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ABSTRACT

Self-consistency (SC) has been a widely used decoding strategy for chain-of-
thought reasoning. Despite bringing significant performance improvements across
a variety of multi-step reasoning tasks, it is a high-cost method that requires mul-
tiple sampling with the preset size. In this paper, we propose a simple and scalable
sampling process, Early-Stopping Self-Consistency (ESC), to greatly reduce the
cost of SC without sacrificing performance. On this basis, one control scheme
for ESC is further derivated to dynamically choose the performance-cost balance
for different tasks and models. To demonstrate ESC’s effectiveness, we conduct
extensive experiments on three popular categories of reasoning tasks: arithmetic,
commonsense and symbolic reasoning over language models with varying scales.
The empirical results show that ESC reduces the average number of sampling by
a significant margin on six benchmarks, including MATH (-33.8%), GSM8K (-
80.1%), StrategyQA (-76.8%), CommonsenseQA (-78.5%), Coin Flip (-84.2%)
and Last Letters (-67.4%), while attaining comparable performances *.

1 INTRODUCTION

Large language models (LLMs) have exhibited strong reasoning capabilities (Bubeck et al., 2023),
especially with chain-of-thought (CoT) prompting (Wei et al., 2022). Based on this, Wang et al.
(2023) introduce a simple decoding strategy called self-consistency (SC) to further improve reason-
ing performances, leveraging the fact that complex reasoning tasks typically allow for more than one
reasoning paths leading to the correct answer. In contrast to the standard chain-of-thought prompt-
ing which only generates the greedy one, this method samples multiple reasoning paths according
to the predetermined sample size, and then derives the final answer through voting-based scheme.

However, despite generally leading to improvements, the SC strategy incurs a significant overhead
proportional to the number of sampled outputs. Taking MATH dataset as an example, evaluating
the entire test set with SC (sampling size as 64 following Lewkowycz et al. (2022)) costs about
2000$ through GPT-4 API, which is a significant burden for many researchers and organizations.
Therefore, it is essential to minimize the cost of SC while maintaining performance.

The process of generating multiple samples in SC can be viewed as approximating the true answer
distribution predicted by the language model. Then the most frequent one is taken as the final
answer to mitigate the stochasticity of the single-sampling strategy. However, given that only the
most confident answer is needed for SC, it is not necessary whether the whole answer distribution fits
perfectly. Therefore, we argue that it is not necessary to directly generate all reasoning paths aligning
with the preset sampling size for every input. Instead, the generation process can be serialized as
smaller parts, each of which is named as sampling window. Considering both the small window and
the large number of sampling outputs are generated from the same predicted answer distribution,

†Equal contributions.
‡Corresponding author.
*Our code and data have been released on https://github.com/Yiwei98/ESC.
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Question: A robe takes 2 
bolts of blue fiber and 
half that much white 
fiber.  How many bolts in 
total does it take?
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Figure 1: Full process of ESC compared with original SC. We divide the large sample size into
several sequential small windows. Stop sampling when answers within a window are all the same,
i.e., the entropy score of predicted answer distribution is zero.

it can be deemed as a probe to reveal some information of the true distribution with only a small
sampling number.

For the answer distribution, one conjecture is that the correct ones are often concentrated, and the
incorrect answers are scattered. We employ entropy as a representation of the answer distribution
shape. Figure 2 shows the mean entropy value of correct and incorrect voting answer within a win-
dow respectively, showing that distributions with correct one as highest probability answer typically
have much lower entropy values. Thus, it can be a indicator to determine whether sampling should
continue. Based on this, we propose early-stopping self-consistency (ESC), truncating the sampling
process with low entropy window. Figure 1 illustrates its process with an example. In order to main-
tain the performance as much as possible, we set the strictest threshold: the entropy equals zero, i.e.,
all generated samples within a window have the same answer. Stop sampling when this situation
occurs to reduce sampling consumption while minimize performance impact.

2 3 4 5 8 10
Window Size

0.5

1.0

1.5

2.0

2.5

En
tro

py

Correct
Incorrect

Figure 2: The mean entropy score
within the window on MATH dataset
from GPT-4.

Early stopping (Yao et al., 2007) is a widely used tech-
nique to prevent poor generalization when training mod-
els. But in this paper, we introduce this strategy to early
stop the generation process for saving the cost. As with
original SC, ESC is unsupervised and model-agnostic,
without any human annotation and additional training.
We derive the theoretical upper bound of inconsistent
probability of the results with or without early stopping
scheme in SC, indicating that ESC is highly likely to
maintain performance. In addition, one control scheme
for ESC is further derivated to dynamically choose the
performance-cost balance for different tasks and models
by selecting the size of window and maximum sampling
times for meeting the practice requirements.

We evaluate ESC on a wide range of arithmetic, commonsense and symbolic reasoning tasks over
three language models with varying scales: GPT-4, GPT-3.5-Turbo and Llama-2 7b. The empirical
results show that ESC reduces the sampling times by a significant margin on six popular benchmarks,
including MATH (Hendrycks et al., 2021) (-33.8%), GSM8K (Cobbe et al., 2021) (-80.1%), Strat-
egyQA (Geva et al., 2021) (-76.8%), CommonsenseQA (Talmor et al., 2019) (-78.5%), Coin Flip
(-84.2%) and Last Letters (Wei et al., 2022) (-67.4%) , while attaining comparable performances.
In additional experiments, we show our control scheme for ESC can predict the performance-cost
balance accurately across various tasks and models, showcasing reliable application prospects. We
also show ESC can robustly save cost considering different decoding settings and prompts.

2 METHOD

2.1 REVISITING SELF-CONSISTENCY

Self-consistency (Wang et al., 2023) capitalizes on the notion that a intricate problem requiring
logical thinking usually admits several distinct approaches that all lead to the same correct answer.
Based on this, multiple candidate predictions {ŷl}L to problem x are suggested to generate through

2



Published as a conference paper at ICLR 2024

sampling, and the most consistent ŷ is selected as the final prediction through a voting process:

ŷ = argmax
i

L∑
l=1

1ŷl=i (1)

where 1ŷl=i is the indicator function (equal to 1 when ŷl is equal to prediction i, and 0 otherwise).
We conduct a more in-depth derivation as follows:

ŷ = argmax
i

∑L
l=1 1ŷl=i

L
= argmax

i
fL(i) (2)

where fL(i) denotes the frequency of the model’s predicted outcome being i in L sampling in-
stances. According to the Law of Large Numbers (Papoulis, 1990), as the sample size L approaches
infinity, fL(i) = P (i), where P (i) represents the true probability of the model predicting the out-
come as i. On this basis, we can further deduce:

ŷ = argmax
i

P (i) (Given L→∞) (3)

According to equation 3, we can re-conceptualize SC as the process of mitigating noise introduced
by individual sampling through multiple samplings. Its objective is to ensure that the prediction with
the highest probability, denoted as argmaxi P (i) is chosen as the final answer.

From this perspective, we contend that when the entropy of P is low (an extreme case being the
one-hot-like distribution), a smaller value of L (L = 1 is enough for one-hot-like distribution) can
mitigate the impact of sampling noise according to the Law of Large Numbers.

2.2 EARLY-STOPPING SELF-CONSISTENCY

Building upon the aforementioned analysis, we propose Early-Stopping Self-Consistency (ESC) to
achieve comparable performance to SC at a much lower sampling cost by adaptively adjusting the
sampling times. The execution flow of ESC is illustrated in Algorithm 1.

Algorithm 1 Early-Stopping Self-Consistency.
Require: modelM, dataset D = {(x, y)}N , window size w, max sampling size L, past sampling set Spast

Ensure: predictions set Spredictions

Spredictions ← ∅
for i ∈ range N do

Scandidates ← ∅, Swindow ← Si
past if Spast ̸= ∅ else ∅

for j ∈ range (L//w) do
Swindow ← Sampling predictions w times fromM given xi if Swindow = ∅ else Swindow

if predictions in Swindow are the same then
Scandidates ← Swindow break

end if
Scandidates ← Scandidates + Swindow, Swindow ← ∅

end for
Spredictions ← Spredictions.Append(argmaxi

∑
p∈Scandidates

1p=i)
end for
return Spredictions

We view a consecutive set of w sampling predictions as an observation window for the probability
distribution P predicted by model M for input x. When these w predictions are all the same, the
entropy of P is likely to be sufficiently low. At this point, the voting result of these w samples
is very likely to be equal to argmaxi P (i), which is exactly the voting result that SC aims for.
Therefore, we stop sampling when this situation occurs to save additional sampling consumption
while barely affecting performance. We will iterate to obtain multiple observation windows until the
preset sampling size L is reached if no observation window meets the need during this procedure.
The predictions of all the samples will constitute the final outcome according to equation 1.

2.3 THEORETICAL ANALYSIS

Now, we analyze to what extent ESC will effect the performance compared with SC. For simplicity,
we study the case where L is infinite (we will examine the case of bounded L in section 2.4.2). We
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conduct a one proportion z-test with the following null hypothesis,
H0 : Prediction p appears in an observation window T times, where p ̸= argmax

i
P (i).

According to the definition of one proportion z-test, the calculation formula for the z-statistic is:

z =
(T̂ − Tµ) ∗

√
n

Tσ
(4)

where T̂ is the observed mean, Tµ represents the expected mean, Tσ represents the expected standard
deviation, and n represents the observed times. Considering the null hypothesis H0, where p ̸=
argmaxi P (i), we can derive as follows:

P (p) ≤ (P (p) +max(P ))/2 ≤
∑
i

P (i)/2 = 1/2 (5)

As w samples make up an observation window, according to Bernoulli distribution and equation 5:
Tµ = w ∗ P (p) ≤ w/2

Tσ =
√

w ∗ P (p)(1− P (p)) ≤
√
w/2

(6)

Taking equation 6 into equation 4, z-statistic has the following lower bound when T̂ ≥ Tµ:

z ≥ (T̂ − w/2) ∗
√
n√

w/2
(7)

The voting results of ESC are inconsistent with the voting results of SC if and only if T equals to
w (when early-stop happens while p ̸= argmaxi P (i)). When this situation occurs, we have the
observed times n = 1 and T̂ = w, which we take into equation 7:

z ≥ (w − w/2) ∗
√
1√

w/2
=
√
w (8)

Suppose w = 8, and we choose to reject H0 if z ≥
√
8 (the lower bound in equation 8). In this

case, the probability of a false positive is ≤ 2× 10−3 (one-sided p-value corresponding to z =
√
8).

This means that when we conduct ESC with w = 8, the probability of the voting outcome being
inconsistent with the voting outcome of SC (false positive) is ≤ 2× 10−3, which is extremely low.
According to equation 8, we can see that as w increases, the lower bound of z increases accordingly,
resulting in a smaller upper bound of the probability that ESC performance being affected.

2.4 CONTROL SCHEME FOR EARLY-STOP SELF-CONSISTENCY

In practical applications, the desired scenario is that we can adjust the ESC strategy (window size
w, max sampling size L) based on our sampling budgets and performance requirements. Therefore,
we propose a control scheme for ESC to achieve this goal. Specifically, we will deduce the expec-
tation of voting performance and sampling cost under different (w, L) settings based on the first
observation window (denote its window size as w0).

2.4.1 THE EXPECTATION OF SAMPLING COST

We first use the sampling frequency in the first observation window to approximate the true proba-
bility distribution P , and denote it as P̂ . Based on this, the probability of stopping sampling in each
observation window (where the sampled values within the window are all the same) is:

P̂stop =
∑
i

pow(P̂ (i), w) (9)

According to Algorithm 1, the expected average sampling times L̂ of dataset D is:

E(L̂) = EP̂∈M(D)

L//w−1∑
j=0

[(P̂stop× pow(1− P̂stop, j)× j×w)+ pow(1− P̂stop, L//w)×L] +w0 (10)

see Appendix A.1 for detailed derivation. According to equation 10, we can determine the mapping
relationship from the choice of (w, L) to the expected sampling cost L̂ based on the sampling results
of the first observation window.
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2.4.2 THE EXPECTATION OF VOTING PERFORMANCE

When L is bounded (practical scenarios), we discuss the probability of ESC voting outcome being
inconsistent with argmaxi P (i) with (denoted as Qw(P̂ )) and without (denoted as Qo(P̂ )) the
occurrence of early-stop.

When early-stop happens, similar to the derivations in section 2.3, we substitute P̂ to P to calculate
the z-statistic under the P̂ distribution. We then calculate the sum of the probabilities that the voting
outcome of ESC being inconsistent with the voting outcome of SC for all candidate p when early-
stop happens, where p ̸= argmaxi P̂ (i):

Qw(P̂ ) =
∑

p̸=argmaxi P̂ (i)

querying(
w − w ∗ P̂ (p)√

w ∗ P̂ (p)(1− P̂ (p))
) (11)

where querying(·) represents the process of querying p-value corresponding to the z-statistic.

When early-stop not happens, ESC degenerates into SC. We view the whole L samples as an obser-
vation window and has the following derivation of z-statistic:

z =
T̂ − L ∗ P̂ (p)√

L ∗ P̂ (p)(1− P̂ (p))
(12)

If prediction p is selected as the voting outcome, then the the following inequality should hold:
T̂ ≥ L/2. Combining with equation 12, we derive the upper bound of Qo(P̂ ):

Qo(P̂ ) ≤
∑

p̸=argmaxi P̂ (i)

querying(
L/2− L ∗ P̂ (p)√
L ∗ P̂ (p)(1− P̂ (p))

) (13)

According to equation 9, the probability of that early-stop not happens is pow(1 − P̂stop, L//w).
Thus, the upper bound of the expected probability of ESC voting outcome being inconsistent with
argmaxi P (i) is:

E(Q) ≤ EP̂∈M(D)(1− pow(1− P̂stop, L//w))×Qw(P̂ ) + pow(1− P̂stop, L//w)×Qo(P̂ ) (14)

2.4.3 CONTROLLABLE EARLY-STOP SELF-CONSISTENCY

Based on the above derivation, we propose our control scheme for ESC as shown in Algorithm 2.
First, we sample w0 times on the whole dataset. Based on the results of the first observation window,
we calculate the expected sampling cost and performance under different settings of (w, L). Finally,
considering the sampling budget and performance requirements, we choose appropriate values of
(w, L) based on the respective expected values to execute ESC.

Algorithm 2 Control Scheme for Early-Stop Self-Consistency.
Require: modelM, dataset D = {(x, y)}N , initial window size w0 (recommended as 5), sampling budget B,

performance expectation P .
Ensure: Predictions set Spredictions

Sfirstwindow ← ∅
for (x, y) ∈ D do

Swindow ← Sampling predictions w0 times fromM given x
Sfirstwindow ← Sfirstwindow + Swindow

end for
for ∀ (w,L) do

E(L̂)← section 2.4.1 (Sfirstwindow, w, L), E(Q̂)← section 2.4.2 (Sfirstwindow, w, L)
if (E(L̂),E(Q̂)) meets the need of (B,P ) then

ŵ ← w, L̂← L break
end if

end for
return Algorithm 1(M, D = {(x, y)}N , ŵ, L̂, Sfirstwindow)
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3 EXPERIMENTS

3.1 EXPERIMENT SETUP

We evaluate the proposed ESC on six benchmark datasets from three categories of reasoning tasks:
For arithmetic reasoning, we consider MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
2021). MultiArith (Roy & Roth, 2015), SVAMP (Patel et al., 2021), AddSub (Hosseini et al., 2014)
and ASDiv (Miao et al., 2020) are not chosen in this paper because they are relatively simple.
For commonsense reasoning, CommonsenseQA (Talmor et al., 2019) and StrategyQA (Geva et al.,
2021) are used. For symbolic reasoning, we use Last Letter Concatenation and Coin Flip from Wei
et al. (2022). The data version is from Kojima et al. (2022).

ESC is evaluated across three language models with varying scales: GPT-4 (OpenAI, 2023), GPT-
3.5-Turbo and LLaMA-2 7B (Touvron et al., 2023). All experiments are conducted in the few-shot
setting without training or fine-tuning the language models. To ensure a fair comparison, we use the
same prompts as Wei et al. (2022). Details on the prompts used are given in Appendix.

The sampling temperature T for MATH is 0.5 while for other datasets is 0.7. GPT-4 and GPT-
3.5-Turbo samples predictions without truncating. For Llama 2, the threshold for top p truncation
(Holtzman et al., 2020) is 0.9. Similarly to Wang et al. (2023), we provide an ablation study in
Section 3.6 to show that ESC is generally robust to sampling strategies and parameters.

3.2 MAIN RESULTS

The baseline we compare to is chain-of-thought prompting with greedy decoding (CoT) and self-
consistency (SC) with sampling. Following Lewkowycz et al. (2022), the sample size L for MATH
is 64 and for others is 40, and ESC uses the same value as maximum sample size. Accordingly, the
window size w for MATH is 8 and for others is 5. We report the results averaged over 10 runs and
omit variance for limited space.

Table 1: Accuracy (%) and L̂ (average actual number of generated samples in ESC, in gray) across
six reasoning benchmarks. L̂-SC denotes the accuracy of SC with sample size as L̂.

MATH GSM8K CSQA SQA Letter Coinflip

GPT-4

CoT 50.44 87.70 83.71 78.63 93.12 100.00
SC 60.32 89.29 87.18 81.67 95.00 /

ESC 60.32 (0.00) 89.29 (0.00) 87.18 (0.00) 81.70 (+0.03) 94.98 (-0.02) /
L̂ 42.40 (-21.60) 7.98 (-32.02) 9.29 (-30.71) 7.19 (-31.39) 6.32 (-33.68) /

L̂-SC 59.98 (-0.34) 89.07 (-0.22) 86.49 (-0.69) 81.40 (-0.27) 94.59 (-0.39) /

GPT-3.5
Turbo

CoT 35.53 75.83 74.17 67.66 80.50 83.74
SC 49.97 85.69 78.10 75.90 83.21 99.54

ESC 49.96 (-0.01) 85.67 (-0.02) 78.10 (0.00) 75.71 (-0.19) 83.15 (-0.06) 99.49 (-0.05)

L̂ 52.37 (-11.63) 14.65 (-25.35) 11.70 (-28.30) 8.51 (-27.93) 8.82 (-31.18) 13.03 (-26.97)

L̂-SC 49.79 (-0.13) 84.82 (-0.85) 77.67 (-0.43) 75.07 (-0.83) 82.74 (-0.41) 98.67 (-0.82)

Llama-2
7B

CoT 5.09 18.07 65.28 46.23 14.87 54.74
SC 7.68 21.75 67.70 63.15 23.32 59.13

ESC 7.68 (0.00) 21.74 (-0.01) 67.68 (-0.02) 63.01 (-0.14) 23.32 (0.00) 58.99 (-0.14)

L̂ 62.48 (-1.52) 31.21 (-8.79) 11.82 (-28.18) 11.00 (-23.96) 34.73 (-5.27) 14.87 (-25.13)

L̂-SC 7.68 (0.00) 21.52 (-0.22) 66.97 (-0.71) 61.19 (-1.96) 23.11 (-0.21) 58.11 (-0.88)

ESC significantly reduces costs while barely affecting performance. Table 1 summarizes ac-
curacy of CoT, SC, proposed ESC and L̂, the average actual number of generated samples in ESC,
for each dataset among three language models. The first observation is that SC outperforms CoT
substantially, which confirms the effectiveness of the voting process for reasoning. For ESC, the L̂ is
largely smaller than the corresponding maximum sampling size L, while the accuracy has remained
almost unchanged. Given that the accuracy of Coin Flip on GPT-4 is 100%, there is no need to
conduct SC and ESC on it. We also test SC with L̂ as the sampling size (L̂-SC), whose accuracy
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drops in accordance with the performance curve relative to the number of samples from Wang et al.
(2023). Overall, ESC can reduce costs significantly while barely affecting performance. In other
words, ESC can get higher accuracy under the same sampling costs.

Table 2: Reasoning accuracy (%) and L̂ with various max sampling size L. The window size is 8.
Model Method 16 24 32 40 48 64

GPT-4
SC 58.92 59.40 59.77 59.95 60.07 60.31

ESC 58.92 (0.00) 59.40 (0.00) 59.77 (0.00) 59.95 (0.00) 60.07 (0.00) 60.31 (0.00)

L̂ 13.56 (-2.44) 18.72 (-5.28) 23.67(-8.33) 28.49 (-11.51) 33.21 (-14.79) 42.41 (-21.59)

GPT-3.5
Turbo

SC 47.34 48.48 49.02 49.40 49.65 49.96
ESC 47.33 (-0.01) 48.49 (+0.01) 49.02 (0.00) 49.41 (+0.01) 49.64 (-0.01) 49.96 (0.00)

L̂ 14.84 (-1.16) 21.38 (-2.62) 27.76 (-4.24) 34.02 (-5.98) 40.20 (-7.80) 52.37 (-11.63)

Llama-2
7B

SC 7.10 7.28 7.40 7.45 7.54 7.70
ESC 7.10 (0.00) 7.28 (0.00) 7.40 (0.00) 7.45 (0.00) 7.54 (0.00) 7.70 (0.00)

L̂ 15.88 (-0.12) 23.72 (-0.28) 31.52 (-0.48) 39.29 (-0.71) 47.04 (-0.96) 62.48 (-1.52)

ESC is a scalable decoding process across sampling and window size. We conduct experiments
with various window size and sampling size to valid the scalability of ESC. Table 2 shows the
performance across different maximum sampling sizes. First we can see the performance of SC
continuously improves as sampling size L increases, which is consistent with the results in (Wang
et al., 2023). On this basis, ESC can significantly save costs while maintaining performance for
different L. Figure 3 shows performance-cost balancing lines among three language models on
GSM8K. ESC is robust to different window size and maximum sampling number. Please refer to
Appendix-Figure 7 for results on other datasets.

Cost savings are positively correlated with performance. As shown in both Table 1 and Ta-
ble 2, an obvious phenomenon is that cost savings are positively correlated with performance. It is
intuitive since better performance often eliminates the need for larger sample size as recommended
in Wang et al. (2023). However, ESC does not require any prior knowledge of model capabilities
and task difficulty. In addition, a control scheme for ESC is also proposed and will be evaluated in
Section 3.3.
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Figure 3: Robustness analysis of ESC regarding the observation window size w and max sampling
size L on GSM8K with different models.

3.3 EFFECTIVENESS OF CONTROL SCHEME FOR ESC

To assess the effectiveness of control scheme for ESC, we compared the consistency between our
predicted and actual values of sampling cost L̂ and performance change percentage between SC
and ESC Pδ on the GSM8K dataset. We chose L1 norm and Pearson correlation to measure the
consistency.* As shown in Table 3, the Pearson correlations for both L̂ and Pδ exceed 0.8, indicating
a strong linear correlation between the predicted and actual values. Also, the L1 norm for both L̂

*We vary the max sampling size to obtain multiple sets of results for calculating the Pearson correlation and
mean L1 norm.
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and Pδ are very low. These results indicate that the predictions we obtain based on equation 10 and
equation 14 are highly reliable for balancing sampling cost and voting performance.

Table 3: Consistency between the predicted (through control scheme for ESC) and actual values of
L̂: sampling times, and Pδ (%): performance change percentage between SC and ESC. We choose
L1 norm and Pearson correlation to measure the consistency. All the p-values < 0.05.

Model ∥L̂act − L̂pre∥1 Pearson(L̂act, L̂pre) ∥P act
δ − P pre

δ ∥1 Pearson(P act
δ , P pre

δ )

GPT-4 0.27 1.00 0.43 0.81
GPT-3.5 Turbo 0.62 1.00 0.06 0.86

Llama-2 7B 1.43 1.00 0.52 0.86

3.4 ESC FOR OPEN-ENDED GENERATIONS

Original SC is only suitable for problems that have fixed answers, while Jain et al. (2023) extended
it for open-ended generation tasks by replacing voting through text similarity matching. We conduct
ESC on MBPP dataset (Austin et al., 2021) with various sampling size (window size is 5). The
results in Table 4 shows that ESC is also suitable for open-ended task.

Table 4: Reasoning accuracy (%) and L̂ for MBPP with various max length L on GPT-3.5-Turbo.
Method 10 15 20 25 30

SC 61.96 61.96 62.04 62.15 62.18
ESC 61.96 (0.00) 61.96 (0.00) 62.02 (-0.02) 62.11 (-0.04) 62.15 (-0.03)

L̂ 5.62 (-4.38) 6.02 (-8.98) 6.32 (-13.68) 6.57 (-18.43) 6.79 (-23.21)

3.5 INTERSECTION BETWEEN ESC AND SC
Table 5: Intersection ratio between ESC and SC.

Model GSM8K SQA Letter

GPT-4 99.69 99.69 99.96
GPT-3.5-Turbo 99.92 99.25 99.76
Llama-2-7B 99.77 99.13 99.75

According to Section 2.3, the voting results of
ESC should have a high probability of being con-
sistent with SC. From Table 5 we can see that
the intersection ratios of the voting results of SC
and ESC are quite high, which indicates the upper
bound of the performance being affected by ESC
derived in Section 2.4.2 is reliable.

3.6 ROBUSTNESS OF ESC

Additional experiments were conducted to further test the robustness of the proposed ESC, including
its robustness to sampling parameters and prompts: (1) In Figure 4 (up) we show how ESC behaves
for GSM8K as the decoding sampling temperature increases. Savings are consistent across different
generation temperatures. (2) Figure 4 (bottom left corner) shows that ESC is robust to p values for
top-p sampling. (3) Figure 4 (bottom right corner) indicates ESC can generalize to zero-shot manner.
(4) Table 6 shows the accuracy of ESC and SC with different groups of demonstrations. We can see
that ESC is robust to various demonstrations (see Appendix-Figure 6 for results on StrategyQA).

Table 6: Reasoning accuracy (%) and L̂ for GSM8K on GPT-3.5-Turbo with different demonstra-
tions. The max sampling size is 40 and window size is 5.

Demonstration Groups 1st 2nd 3rd 4th 5th

SC 85.69 85.56 84.80 85.63 85.24
ESC 85.67 (-0.02) 85.58 (0.02) 84.80 (0.00) 85.64 (0.01) 85.23 (-0.01)

L̂ 14.65 (-25.35) 14.53 (-25.47) 15.64 (-24.36) 14.76 (-25.24) 14.59 (-25.41)
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Figure 4: Robustness analysis of ESC regarding the sampling temperature T , p in nucleus sampling,
and zero-shot demonstration on GSM8K with GPT-3.5-Turbo.

4 RELATED WORK

Chain-of-thought Reasoning Chain-of-thought prompting has been proven to be an effective
method of solving complex reasoning problems (Wei et al., 2022). By following the pattern of grad-
ually solving sub-problems, both few-shot CoT (Fu et al., 2023) and zero-shot CoT (Kojima et al.,
2022) are capable of stimulating LLM reasoning abilities. On this basis, Least-to-most prompting
(Zhou et al., 2023) suggests explicitly splitting the problem and solving them step by step. Zheng
et al. (2023) iteratively generating answers and adding the historically generated answers as hints to
the context to achieve the final convergence on the answer.

Self Consistency Self-consistency (Wang et al., 2023) refers to a simple decoding strategy for
further improving reasoning performance, leveraging the fact that complex reasoning tasks typically
allow for more than one correct reasoning path. Jain et al. (2023) extend it for open-ended gener-
ation tasks like code generation and text summarization by replacing voting through text similarity
matching. Li et al. (2023) assign appropriate weights for answer aggregation to achieve adaptive
self-consistency. However, all of them require multiple sampling with the pre-set size, which will
incur much more computation cost. Aggarwal et al. (2023) introduce an adaptive stopping criterion
based on the amount of agreement between the samples so far, but it needs additional data to tune the
hyperparameter and is sensitive to threshold. By contrast, ESC has no hyperparamter for stopping
criterion and has a additional control scheme to meet the realistic requirements.

5 CONCLUSION

We have introduced a simple yet effective sampling process called early-stopping self-consistency
(ESC). By stopping the decoding process with high confident window, ESC greatly reduce the cost of
SC without sacrificing performance. A control scheme for ESC is further derivated to dynamically
select the performance-cost balance for different tasks and models, which requires no extra prior
knowledge of model capabilities and task difficulty. The empirical results show that ESC reduces
the actual number of samples of chain-of-thought reasoning by a significant margin on six popular
benchmarks, while attaining comparable performances. We also show control scheme for ESC can
predict the performance-cost trade-off accurately across various tasks and models. The additional
evaluations indicate that ESC can robustly save cost considering different decoding settings and
prompts, and even on open-ended generation tasks.
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A APPENDIX

A.1 DERIVATION OF THE EXPECTATION OF SAMPLING COST

Given the probability of stopping sampling in each observation window as P̂stop, the probability of
continue sampling is 1− P̂stop. Therefore, the probability of early-stop occurring after j windows is
P̂stop×pow(1− P̂stop, j). On this basis, the expected sampling cost in the first L//w− 1 windows
can be denoted as:

E(L̂1) = EP̂∈M(D)

L//w−1∑
j=0

(P̂stop × pow(1− P̂stop, j)× j × w) (15)

If no early-stop occurs after observing L//w − 1 windows, then the maximum sampling size L is
reached upon the next observation window. The expected sampling cost of this part can be denoted
as:

E(L̂2) = EP̂∈M(D)

L//w−1∑
j=0

pow(1− P̂stop, L//w)× L (16)

Including w0, the overall expected sampling cost is:

E(L̂) = EP̂∈M(D)

L//w−1∑
j=0

[(P̂stop× pow(1− P̂stop, j)× j×w)+ pow(1− P̂stop, L//w)×L] +w0 (17)

A.2 COMPARISON WITH ADAPTIVE-CONSISTENCY (AC)

Aggarwal et al. (2023) introduce an adaptive stopping criterion based on the amount of agreement
between the samples so far, but it needs additional data to tune the hyperparameter and is sensitive
to threshold. But for proposed ESC, the stopping criterion needs no hyperparameter due to the most
conservative strategy to maintain the performance, i.e., all the answers within a window are same.
Thus ESC can be conducted directly for different tasks and models, without any validation set.

Another drawback of AC is generating samples step by step, which means each sample requires one
input. Considering the demonstrations for in-context learning (usually 8 examples) have a lot of
tokens, it will cost quite a portion of the budget. By contrast, ESC generates samples in multiple
sampling windows, thus samples within one window can share the same input. Table 7 shows that
ESC can get higher accuracy with less sampling cost comparing with AC.

Table 7: Prompt token count (tokens/item, denoted as #prompt), completion token count (to-
kens/item, denoted as # completion), average sampling cost ($/item) and accuracy (%) resulting
from different methods. The best and second-best results are emphasized with bold and underline.

Datasets Method
GPT-3.5 Turbo GPT-4

# prompt # completion Cost Acc # prompt # completion Cost Acc

GSM8K
SC 496.9 2909.0 0.0084 85.69 495.9 2646.5 0.2316 89.29
AC 4930.3 813.2 0.0087 85.66 2927.6 412.5 0.1501 89.28
ESC 1469.2 1220.8 0.0052 85.67 793.0 564.8 0.0769 89.29

CSQA
SC 428.7 1382.9 0.0043 78.10 427.8 1474.6 0.1351 87.18
AC 3522.3 294.2 0.0055 78.05 2844.5 271.5 0.1355 87.15
ESC 1003.2 420.9 0.0024 78.10 794.6 384.0 0.0625 87.18

Letter
SC 166.0 1463.1 0.0041 83.21 165.0 1396.9 0.1184 95.00
AC 1057.5 233.6 0.0020 83.15 791.7 167.5 0.0451 94.97
ESC 293.0 323.7 0.0012 83.15 208.7 220.7 0.0260 94.98
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A.3 COMPARISONS BETWEEN SC AND ESC WHEN L IS RELATIVELY SMALL (10 AND 20)

we conduct experiments with smaller sampling sizes L. From the results in Table 8, we found that
ESC can consistently save sampling costs in such scenarios, while achieving improvement compared
to SC under the same costs.

Table 8: Reasoning accuracy (%) and L̂ with various max sampling size L. The window size is 5.

Model Method CSQA GSM8K Letter
L = 10 L = 20 L = 10 L = 20 L = 10 L = 20

GPT-4

SC 86.49 86.83 89.16 89.24 94.66 94.79
ESC 86.49 (0.00) 86.84 (+0.01) 89.16 (0.00) 89.24 (0.00) 94.66 (0.00) 94.80 (+0.01)

L̂ 5.92 (-4.08) 7.27 (-12.73) 5.79 (-4.21) 6.76 (-13.24) 5.57(-4.43) 5.92(-14.08)

L̂-SC 86.07 (-0.42) 86.31 (-0.52) 88.95 (-0.21) 89.02 (-0.22) 94.58(-0.08) 94.58(-0.21)

GPT-3.5
Turbo

SC 77.63 77.93 84.10 85.15 82.80 83.00
ESC 77.63 (0.00) 77.91 (-0.02) 84.10 (0.00) 85.15 (0.00) 82.81 (+0.01) 82.98 (-0.02)

L̂ 6.47 (-3.53) 8.60 (-11.40) 7.09 (-2.91) 10.14 (-9.86) 6.14(-3.86) 7.36(-12.64)

L̂-SC 77.39 (-0.24) 77.55 (-0.38) 83.31 (-0.79) 84.10 (-1.05) 82.45(-0.35) 82.65(-0.35)

Llama2-7b

SC 66.89 67.25 20.74 21.32 21.21 22.49
ESC 66.89 (0.00) 67.26 (+0.01) 20.74 (0.00) 21.32 (0.00) 21.21 (0.00) 22.48 (-0.01)

L̂ 6.59 (-3.41) 8.78 (-11.22) 8.99 (-1.01) 17.06 (-2.94) 9.67(-0.33) 18.47(-1.53)

L̂-SC 66.80 (-0.09) 66.84 (-0.41) 20.59 (-0.15) 21.21 (-0.11) 21.21(-0.00) 22.32(-0.17)

A.4 DISCUSSION ON THE CHOICE OF INTRODUCING OBSERVATION WINDOW FOR THE
DESIGN OF EARLY-STOPPING STRATEGY

We design the stopping strategy with the introduction of window for the following two reasons.
Firstly, we break the sampling process only if all of the samples in the latest window are consistent,
thus avoiding any hyper-parameter. If sample one by one and stop based on the observation of the
sampled samples, obviously we cannot adopt such a strict truncation condition. In this case, we
need to introduce a certain statistic and its corresponding threshold (hyper-parameter), which is hard
to be determined in prior. Secondly, we have actually considered using the normalized entropy of
the sampled samples as the statistical value for cut-off. As shown in Figure 5 , we found that this
method not only has the hyper-parameter problem mentioned above, but also has no advantage over
ESC in terms of performance-cost trade-off. We believe this is because examining the cut-off point
after each single sampling is too frequent, introducing greater randomness. This makes the model
more likely to early-stop without sufficient sampling.
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Figure 5: Comparisons between SC, ESC and ENT(using entropy to determine the cut-off point) on
CSQA with different models.

A.5 THE COMPARISONS BETWEEN ESC AND OTHER STRONG REASONING BASELINES.

ESC achieves better results compared to SC with the same overhead by saving sampling costs while
almost not sacrificing performance. From the perspective of performance improvement, we are cu-
rious about the comparison results between ESC and advanced reasoning methods that focus on per-
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formance enhancement. For this purpose, we compared ESC with Progressive-Hint Prompting(PHP)
(Zheng et al., 2023) in terms of both performance and overhead. PHP improves performance by ap-
proaching answers through the stepwise generation of clues. As shown in Table 9, we found that
ESC outperformed CoT by 9.84%, higher than PHP’s 9.25%. Additionally, ESC incurs less sam-
pling overhead. PHP, due to the need for multiple inputs to the model with previously enhanced
prompts, has a larger overhead in the # prompt part. Overall, ESC achieves better performance with
lower sampling costs.

Table 9: Prompt token count (tokens/item, denoted as #prompt), completion token count (to-
kens/item, denoted as # completion), average sampling cost ($/item) and accuracy (%) comparison
between CoT, PHP (Zheng et al., 2023) and ESC on GSM8K with GPT-3.5-Turbo. Max sampling
size of ESC is 40. CoT and PHP apply greedy search as sampling strategy.

Method # prompt # completion Sampling Cost Accuracy

CoT 496.9 72.7 0.0006 75.83
PHP 6552.0 360.8 0.0072 85.08
ESC 1469.2 1220.8 0.0052 85.67

A.6 THE ORTHOGONALITY OF ESC AND OTHER STRONG REASONING BASELINE.

To assess the orthogonality of ESC with other advanced reasoning methods, we applied ESC on PHP.
As shown in Table 10, PHP w. ESC achieved similar performance with PHP w. SC while signifi-
cantly reduced sampling overhead. This indicates that existing advanced methods can significantly
reduce costs by applying ESC with almost no sacrifice in performance.

Table 10: Reasoning accuracy (%) and L̂ for GSM8K on GPT-3.5-Turbo with Progressive-Hint
Prompting(PHP) (Zheng et al., 2023). The window size is 5.

Max sampling size 10 20 30 40

PHP w. SC 86.32 86.64 86.76 87.00
PHP w. ESC 86.32 (0.00) 86.62 (-0.02) 86.77 (+0.01) 86.98 (-0.02)

L̂ 6.15 (-3.85) 7.83 (-12.17) 9.15 (-20.85) 10.26 (-29.74)

L̂-PHP w. SC 86.02 (-0.30) 86.29 (-0.35) 86.32 (-0.44) 86.35 (-0.65)

A.7 ADDITIONAL RESULTS

Figure 6 shows the robustness of ESC regarding the sampling temperature T , p in nucleus sampling,
and zero-shot demonstration on StrategyQA with GPT-3.5-Turbo. Figure 7 shows the robustness of
ESC regarding the observation window size w and max sampling size L on multiple datasets with
different models.

A.8 PROMPTING DETAILS

We list the details of the prompts used for MATH dataset. Following Wang et al. (2023), we use the
same prompts for other datasets as in Wei et al. (2022) for fair comparison.
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Figure 6: Robustness analysis of ESC regarding the sampling temperature T , p in nucleus sampling,
and zero-shot demonstration on StrategyQA with GPT-3.5-Turbo.
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Figure 7: Robustness analysis of ESC regarding the observation window size w and max sampling
size L on multiple datasets with different models.
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Table 11: Few-shot prompts for MATH dataset.
system: Think the question step by step and give the answer.
user: Problem: Find the domain of the expression

√
x−2√
5−x

.
assistant: Solution: The expressions inside each square root must be non-negative. There-
fore, x− 2 ≥ 0, so x ≥ 2, and 5− x ≥ 0, so x ≤ 5. Also, the denominator cannot be equal
to zero, so 5− x > 0, which gives x < 5. Therefore, the domain of the expression is [2, 5) .
user: Problem: Compute: 55× 1212− 15× 1212 .
assistant: Solution: We have 55 × 1212 − 15 × 1212 = 1212(55 − 15) = 1212(40) =

4848(10) = 48480 .

user: Problem: Compute
(
16

15

)
.

assistant: Solution:
(
16

15

)
=

(
16

1

)
= 16 .

user: Problem: Find x, where x is a square number which is divisible by four, and between
39 and 80.
assistant: Solution: We know that x is between 39 and 80, and since 62 = 36 < 39 and
92 = 81 > 80, this means that 62 < x < 92. This leaves us with two possibilities for x,
which are 72 = 49, and 82 = 64. We then see that only 64 is divisible by four, so x = 64 .
user: Problem: Solve the inequality

(x− 2)(x− 3)(x− 4)

(x− 1)(x− 5)(x− 6)
> 0.

assistant: Solution: We can build a sign chart, but since all of the factors are linear, we can
track what happens to the expression as x increases. At x = 0, the expression is positive. As
x increases past 1, the expression becomes negative. As x increases past 2, the expression
becomes positive, and so on. Thus, the solution is

x ∈ (−∞, 1) ∪ (2, 3) ∪ (4, 5) ∪ (6,∞) .

user: Problem: A right circular cone has a volume of 12π cubic centimeters. The height
of the cone is 4 cm. How many centimeters is the circumference of the base of the cone, in
terms of π?
assistant: Solution: The volume of a cone is 1

3πr
2h. We are given that the volume is 12π

and the height is 4. Thus, 1
3πr

2 · 4 = 12π. Solving for r, we find r = 3. Therefore, the
circumference of the base is 2πr = 6π .
user: Problem: How many perfect squares less than 1000 have a ones digit of 2, 3 or 4?
assistant: Solution: Checking the squares from 12 to 102, we see that no squares end in 2 or
3, while a square ends in 4 if its square root ends in 2 or 8. Since 312 < 1000 < 322, we see
that the squares less than 1000 ending in 4 are 2, 8, 12, 18, 22, 28. Thus the desired answer is
6 .

user: Problem: The diagonals of a rhombus are 10 inches and 24 inches. What is the perime-
ter of the rhombus, in inches?
assistant: Solution: The diagonals are perpendicular bisectors of each other, so therefore the
side length of the rhombus can be calculated as

√
52 + 122 = 13. Therefore, the perimeter

of the rhombus is 4× 13 = 52 inches.
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