of the form (28) deduced therefrom. In the following, we
therefore seek to establish an asymptotic characterization of lnZ(D).
An important observation lies in the fact that the argument w⊤x of the activation φ of the DAE
is expected in high dimensions d → ∞ to be very large. In particular, we shall self-consistently
establish that it is more precisely scaling like Θd(d). As a result, only the asymptotic behaviour in
±∞ of φ matters, and by assumption φ(w⊤x) ≈ sign(w⊤x) asymptotically. We shall therefore
self-consistently take φ = sign in the following.

A.1 COMPUTATION OF THE PARTITION FUNCTION

In the following, for clarity, we use the decomposition xµ
1 = sµµ+ zµ, introduced below (8) in the

main text, with sµ ∈ {−1,+1} and zµ ∼ N (0, σ2Id). Under these notations, the partition function
reads:

Z(D) =
∫

dc dwe
− γd

2

n∑
µ=1

∥w∥2
d

sign(w⊤(β(t)(sµµ+zµ)+α(t)x
µ
0 ))

2

× e
γd

n∑
µ=1

sign(w⊤(β(t)(sµµ+zµ)+α(t)x
µ
0 ))

w⊤((1−cβ(t))(sµµ+zµ)−cα(t)x
µ
0 )

d × e−
γλ
2 ∥w∥2

× e
− γd

2

n∑
µ=1

[
(1−β(t)c)2

∥µµ∥2+∥zµ∥2+2sµµ⊤zµ

d
+c2

∥α(t)x
µ
0 ∥2

d
+2b(β(t)c−1)

sµµ⊤α(t)x
µ
0 +ηµ⊤α(t)x

µ
0

d

]

(30)

Note that we benignly introduced a 1/d factor inside the sign function sign. One is now in position to
introduce the overlaps

q ≡ ∥w∥
2

2
, qµξ ≡ sµ

w⊤xµ
0

d
, qµη ≡ sµ

w⊤zµ

d
, m ≡ w⊤µ

d
. (31)

Note that because of n = Θ(1) there is a finite number of these such overlaps. Besides, note that our
starting assumption that the argument w⊤x of the activation φ is Θd(d) translates into the fact that
all these order parameters should be Θd(1), which we shall self-consistently show to be indeed the
case. The partition function then reads

Z(D) =
∫

dc dmdm̂ dqdq̂

n∏
µ=1

dd̂qµη dq̂
µ
η dqµξ e

d
2 q̂q+dm̂m+d

n∑
µ=1

(q̂µξ qµξ +q̂µη q
µ
η )

∫
dwe

− γλ
2 ∥w∥2− q̂

2 ∥w∥2−
(
m̂µ+

n∑
µ=1

(q̂µξ s
µxµ

0+q̂µη s
µzµ)

)⊤

w

e
− γd

2

n∑
µ=1

[(1+σ2)(1−β(t)c)2+c2α(t)2]

e
− γd

2

n∑
µ=1

[
q sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )

2
−2 sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )[(1−cβ(t))(m+q

µ
η )−cα(t)q

µ
ξ ]
]
. (32)
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Therefore

Z(D) =
∫

dc dmdm̂ dqdq̂

n∏
µ=1

dq̂µξ dq
µ
η dq̂

µ
η dqµξ

e

d
2 q̂q+dm̂m+d

n∑
µ=1

(q̂µξ qµξ +q̂µη qµη )+
d

2(γλ+q̂)
1
d

∥∥∥∥∥m̂µ+
n∑

µ=1
(q̂µξ sµxµ

0+q̂µη s
µzµ)

∥∥∥∥∥
2

e
− γd

2

n∑
µ=1

[
q sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )

2
−2 sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )[(1−cβ(t))(m+q

µ
η )−cα(t)q

µ
ξ ]
]

e
− γd

2

n∑
µ=1

[(1+σ2)(1−β(t)c)2+c2α(t)2]− d
2 ln(γλ+q̂)

. (33)

The last term in the first exponent can be further simplified as

1

d

∥∥∥∥∥m̂µ+

n∑
µ=1

(q̂µξ s
µxµ

0 + q̂µη s
µzµ)

∥∥∥∥∥
2

= m̂2 +

n∑
µ=1

[
(q̂µξ )

2 + (q̂µη )
2σ2

]
+ 2

n∑
µ=1

[
q̂µξ s

µµ
⊤xµ

0

d
+ q̂µη s

µµ
⊤zµ

d

]

+

n∑
µ,ν=1

sµsν
[
q̂µξ q̂νξ

(xν
0 )⊤x

µ
0

d +q̂νη q̂
µ
η

(zν )⊤zµ

d +q̂µξ q̂
ν
η

(zν )⊤x
µ
0

d

]
= m̂2 +

n∑
µ=1

[
(q̂µξ )

2 + (q̂µη )
2σ2

]
+O (1/

√
d) , (34)

with the last line holding with high probability, using the fact that since z, x0 are two independently
drawn standard Gaussian vectors z⊤x0/d = Θd(1/

√
d) with high probability. Finally,

Z(D) =
∫

dc dmdm̂ dqdq̂

n∏
µ=1

dq̂µξ dq
µ
η dq̂

µ
η dqµξ

e

d
2 q̂q+dm̂m+d

n∑
µ=1

(q̂µξ qµξ +q̂µη qµη )+
d

2(γλ+q̂)

[
m̂2+

n∑
µ=1

[(q̂µξ )
2+(q̂µη )2σ2]

]

e
− γd

2

n∑
µ=1

[
q sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )

2
−2 sign(β(t)(m+q

µ
η )+α(t)q

µ
ξ )[(1−cβ(t))(m+q

µ
η )−cα(t)q

µ
ξ ]
]

e
− γd

2

n∑
µ=1

[(1+σ2)(1−β(t)c)2+c2α(t)2]− d
2 ln(γλ+q̂)

(35)

Since all the terms in the exponent of the integrand scale like d, in the asymptotic limit d→∞ the
integral can be computed using a Laplace approximation.

A.2 SAMPLE-SYMMETRIC ANSATZ

The partition function is given by taking the saddle point in (35). This involves a maximization
problem over 4n + 5 variables. Note that since n = Θd(1), this is a low dimensional – thus a
priori tractable – optimization problem, but which nevertheless remains cumbersome. However,
the symmetries of the problem make it possible to determine the form of the maximizer, and
thus drastically simplify the optimization problem. Note that indeed, asymptotically, the vectors
µ, {xµ

0 , z
µ}nµ=1 involved in the definition of the overlaps m, {qµξ , qµη }nµ=1 (31) are all mutually

asymptotically orthogonal – i.e. they have vanishing cosine similarity. Therefore, the parameters
m, {qµξ , qµη }nµ=1 can be considered as independent variables. Since furthermore all the samples play
interchangeable roles in high dimensions – in that all data points are asymptotically at the same angle
with the cluster mean µ, which is the only relevant direction of the problem–, one can look for the
saddle point assuming the symmetric ansatz

∀µ, qµξ = qξ, q̂µξ = q̂ξ, (36)

∀µ, qµη = qη, q̂µη = q̂η. (37)
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This ansatz is further validated in numerical experiments, when training a DAE with the Pytorch
implementation of the Adam optimizer. Under this ansatz, the partition function reduces to

Z(D) =
∫

dc dmdm̂ dqdq̂dq̂ξdqηdq̂ηdqξe
d
2 q̂q+dm̂m+dn(q̂ξqξ+q̂ηqη)+

d
2(γλ+q̂) [m̂

2+n(q̂2ξ+q̂2ησ
2)]

e
− γd

2
n

[
q sign(β(t)(m+qη)+α(t)qξ)

2
−2 sign(β(t)(m+qη)+α(t)qξ)[(1−cβ(t))(m+qη)−cα(t)qξ]+(1+σ2)(1−β(t)c)2+c2α(t)2

]

e−
d
2 ln(γλ+q̂) (38)

Note that the exponent is now independent of the dataset D. In other words, in the regime d →
∞, n = Θd(1), the log partition function concentrates with respect to the randomness associated
with the sampling of the training set. The effective action (log partition function) therefore reads

lnZ(D) = extr
c,q̂,q,m̂,m,q̂η,ξ,qη,ξ

1

2
q̂q + m̂m+ n(q̂ξqξ + q̂ηqη) +

1

2(γλ+ q̂)

[
m̂2 + n(q̂2ξ + q̂2ησ

2)
]

− α

2
n [q sign(β(t)(m+qη)+α(t)qξ)

2−2 sign(β(t)(m+qη)+α(t)qξ)[(1−cβ(t))(m+qη)−cα(t)qξ]]

− γn

2

[
(1 + σ2)(1− β(t)c)2 + c2α(t)2

]
− 1

2
ln(γλ+ q̂) (39)

This expression has to be extremized with respect to c, q̂, q, m̂,m, q̂η,ξ, qη,ξ in the γ → ∞ limit.
Rescaling the conjugate variables as

γq̂ ← q̂, γq̂η,ξ ← q̂η,ξ, γm̂← m̂ (40)

the action becomes, in the γ → ∞ limit (changing for readability the conjugates m̂, q̂η,ξ →
−m̂,−q̂η,ξ):

lnZ(D) = extr
c,q̂,q,m̂,m,q̂η,ξ,qη,ξ

1

2
q̂q − m̂m− n(q̂ξqξ + q̂ηqη) +

1

2(λ+ q̂)

[
m̂2 + n(q̂2ξ + q̂2ησ

2)
]

− n

2
[q sign(β(t)(m+qη)+α(t)qξ)

2−2 sign(β(t)(m+qη)+α(t)qξ)[(1−cβ(t))(m+qη)−cα(t)qξ]]

− n

2

[
(1 + σ2)(1− β(t)c)2 + c2α(t)2

]
(41)

A.3 SADDLE-POINT EQUATIONS

The extremization of lnZ(D) can be alternatively written as zero-gradient equations on each of the
parameters the extremization is carried over, yielding


q =

m̂2+n(q̂2ξ+q̂2ησ
2)

(λ+q̂)2

m = m̂
λ+q̂

qξ =
q̂ξ

λ+q̂

qη =
q̂ησ

2

λ+q̂



ν ≡ β(t)(m+ qη) + α(t)qξ
q̂ = n

m̂ = n sign(ν)(1− cβ(t))

q̂η = m̂
n

q̂ξ = −cα(t) sign(ν)
c =

(1+σ2)β(t)−sign(ν)(β(t)(m+qη)+α(t)qξ)
α(t)2+β(t)2(1+σ2)

(42)

Note the identity

q = m2 + n(q2ξ + q
2
η/σ2) (43)

which follows from the asymptotic orthogonality of the vectors and the Pythagorean theorem. This
implies in particular that the square norm of ŵ, as measure by q, is only the sum of its projections
along µ (corresponding to m) ξ (corresponding to qξ) and η (qη). Therefore, the norm of the
orthogonal projection of ŵ with respect to span(µ, η, ξ) is asymptotically vanishing. In other words,
ŵ is asymptotically contained in span(µ, η, ξ).

Remark that the symmetry m, m̂, qη,ξ, q̂η,ξ → −m,−m̂,−qη,ξ,−q̂η,ξ leaves equations (42)
unchanged, meaning that if m, m̂, qη,ξ, q̂η,ξ is a solution to the saddle-point equations, so is
m, m̂, qη,ξ, q̂η,ξ. This is due to the symmetry between the clusters in the target density (8), as
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µ → −µ yields the same model. As a convention, we can thus suppose without loss of generality
ν ≥ 0 in (42). (42) then simplifies to

q =
m̂2+n(q̂2ξ+q̂2ησ

2)

(λ+q̂)2

m = m̂
λ+q̂

qξ =
q̂ξ

λ+q̂

qη =
q̂ησ

2

λ+q̂



q̂ = n

m̂ = n(1− cβ(t))

q̂η = m̂
n

q̂ξ = −α(t)c
c =

(1+σ2)β(t)−(β(t)(m+qη)+α(t)qξ)
α(t)2+β(t)2(1+σ2)

. (44)

The skip connection strength c thus satisfies the self-consistent equation

c =
(1 + σ2)β(t)− 1

λ+n (β(t)(1− β(t)c)(n+ σ2)− α(t)2c)

α(t)2 + β(t)2(1 + σ2)
, (45)

which can be solved as

c =
β(t)(λ(1 + σ2) + (n− 1)σ2)

α(t)2(λ+ n− 1) + β(t)2(λ(1 + σ2) + (n− 1)σ2)
(46)

which recovers equation (11) of Result 2.1. Plugging this expression back to (44), and redefining
σ2qη ← qη , yields 

mt =
n

λ+n
α(t)2(λ+n−1)

α(t)2(λ+n−1)+β(t)2(λ(1+σ2)+(n−1)σ2)

qηt = σ2

λ+n
α(t)2(λ+n−1)

α(t)2(λ+n−1)+β(t)2(λ(1+σ2)+(n−1)σ2)

qξt = − 1
λ+n

α(t)β(t)(λ(1+σ2)+(n−1)σ2)
α(t)2(λ+n−1)+β(t)2(λ(1+σ2)+(n−1)σ2)

(47)

We have added subscripts t to emphasize the dependence on the time index t. Note that for t > 0,
ν > 0, which is self-consistent. For t = 0, ν = 0 and the sign function in equation (42) becomes ill-
defined, signalling that the extremum of equation (41) ceases to be a critical point (i.e. differentiable).
However, one expects the extremum to still be given by the t = 0 limit of equation (42), as there is
a priori no singularity in the learning problem for t = 0. This remark, together with (47), recovers
equation (14) from Result 2.1.

A.4 METRICS

Result 2.1 provides a tight characterization of the skip conneciton strength ĉt and of the vector ŵt.
The performance of the trained DAE fĉt,ŵt (9) as a denoiser can be further quantified with a number
of metrics, for which we also provide sharp asymptotic characterizations below, for completeness.
Result A.1. (MSE) The test MSE of the learnt denoiser fĉt,ŵt

is defined as the test error associated
to the risk R̂t (10)

mset ≡ Ex1∼ρ1,x0∼ρ0 ∥fĉt,ŵt(α(t)x0 + β(t)x1)− x1∥2 . (48)

In the same asymptotic limit as Result 2.1 in the main text, this metric is sharply characterized by the
closed-form formula

mset = m2
t + n((qξt )

2 + (qηt )
2σ2)− 2(1− ĉtβ(t))mt + (1− ĉtβ(t))

2(1 + σ2) + ĉ2tα(t)
2 (49)

where ĉt,mt, q
ξ
t , q

η
t were defined in Result 2.1. Furthermore, the MSE (48) is lower-bounded by the

oracle MSE

mse⋆t ≡ Ex1∼ρ1,x0∼ρ0
∥f⋆

t (α(t)x0 + β(t)x1)− x1∥2 , (50)

where the oracle denoiser follows from an application of Tweedie’s formula Efron (2011); Albergo
et al. (2023) as

f⋆
t (x) =

β(t)σ2

α(t)2 + β(t)2σ2
x+

α(t)2

α(t)2 + β(t)2σ2
µ× tanh

(
β(t)

α(t)2 + β(t)2σ2
µ⊤x

)
. (51)

Finally, the oracle MSE mse⋆t admits the following asymptotic characterization:

mse⋆t = α(t)4σ2α(t)
2 + σ2(1− α(t)2)

(σ2β(t)2 + α(t)2)2
(52)
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Figure 4: σ = 0.3, λ = 0.1, α(t) = cos(πt/2), β(t) = sin(πt/2). Solid lines: theoretical predictions
for the MSE of Result A.1 (left) and the cosine similarity of Result A.2 (right). Different colors
correspond to different number of samples n. Dots: numerical simulations, corresponding to training
the DAE (9) on the risk (10) using the Pytorch implementation of full-batch Adam, with learning
rate 0.01 over 2000 epochs and weight decay λ = 0.1. The experimental points correspond to a
single instance of the model, and were collected in dimension d = 500. In the left plot, the dashed
line represent the oracle baseline (52).

Derivation of Result A.1 We begin by detailing the characterizaiton of the DAE MSE (49):

mset =
1

d
Ex1,x0

⟨
∥∥x1 −

[
ĉt × (β(t)x1 + α(t)x0) + ŵt sign

(
ŵ⊤

t (β(t)x1 + α(t)x0)
)]∥∥2

= m2
t + n((qξt )

2 + (qηt )
2σ2)− 2 sign(β(t)mt)(1− ĉtβ(t))mt + (1− ĉtβ(t))

2(1 + σ2) + ĉ2tα(t)
2

= m2
t + n((qξt )

2 + (qηt )
2σ2)− 2(1− ĉtβ(t))mt + (1− ĉtβ(t))

2(1 + σ2) + ĉ2tα(t)
2 (53)

which recovers (49) of Result A.1. (51) follows directly from an application of Tweedie’s formula
Efron (2011). The associated MSE (52) can be derived as

mse⋆ =
α(t)4(1 + σ2) + σ4α(t)2(1− α(t)2)

(σ2β(t)2 + α(t)2)2
+

α(t)4

(σ2β(t)2 + α(t)2)2

[
sign

(
β(t)2

σ2β(t)2 + α(t)2

)2
]

− 2α(t)2

σ2β(t)2 + α(t)2

[
sign

(
β(t)2

σ2β(t)2 + α(t)2

)]
× α(t)2

σ2 + α(t)2 − σ2α(t)2

=
α(t)4(1 + σ2) + σ4α(t)2(1− α(t)2)

(σ2β(t)2 + α(t)2)2
− α(t)4

(σ2β(t)2 + α(t)2)2
=

α(t)4σ2 + σ4α(t)2(1− α(t)2)

(σ2β(t)2 + α(t)2)2

(54)
which concludes the derivation of Result A.1
Result A.2. The cosine similarity ŵt∠µ ≡ ŵ⊤

t µ/∥ŵt∥∥µ∥ admits the asymptotic characterization

ŵt∠µ =
mt√

m2
t + n((qξt )

2 + (qηt )
2σ2

(55)

where mt, q
ξ
t , q

η
t are characterized in Result 2.1.

Result A.2 follows directly from the definition of the summary statistics (13).

These metrics are plotted in Fig. 4 and contrasted to numerical simulations, corresponding to training
the network (9) using the Pytorch implementation of full-batch Adam.

B DERIVATION OF RESULT 3.1

In this Appendix, we detail the heuristic derivation of Result 3.1. Given an initial condition X0 ∼ ρ0,
a sample follows the transport (7)

d

dt
Xt =

(
β̇(t)ĉt +

α̇(t)

α(t)
(1− ĉtβ(t))

)
Xt +

(
β̇(t)− α̇(t)

α(t)
β(t)

)
ŵt sign(ŵ

⊤
t Xt) (56)
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driven by the learnt velocity field b̂ (6). This follows from Result 2.1 and (7). Taking scalar products
with µ, ξ, η,

d
dt

X⊤
t µ
d =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
X⊤

t µ
d +

(
β̇(t)− α̇(t)

α(t)β(t)
)
sign(ŵ⊤

t Xt)
ŵ⊤

t µ
d

d
dt

X⊤
t ξ
nd =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
X⊤

t ξ
nd +

(
β̇(t)− α̇(t)

α(t)β(t)
)
sign(ŵ⊤

t Xt)
ŵ⊤

t ξ
nd

d
dt

X⊤
t η

ndσ2 =
(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
X⊤

t η
ndσ2 +

(
β̇(t)− α̇(t)

α(t)β(t)
)
sign(ŵ⊤

t Xt)
ŵ⊤

t η
ndσ2

. (57)

It is reasonable to assume the sign sign(ŵ⊤
t Xt) stays constant during the transport, and therefore

takes value ±1 with equal probability 1/2, according to the initial condition X0. This is an heuristic
assumption which is further confirmed numerically. Finally, plugging the definitions (16) and (13) in
(57), one reaches

d
dtMt =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
Mt +

(
β̇(t)− α̇(t)

α(t)β(t)
)
mt

d
dtQ

ξ
t =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
Qξ

t +
(
β̇(t)− α̇(t)

α(t)β(t)
)
qξt

d
dtQ

η
t =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
Qη

t +
(
β̇(t)− α̇(t)

α(t)β(t)
)
qηt

, (58)

which recovers equation (15) of Result 3.1. Noting that ŵt ∈ span(µ, ξ, η) (see Result 2.1), the
differential equation (56) becomes, for the orthogonal component X⊥

t ∈ span(µ, ξ, η)⊥

d

dt
X⊥

t =

(
β̇(t)ĉt +

α̇(t)

α(t)
(1− ĉtβ(t))

)
X⊥

t (59)

which recovers (17) of Result 3.1. This can be explicitly solved as

X⊥
t = X⊥

0 e

t∫
0
(β̇(t)ĉt+ α̇(t)

α(t)
(1−ĉtβ(t)))dt

(60)

Finally,

Qt ≡ ∥Xt∥2

= M2
t + n(Qξ

t )
2 + nσ2(Qη

t )
2 + ∥X⊥

t ∥2

= M2
t + n(Qξ

t )
2 + nσ2(Qη

t )
2 + e

2
t∫
0
(β̇(t)ĉt+ α̇(t)

α(t)
(1−ĉtβ(t)))dt

(61)

which concludes the derivation of Result 3.1

B.1 DERIVATION OF REMARK 3.2

The derivation of Remark 3.2 follows identical steps, building on the observation that the discretized
flow 19 is explicitly expressed as

Xtk+1
= Xtk + δtk

(
β̇(tk)ĉtk +

α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Xtk

+ δtk

(
β̇(tk)−

α̇(tk)

α(tk)
β(tk)

)
ŵtk sign(ŵ

⊤
tk
Xtk) (62)

Taking overlaps with µ, ξ, η yields
µ⊤Xtk+1

d =
µ⊤Xtk

d +δtk

(
β̇(tk)ĉtk+

α̇(tk)

α(tk)
(1−ĉtkβ(tk))

)µ⊤Xtk
d +δtk

(
β̇(tk)−

α̇(tk)

α(tk)
β(tk)

)
sign(ŵ⊤

tk
Xtk

)
µ⊤ŵtk

d
ξ⊤Xtk+1

nd =
ξ⊤Xtk

nd +δtk

(
β̇(tk)ĉtk+

α̇(tk)

α(tk)
(1−ĉtkβ(tk))

) ξ⊤Xtk
nd +δtk

(
β̇(tk)−

α̇(tk)

α(tk)
β(tk)

)
sign(ŵ⊤

tk
Xtk

)
ξ⊤ŵtk

nd
η⊤Xtk+1

ndσ2 =
η⊤Xtk
ndσ2 +δtk

(
β̇(tk)ĉtk+

α̇(tk)

α(tk)
(1−ĉtkβ(tk))

) η⊤Xtk
ndσ2 +δtk

(
β̇(tk)−

α̇(tk)

α(tk)
β(tk)

)
sign(ŵ⊤

tk
Xtk

)
η⊤ŵtk

ndσ2

(63)

Like in the continuous case, one makes the heuristic assumption that sign(ŵ⊤
tk
Xtk) stays constant

along the flow, taking value ±1 with equal probability, depending on the initial condition. Doing so
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yields
Mtk+1

= Mtk + δtk

(
β̇(tk)ĉtk + α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Mtk + δtk

(
β̇(tk)− α̇(tk)

α(tk)
β(tk)

)
mtk

Qξ
tk+1

= Qξ
tk

+ δtk

(
β̇(tk)ĉtk + α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Qξ

tk
+ δtk

(
β̇(tk)− α̇(tk)

α(tk)
β(tk)

)
qξtk

Qη
tk+1

= Qη
tk

+ δtk

(
β̇(tk)ĉtk + α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Qη

tk
+ δtk

(
β̇(tk)− α̇(tk)

α(tk)
β(tk)

)
qηtk

,

(64)

which recovers equation (20). Equation (21) follows from equation (62) and the fact that ŵt ∈
span(µ, ξ, η), see Result 2.1. This recursion can be explicitly solved as

X⊥
tk+1

= X⊥
t0

k∏
ℓ=0

(
1+
(
β̇(tℓ)+

α̇(tℓ)

α(tℓ)
(1−ĉtℓβ(tℓ))

)
δtℓ

)2

. (65)

Using the fact that ∥X⊥
t0∥/d = 1 with high probability and the definition of the summary statistics Q

finally yields equation (22).

B.2 DERIVATION OF COROLLARY 3.3

As implied by Result 3.1, the mean of the generated mixture is contained in span(µ, ξ, η) and
characterized by the summary statistics M1, Q

η
1 , Q

ξ
1 at time t = 1. Furthermore

1

d
∥µ̂− µ∥2 =

1

d
∥µ̂∥2−2 µ̂

⊤µ

d
+ 1

= M2
1 + n(Qξ

1)
2 + nσ2(Qη

1)
2 − 2R1 + 1. (66)

This recovers (23). Equation (24) follows from the definition of the cosine similarity.

The derivation of the Θn(1/n) decay of this distance require more work. The first step lies in the
analysis of the exact flow (1).
Remark B.1. (exact velocity field) For the target density ρ1 (8), b is given by Efron (2011); Albergo
et al. (2023) as

b(x, t) =

(
β̇(t)− α̇(t)

α(t)
β(t)

)(
β(t)σ2

α(t)2 + β(t)2σ2
x+

α(t)2

α(t)2 + β(t)2σ2
µ× tanh

(
µ⊤x

))
+

α̇(t)

α(t)
x.

(67)

The formula (67) follows from an application of Tweedie’s formula Efron (2011) for the the density
(8). Note that with high probability for x ∼ ρ0, or for any x such that µ⊤x≫ 1,

tanh
(
µ⊤x

)
= sign(µ⊤x) + od(1). (68)

One is now in a position to characterize the exact flow (1).
Corollary B.2. (Summary statistics for the exact flow) Let X⋆

t be a solution of the exact flow (1)
from an initialization X⋆

0 ∼ ρ0. Consider the summary statistic

M⋆
t ≡

µ⊤X⋆
t

d
. (69)

Asymptotically, M⋆
t is equal with probability 1/2 to the solution of the differential equation

d

dt
M⋆

t =

(
β̇(t)ct +

α̇(t)

α(t)
(1− ctβ(t))

)
M⋆

t +

(
β̇(t)− α̇(t)

α(t)
β(t)

)
α(t)2

α(t)2 + β(t)2σ2
(70)

and with probability 1/2 to the opposite thereof. We have introduced

ct ≡
β(t)σ2

α(t)2 + β(t)2σ2
. (71)

Corollary B.2 follows from equation (67) using a derivation identical to that of Result 3.1, presented
in Appendix B, provided the heuristic assumption is made that the tanh can always be approximated
by a sign (68) along the flow. To show that the learnt flow 3.1 converges to the exact flow, observe
the following scalings:
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Remark B.3. Let t > 0 and mt, q
ξ
t , q

η
t be defined by result 2.1. Then∣∣∣∣mt −

α(t)2

α(t)2 + β(t)2σ2

∣∣∣∣ = Θn(1/n), |ĉt − ct| = Θn(1/n), qξt = Θn(1/n), qηt = Θn(1/n).

(72)

These observations immediately imply the following asymptotics, characterizing the difference
between the learnt flow (7) and the exact flow (1):
Corollary B.4. (Convergence of the learnt flow) Let X⋆

t (resp. Xt) be a solution of the exact flow
(1) (resp. learnt flow (7)), from a common initialization X0 ∼ ρ0. Define the following summary
statistics:

ϵmt ≡
1

d
µ⊤(Xt −X⋆

t ), ϵξt ≡
1

nd
ξ⊤(Xt −X⋆

t ), ϵηt ≡
1

ndσ2
η⊤(Xt −X⋆

t ) (73)

Then with high probability these statistics obey the differential equations
d
dtϵ

m
t =

(
β̇(t)ct +

α̇(t)
α(t) (1− ctβ(t))

)
ϵmt +Θn(1/n)

d
dtϵ

ξ
t =

(
β̇(t)ct +

α̇(t)
α(t) (1− ctβ(t))

)
ϵξt +Θn(1/n)

d
dtϵ

η
t =

(
β̇(t)ct +

α̇(t)
α(t) (1− ctβ(t))

)
ϵηt +Θn(1/n)

, (74)

from the initial condition ϵm,ξ,η
0 = 0. Therefore at time t = 1

ϵm1 = Θn(1/n), ϵξ1 = Θn(1/n), ϵη1 = Θn(1/n). (75)

Corollary B.4 follows from substracting the differential equations governing the learnt flow of Result
3.1 and the true flow of Corollary B.2, using the scaling derived in Remark B.3. Finally, noting that
M⋆

1 = 1 by definition of the exact flow,

1

d
∥µ̂− µ∥2 =

1

d
∥ϵm1 µ+ ϵξ1ξ + ϵη1η∥2

= (ϵm1 )2 + n(ϵξ1)
2 + nσ2(ϵη1)

2 +Od(1/
√
d)

= Θn(1/n). (76)

In the last line, we used Corollary B.4. This concludes the derivation of Corollary 3.3. Fig. 2 (right)
gives a PCA visualization of the convergence of the generated density ρ̂1 to the target density ρ1 as
the number available training samples n accrues.

C DERIVATION OF REMARK 4.1

In this appendix, we analyze the performance of the Bayes-optimal estimator of the cluster mean,
defined as the estimator minimizing the average MSE knowing the train set D = {xµ

0 , x
µ
1}nµ=1, the

clusters variance σ, but not the mean µ. This estimator yields the information-theoretically minimal
achievable MSE, and is known to be given by the mean of the posterior distribution over the estimate
w of the true mean µ :

P(w|D, σ) = e−
1
2∥w∥2

n∏
µ=1

[
1

2
e−

1
2σ2 ∥xµ

1−w∥2

+
1

2
e−

1
2σ2 ∥xµ

1+w∥2

]

≡ 1

Z
e
− 1

2σ̂2 ∥w∥2+
n∑

µ=1
ln cosh

(
w⊤x

µ
1

σ2

)
, (77)

where

σ̂2 ≡ σ2

n+ σ2
. (78)

We remind the reader that the prior distribution over the cluster mean is supposed to be the standard
Gaussian prior N (0, Id). In high dimensions, statistics associated to the posterior distribution (77)
are expected to concentrate. Again, it is useful to study the partition function (normalization) Z to
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access some key summary statistics, which will in turn provide a sharp characterization of the vector
µ̂⋆(D) extremizing the posterior P(w|D, σ).
The partition function reads

Z =

∫
dwe

− 1
2σ̂2 ∥w∥2+

n∑
µ=1

ln cosh

(
w⊤x

µ
1

σ2

)

=

∫
dqdq̂dmdm̂

n∏
µ=1

dqµη dq̂
µ
η e

d
2 qq̂+d

n∑
µ=1

qµη q̂
µ
η+dmm̂

∫
dwe

− q̂
2 ∥w∥2− 1

2σ̂2 ∥w∥2−
(
m̂µ+

n∑
µ=1

q̂µη sµzµ

)⊤

w

e
−d

n∑
µ=1

ln cosh1/d[ d
σ2 (m+qµη )]

(79)

As in Appendix A, we have introduced the summary statistics

qµη ≡ sµ
w⊤zµ

d
, m =

w⊤µ

d
. (80)

The integral of (79) can be evaluated using a Laplace approximation. Again, we assume the extremizer
is realized at the sample-symmetric point

∀1 ≤ µ ≤ n, qµη = qη,

∀1 ≤ µ ≤ n, q̂µη = q̂η. (81)

The partition function (79) then reduces to

Z =

∫
dqdq̂dqηdq̂ηdmdm̂e

d
2 qq̂+dnqη q̂η+dmm̂

∫
dwe−

q̂
2 ∥w∥2− 1

2σ̂2 ∥w∥2−(m̂µ+q̂ηη)
⊤we

−d
n∑

µ=1
ln cosh1/d[ d

σ2 (m+qη)]

=

∫
dqdq̂dqηdq̂ηdmdm̂e

d
2 qq̂+dnqη q̂η+dmm̂e

−d
n∑

µ=1
ln cosh1/d[ d

σ2 (m+qη)]

1

(1 + σ̂2q̂)d/2
e

d
2

σ̂2

1+σ̂2 q̂
(m̂2+nσ2q̂2η). (82)

Therefore q̂η, qη, m̂,m must extremize the effective action

Φ =
qq̂

2
+ nqη q̂η +mm̂− 1

2
ln
(
1 + σ̂2q̂

)
+

σ̂2

2(1 + σ̂2q̂)

(
m̂2 + nσ2q̂2η

)
+

n

σ2
|m+ qη|, (83)

leading to {
q̂η = − 1

σ2

m̂ = − n
σ2

,

{
qη = −q̂ησ2σ̂2 = σ2

n+σ2

m = −m̂σ̂2 = n
n+σ2

. (84)

Refining σ2qη ← qη so that

qη ≡
w⊤η

ndσ2
, (85)

as in Remark 4.1, one finally reaches

qη =
1

n+ σ2
, m =

n

n+ σ2
, (86)

Thus, remembering µ̂⋆(D) = ⟨w⟩ (where the bracket notation denotes averages with respect to the
posterior P (·|D, σ):

µ⊤µ̂⋆(D)
d

=

〈
w⊤µ

d

〉
=

n

n+ σ2
,

η⊤µ̂⋆(D)
ndσ2

=

〈
w⊤η

ndσ2

〉
=

1

n+ σ2
, (87)
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using the concentration of the bracketed quantities. Furthermore,

∥µ̂⋆(D)∥2

d
=

1

d
∥⟨w⟩∥2= µ⊤⟨w⟩

d
= m. (88)

We employed the Nishimori identity (Nishimori, 2001; Iba, 1999).Note further the identity:

∥µ̂⋆(D)∥2

d
= m = m2 + nσ2q2η =

1

d
∥mµ+ qηη∥2, (89)

which implies that the norm of µ̂⋆(D) is equal to the norm of its projection in span(µ, η), which
means that asymptotically the former is contained in the latter. One is now in a position to derive the
Bayes-optimal MSE of Remark 4.1. With high probability

1

d
∥µ̂⋆(D)− µ∥2= m+ 1− 2m = 1−m =

σ2

n+ σ2
. (90)

This completes the derivation of Remark 4.1

D FURTHER SETTINGS

D.1 IMBALANCED CLUSTERS
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Figure 5: n = 4, σ = 0.9, λ = 0.1, α(t) = 1 − t, β(t) = t. Imbalanced mixture with relative
weights ρ = 0.24 and 1 − ρ = 0.76. Solid lines: theoretical predictions of Result 2.1: squared
norm of the DAE weight vector ∥ŵt∥2 (red), skip connection strength ĉt (blue) cosine similarity
between the weight vector ŵt and the target cluster mean µ, ŵt∠µ ≡ ŵ⊤

t µ/∥µ∥∥ŵt∥ (green),
components mt, q

ξ
t , q

η
t of ŵt along the vectors µ, ξ,η (purple, pink, orange). Dots: numerical

simulations in d = 5 × 104, corresponding to training the DAE (9) on the risk (10) uisng the
Pytorch implementation of full-batch Adam, with learning rate 0.001 over 20000 epochs and
weight decay λ = 0.1. The experimental points correspond to a single instance of the model.

In this appendix, we address the case of a binary homoscedastic but imbalanced mixture

ρ1 = ρN (µ, σ2Id) + (1− ρ)N (−µ, σ2Id), (91)

where ρ ∈ (0, 1) controls the relative weights of the two clusters. The target density considered in
the main text (8) thus corresponds to the special case ρ = 1/2.

It is immediate to verify that the derivations presented in Appendices A, B carry through. In other
words, Result 2.1, Result 3.1 and Corollary 3.3 still exactly hold. Figure 5 shows that the sharp
characterization of Result 2.1 indeed still tightly captures the learning curves of a DAE, trained on
imbalanced clusters, using the Pytorch (Paszke et al., 2019) implementation of the Adam (Kingma
& Ba, 2014) optimizer.

An important consequence of this observation is that the generative model will generate a balanced
density ρ̂1, failing to capture the asymmetry of the target distribution ρ1. This echoes the findings of
Biroli & Mézard (2023) in the related setting of a target ferromagnetic Curie-Weiss model, where
they argue that the asymmetry of the ground state can only be learnt for n≫ d samples.
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D.2 DAE WITHOUT SKIP CONNECTION

In this appendix, we examine the importance of the skip connection in the DAE architecture (9).
More precisely, we consider the generative model parameterized by the DAE without skip connection

gwt
(x) = wtφ(w

⊤
t x) (92)

where φ is an activation admitting horizontal asymptots at +1 (−1) in +∞ (−∞). A tight charac-
terization of the learnt weight ŵt can also straightfowardly be accessed, and is summarized in the
following result, which is the equivalent of Result 2.1 for the DAE without skip connection (92)

Result D.1. (Sharp characterization of the trained weight of (92)) For any given activation φ

satisfying φ(x)
x→±∞−−−−−→ ±1 and any t ∈ [0, 1], in the limit d→∞, n, ∥µ∥2/d, σ = Θd(1), the learnt

weight vector ŵt of the DAE without skip connection (92) trained on the loss (10) is asymptotically
contained in span(µ,η) (in the sense that its projection on the orthogonal space span(µ,η)⊥ has
asymptotically vanishing norm). The components of ŵt along each of these two vectors is given by
the summary statistics

mt =
µ⊤ŵt

d
, qηt =

ŵ⊤
t η

ndσ2
, (93)

which concentrate as d → ∞ to the time-constant quantities characterized by the closed-form
formulae

m =
n

λ+ n
, qη =

1

λ+ n
. (94)
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Figure 6: n = 4, σ = 0.9, λ = 0.1, α(t) = 1 − t, β(t) = t. Solid lines: theoretical predictions
of Result 2.1: squared norm of the weight vector ∥ŵt∥2 of the DAE without skip connection (92)
(red), skip connection strength ĉt (blue) cosine similarity between the weight vector ŵt and the
target cluster mean µ, ŵt∠µ ≡ ŵ⊤

t µ/∥µ∥∥ŵt∥ (green), components mt, q
ξ
t , q

η
t of ŵt along the

vectors µ, ξ,η (purple, pink, orange). Dots: numerical simulations in d = 5× 104, corresponding to
training the DAE without skip connection (92) on the risk (10) uisng the Pytorch implementation
of full-batch Adam, with learning rate 0.001 over 20000 epochs and weight decay λ = 0.1. The
experimental points correspond to a single instance of the model.

Result D.1 follows from a straightforward adapatation of the derivation of Result 2.1 as presented
in Appendix A. In fact, it naturally corresponds to setting the skip connection strength c to 0 in the
expression of the log partition function (41). equation (93) corresponds to the zero-gradient condition
thereof.

A striking consequence of Result D.1 is that asymptotically the trained vector ŵ of the DAE (92)
does not depend on the time t. Fig. 6 provides further support of this fact, as the summary statistics
measured in simulations – training the DAE (92) using the Pytorch implementation of full-batch
Adam – are also observed to be constant in time, and furthermore to agree well with the theoretical
prediction. As for the analysis presented in the main text, it is possible to track the generative flow
with a finite set of summary statistics. This is the object of the following result:
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Result D.2. (Summary statistics for the no-skip connection case) Le Xt be a solution of the
ordinary differential equation (7) with initial condition X0, when parametrized by the DAE without
skip connection (92). For a given t, the projection of Xt on span(µ, ,η) is characterized by the
summary statistics

Mt ≡
X⊤

t µ

d
, Qη

t ≡
X⊤

t η

ndσ2
. (95)

With probability asymptotically 1/2 the summary statistics Mt, Q
η
t (15) concentrate for all t to the

solution of the ordinary differential equations
d
dtMt =

α̇(t)
α(t)Mt +

(
β̇(t)− α̇(t)

α(t)β(t)
)

n
λ+n

d
dtQ

η
t = α̇(t)

α(t)Q
η
t +

(
β̇(t)− α̇(t)

α(t)β(t)
)

1
λ+n

. (96)

The derivation of Result D.2 can be made along the exact same lines as the one for Result 3.1,
presented in Appendix B. An important observation is that the flows (96) are actually the exact flows
corresponding to a particular Gaussian mixture, as explicited in the following remark:
Remark D.3. (Generated density) The summary statistics evolution (96) are the same evolutions
that would follow from the velocity field

b(x, t) =

(
β̇(t)− α̇(t)

α(t)
β(t)

)(
µ̂× tanh

(
µ̂⊤x

))
+

α̇(t)

α(t)
x. (97)

where

µ̂ ≡ n

λ+ n
µ+

1

λ+ n
η. (98)

Comparing with equation (67), this is the exact velocity field associated to the singular Gaussian
mixture

ρ̂1(x) =
1

2
δ(x− µ̂) +

1

2
δ(x+ µ̂). (99)

The generative model parameterized by the DAE without skip connection (92) thus learns a singular
density, which is a sum of two Dirac atoms, centered at ±µ̂. It thus fails to generate a good
approximation of the target ρ1 (8). Note however that interestingly µ̂ remains a good approximation
of the true mean µ, and actually converges thereto as n → ∞. This is made more precise by the
following result:
Remark D.4. (mse in the no-skip-connection case) Let µ̂ be the cluster mean of the estimated
density ρ̂1, as defined in Remark D.3. Then its squared distance to the true mean µ is

1

d
∥µ̂− µ∥2= λ2 + nσ2

(λ+ n)2
(100)

The minimum is achieved for λ = σ2 and is equal to the Bayes MSE 4.1. In particular, this MSE
decays as Θn(1/n).

Strikingly, the generative model parametrized by (92) manages to achieve the Bayes optimal Θn(1/n)
rate in terms of the estimation MSE over the cluster means, but completely fails to accurately estimate
the true variance.

E A FULLY EXPRESSIVE MODEL MEMORIZES

In this appendix, we show that the absence of memorization – defined as the ability of the generative
model to generate new samples, and not just retrieve the training samples– is enabled by the network
parametrization of the generative model. In fact, a fully expressive (flexible) model would in fact
memorize the train set. Consider the network-parametrized minimization problem over the parameter
space {θt}t∈[0,1]

R̂({θt}t∈[0,1]) =
1

n

1∫
0

n∑
µ=1

Ex0 ∥fθt(x
µ
t )− xµ

1∥
2
dt. (101)
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For ease of discussion, compared to equation (5), we consider the case where for each sample xµ
1 of

the target ρ1, we sample an infinity of noises x0 from the easy-to-sample base Gaussian distribution
ρ0, which corresponds to averaging over x0 in equation (101). Note that doing so, compared to the
case where only one xµ

0 is sampled for very xµ
1 , is expected to prevent the model from overfitting

the noise and should only improve the performance. Now consider replacing the minimization
equation (101) by the minimization over the space of all denoising functions

R̂[f ] = 1

n

1∫
0

n∑
µ=1

Ex0
∥f(xµ

t , t)− xµ
1∥

2
dt =

1∫
0

Ex1∼ρ̃1
Ex0
∥f(xt, t)− x1∥2 dt. (102)

In equation (102) we denoted ρ̃1 the empirical distribution supported on the training samples

ρ̃1(x1) =
1

n

n∑
µ=1

δ(x1 − xµ
1 ) (103)

and remind that the distribution of the variable xt follows from its definition as xt = α(t)x0+β(t)x1.
Finally, in equation (102), instead of minimizing a function ft : Rd → Rd for each t ∈ [0, 1], we
have without loss of generality rewritten ft(·) = f(·, t). The objective equation (102) can be seen
as the limit of equation (5) when the network is infinitely flexible and can express any denoising
function f . Comparing equation (102) to equation (4), it follows from Albergo et al. (2023) that the
minimizer of equation (102) leads to a flow mapping the base Gaussian distribution ρ0 to the density
ρ̃1 equation (103), since equation (102) is the population objective for ρ̃1. Since ρ0 and ρ̃1 are both
Gaussian mixtures (with the clusters of the latter being of vanishing variance), the corresponding
velocity field is furthermore explicitly given in Appendix A of Albergo et al. (2023). Therefore, an
infinitely expressive model minimizing the empirical risk equation (101) leads to a generated density
ρ̃1. In other words, it only allows to generate samples xµ

1 from the training set, and the generated
mixture has n clusters with 0 variance. In contrast, the DAE-parametrized model equation (9) learns
a bimodal mixture with non-zero variance.

F WASSERSETEIN DISTANCE

In this appendix, we derive a precise description of the generated distribution ρ̂1 and the target ρ1.
We remind that the distribution of its projection in span(ξ, µemp.)

⊥ follows the Gaussian distribution

X⊥
1 ∼ N

0, e
2

1∫
0
(β̇(t)ĉt+ α̇(t)

α(t)
(1−ĉtβ(t)))dt︸ ︷︷ ︸

σ̂2

Id−2

 . (104)

Observe that from Result 2.1,

ĉt =
σ2β(t)

α(t)2 + β(t)2σ2
+Θn(1/n). (105)

Thus,

ln σ̂2 = 2

1∫
0

α̇(t)α(t) + β̇(t)β(t)σ2

α(t)2 + β(t)2σ2
+Θn(1/n) = [ln

(
α(t)2 + β(t)2σ2

)
]10 +Θn(1/n) = lnσ2 +Θn(1/n).

(106)

Thus

σ̂2 = σ2 +Θn(1/n) (107)

We are now in a position to compute the Mixture Wasserstein distance between the generated density
ρ̂1 and the target ρ1. Because these are d− dimensional distributions, we normalize this distance
by 1/d so as to have order 1 metrics in the considered asymptotic limit d → ∞. Because of this,
the precise distribution of the clusters of ρ̂1 in the two dimensional space span(ξ, µemp.) does not
matter, provided it does not involve moments diverging with d. We will show that this very reasonable
assumption is indeed verified, after the computation of the distance.
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F.1 WASSERSTEIN DISTANCE

We aim at evaluating a distance metric in the space of distributions to quantify the discrepancy
between the true density ρ1 and the generated ρ̂1. Many natural metrics (e.g. the KL divergence)
are however intractable in our setting. We take inspiration from the Gaussian mixture Wasserstein
distance MW2, proposed in Delon & Desolneux (2020) as variant of theW2 distance for Gaussian
mixtures. Because ρ̂1 is a mixture, but the clusters in span(ξ, µemp.) are only halves of Gaussian
clusters, we define and employ a very similar metric for arbitrary mixtures:

Definition F.1. (mixture Wasserstein distance) Given two mixtures
K∑
i=1

ρiµi and
J∑

i=1

τiνi (with µi, νi

not necessarily Gaussian densities), the MW2 distance is defined as

MW2
2 = min

w∈RK×J |w1J=(ρ1,...,ρK),w⊤1K=(τ1,...,τJ )

1

d

K∑
k=1

J∑
j=1

wkjW2
2 (µk, νj). (108)

This is the same definition as Delon & Desolneux (2020), except that we allow for non-Gaussian
µi, νi. Note that we introduced without loss of generality a normalization 1/d, since we are comparing
d−dimensional densities, and expect the distance to scale with d. With the normalization, the metric
stays Θd(1) as d→∞. In the present setting, this evaluates to

MW2
2 [ρ1, ρ̂1] =

1

d
W2

2 (ρ̂
+
1 ,N (µ, σ2)) +

1

d
W2

2 (ρ̂
−
1 ,N (−µ, σ2)) (109)

where we introduced the densities ρ̂1 = 1/2ρ̂+1 + 1/2ρ̂−1 for the two clusters of ρ̂1 centered at ±µ̂. We
denote further decompose ρ±1 = ρ

±∥
1 ⊗ρ±⊥

1 into the product of the distribution ρ
±∥
1 in span(ξ, µemp.)

and the Gaussian d− 2 dimensional density ρ±⊥
1 in span(ξ, µemp.)

⊥. We can similarly decompose
the target Gaussian densityN (±µ, σ2Id) = N (±µ, σ2I2)⊗N (0, σ2Id−2). Using the the properties
of Wasserstein distances between product measures Panaretos & Zemel (2019),

1

d
W2

2 (ρ̂
+
1 ,N (µ, σ2)) =

1

d
W2

2 (ρ
+∥
1 ,N (±µ∥, σ2)) +

1

d
W2

2 (ρ
+⊥
1 ,N (0, σ2)) (110)

Note that since ρ±⊥
1 is Gaussian with variance σ̂2, the second term corresponds to the Wasserstein

distance between two Gaussian distributions and read

1

d
W2

2 (ρ
+⊥
1 ,N (0, σ2)) = (σ − σ̂)2 = Θn(1/n). (111)

We now bound 1
dW

2
2 (ρ

+∥
1 ,N (±µ∥, σ2)). Note that the two densities are centered around µ̂ and

µ. The discrepancy between these means will provide the dominant term in the distance. To see
this, we introduce ν1(x) = δ(x− µ̂) and ν2(x) = δ(x− µ), two Diracs centered at the means, and
upper-bound 1

dW
2
2 (ρ

+∥
1 ,N (±µ∥, σ2)) using the triangular inequality

1

d
W2

2 (ρ
+∥
1 ,N (±µ∥, σ2)) ≤ 1

d
W2

2 (ρ
+∥
1 , ν1) +

1

d
W2

2 (ν1, ν2) +
1

d
W2

2 (ν2,N (±µ∥, σ2)). (112)

The last term is asymptotically vanishing as Θd(1/d). Under very mild assumption on ρ
+∥
1 (which

we show are verified in the next subsection), the Wasserstein distance between two-dimensional
distributionsW2

2 (ρ
+∥
1 , ν1) should be Θd(1), so the first term also vanishes as Θd(1/d). The second

term is equal to

1

d
W2

2 (ν1, ν2) =
1

d
∥µ− µ̂∥2= Θn(1/n), (113)

using result B.3. The derivation proceeds identically for the other pair of clusters
1
dW

2
2 (ρ̂

−
1 ,N (−µ, σ2)). Putting everything together, we reach

MW2
2 [ρ1, ρ̂1] ≤ Θn(1/n) (114)
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Bayes optimal rate We briefly consider the mixture corresponding to the bimodal mixture centered
at the Bayes optimal mean estimator ±µ̂(D), and assuming perfect knowledge of the cluster covari-
ances. Again, this is provided as an insightful baseline, and does not constitute a generative model,
since exact oracle knowledge of the form of ρ1 and of σ2 is assumed. For the Bayes estimator:

MW2
2 [ρ1, ρ̂1] =

2

d
∥µ− µ̂∥2= Θn(1/n), (115)

using Result 4.1.

We now briefly give two other examples for generative models differently parametrized, for which
the generated density does not converge to the target ρ1 in MW2 distance.

Auto-encoder without skip connection As derived in D, the generated density when the model is
parametrized by a DAE without skip connection is a degenerate mixture 1/2δ(· − µ̂) + 1/2δ(·+ µ̂),
which corresponds to setting σ̂ = 0 in the above derivation. Thus, it follows that

MW2
2 [ρ1, ρ̂1] = Θn(1), (116)

i.e. without skip connection the generative model fails to learn to generate the target mixture.

Fully expressive model We now consider the case of a model which memorizes the train set, as
discussed in Appendix E. In this case

ρ̂1(x) =
1

n

n∑
µ=1

δ(x− xµ
1 ), (117)

which is a (degenerate) Gaussian mixture. It is straightforward to see that for any xµ
1 ,

W2
2 [N (±µ, σ2Id, δ(· − xµ

1 )] ≥ σ2 = Θn(1), and therefore

MW2
2 [ρ1, ρ̂1] ≥ σ2 = Θn(1). (118)

Thus ρ̂1 is bounded away from the target ρ1.

We close the appendix by deriving the precise form of ρ̂±∥
1 , although the precise distribution in this

two-dimensional space is asymptotically irrelevant for all the considered metrics, as we showed.

F.2 DISTRIBUTION IN span(ξ, µemp.)

We study in more detail the dynamics of X∥
t , defined as the projection of Xt in span(ξ, µemp.). Since

the initial X0 ∼ ρ0 is Gaussian, so is its projection X
∥
0 ∼ N (0, I2). Let us also call ŵ∥

t the projection
of ŵt in span(ξ, µemp.). Projecting the dynamics equation (7) into span(ξ, µemp.),

˙
X

∥
t =

(
β̇(t)ĉt +

α̇(t)

α(t)
(1− ĉtβ(t))

)
X

∥
t ±

(
β̇(t)− α̇(t)

α(t)
β(t)

)
ŵ

∥
t , (119)

where the sign of the drift term is given by sign(X
∥⊤
0 ŵ

∥
0). Like in Appendix B, we assumed that

sign(ŵ⊤
t Xt) stays constant during the transport. This can be solved in closed form for t = 1 as

X
∥
1 = X

∥
0e

1∫
0

γ(t)dt
+ sign(X

∥⊤
0 ŵ

∥
0)e

1∫
0

γ(t)dt
1∫

0

e
−

t∫
0

γ(s)ds
(
β̇(t)− α̇(t)

α(t)
β(t)

)
ŵ

∥
t dt (120)

where we used the shorthand

γ(t) ≡
(
β̇(t)ĉt +

α̇(t)

α(t)
(1− ĉtβ(t))

)
. (121)

The second term multiplied by the sign corresponds to µ̂ ∈ span(ξ, µemp.) as characterized by
Result 3.1. The distribution of X∥

1 follows from that of the Gaussian X
∥
0 . If X∥

0 is in the half-space
{x ∈ R2|x⊤ŵ

∥
0 ≥ 0} then X

∥
1 = σ̂X

∥
0 + µ̂; If X∥

0 is in the half-space {x ∈ R2|x⊤ŵ
∥
0 ≤ 0} then

X
∥
1 = σ̂X

∥
0 − µ̂. In other words, the distribution of X⊥

1 is a mixture of two clusters, at ±µ̂. Each
cluster corresponds to half a Gaussian cluster of variance σ̂2I, i.e. a Gaussian cluster cleft along a
hyperplane whose othogonal vector is ŵ∥

0 as characterized by Result 2.1.

27


	Derivation of Result 2.1
	Computation of the partition function
	Sample-symmetric ansatz
	Saddle-point equations
	Metrics

	Derivation of Result 3.1
	Derivation of Remark 3.2
	Derivation of Corollary 3.3

	Derivation of Remark 4.1
	Further settings
	Imbalanced clusters
	DAE without skip connection

	A fully expressive model memorizes
	Wassersetein distance
	Wasserstein distance
	Distribution in span(,emp.)


