
Negativa: A Practical Debloater for Shared Libraries

Abstract
Software bloat describes code, features, and functions of a
software that are not required by the application during
runtime. Bloat does not only waste resources but also in-
creases the attack surface of applications increasing their
vulnerabilities. Despite significant research in the area of
software debloating, existing debloating tools often fail to
handle complex applications and in some cases decrease
security by introducing new gadgets. In addition, many de-
bloating tools focus on debloating software binaries, but not
the shared libraries these binaries use. Shared libraries are
however a large contributor to bloat of the overall system,
and have been recently shown to be a major source of vul-
nerabilities. To fill this gap, we propose Negativa, a novel
runtime shared library debloater that does not require access
to source code or recompilation, a common weakness in the
few tools that consider shared library debloating. Negativa
utilizes a novel dynamic tracing technique to detect used
functions within shared libraries. Using a novel algorithm,
Negativa safely removes unused functions while maintain-
ing memory addresses intact. We evaluate Negativa with
20 applications from the Debloater-Eval Benchmark, a new
benchmark released for evaluating debloating tools. Com-
pared to ten debloating tools tested with the benchmark,
Negativa is the only tool able to safely debloat all applica-
tions in the benchmark with a 100% passing score. We also
test Negativa on the highly complex PyTorch framework,
comprising 91 shared libraries. Our results show that Neg-
ativa removes up to 91% of unused functions, reducing file
sizes by up to 59% and for some applications up to 20% re-
duction in memory usage, while simultaneously improving
security by removing gadgets and vulnerabilities.

1 Introduction
“It’s simple. I just remove everything that is not David."
— Michelangelo, when asked how he carved the statue of David.

Today’s software is bloated. Software bloat is a byproduct
of developers reusing code, libraries, and containerized appli-
cations while continuously adding features and modules to
support multiple functionalities. This reuse introduces code
that is not relevant to the developed application, with many
of the added features and modules only relevant to a (small)
subset of users at runtime. In addition, shared libraries, which
most applications rely on, are developed for usage across a
wide number of use-cases, resulting in much of the code of
these libraries not being used at all. Software bloat increases
resource usage and the attack surface of applications with
no or limited benefits to the users [29].

Bloat has been studied across different layers of software
with many suggested debloating tools to remove bloat from
these layers. For example, a recent study has shown that
up to 90% of popular Machine Learning (ML) container im-
ages is bloat, with this bloat contributing to up to 90% of all
the Common Vulnerabilities and Exposures (CVE) [58] in
these containers. Similarly, for operating systems, it has been
shown that strict debloating exposes 181× less kernel code
preventing up to 90% of a set of popular attacks [12]. Similar
results have been obtained for executable binaries [14, 45],
shared libraries [13, 46], web-applications [18, 19, 30], An-
droid applications [36, 37], and even firmware [26].
Bloat not only increases the memory footprint of an ap-

plication significantly, it also increases the attack surface of
software considerably [58]. The problem of bloat is exacer-
bated by the prevalent use of memory-unsafe programming
languages such as C and C++. Using memory-unsafe lan-
guages was highlighted as a major security risk in a recent
report from the US Cybersecurity and Infrastructure Secu-
rity Agency, the US Federal Bureau of Investigation, the
Australian Signals Directorate’s Cyber Security Centre, and
the Canadian Centre for Cyber Security, reporting that 52%
of 172 critical open source projects contain code written in
memory-unsafe languages [27]. In these projects, 55% of all
the code is written in a memory-unsafe language. Amongst
the 45% of projects written in a memory-safe language, a
majority depends on software packages, mostly in the form
of shared libraries, that are written in a memory-unsafe lan-
guage, resulting in almost all the studied critical open source
projects having memory safety issues.
The prevalence of memory-unsafe languages in develop-

ing shared libraries poses security risks. Many of today’s
software is packaged as shared libraries to enable developers
to share commonly used functions across multiple applica-
tions. From shared libraries in Android applications [17],
to large ML frameworks [43], shared libraries have become
ubiquitous. A large framework such as the CPU version of
PyTorch has a total of 91 shared libraries. A simpler software
such as Nginx depends on up to seven shared libraries. Many
of these libraries are bloated. For example, only 5% of libc
was reportedly used on average across the Ubuntu Desktop
environment (based on programs from 2016) [46]. Given how
bloat can contain many vulnerabilities that utilize memory
unsafety, it is of paramount importance to remove bloat in
software in general, and in shared libraries in particular as
they are shared across a large number of applications.
While there has been extensive research on debloating

shared libraries and other parts of the software [13, 20, 42, 44,
55, 57], Brown et al. [21] have recently shown that debloating

1



is far from a solved problem. We identify the following three
main shortcomings with almost all of the tools available.

• Debloating has been shown to introduce new quality
gadgets in the debloated software [23] making the soft-
ware less secure. In many other instances, debloating
fails to improve the security of software.

• Almost all available debloating tools we are aware
of were tested on simple programs. For example, the
total size of Nginx shared libraries, which are used
to evaluate many debloating tools, is around 3MB.
Many of today’s shared libraries are orders of magni-
tude larger, e.g., the total size of the CPU version of
PyTorch shared libraries is around 564 MB. Most state-
of-the-art debloating tools fail to produce a working
debloated program as has been shown by Brown et
al. [21].

• Many debloating tools suffer from usability issues, as
they either require: the program’s source code; sig-
nificant time to produce a debloated version; or have
other technical issues [21].

To solve the above shortcomings, in this paper we present
Negativa, a novel debloating tool for shared libraries. We
focus on shared library debloating as shared libraries con-
stitute a large fraction of many of today’s most popular
software. Negativa removes bloat based on the end-use with-
out requiring access to the source code. To do so, Negativa
first detects the used libraries and used functions within
software using dynamic analysis, locating the file ranges of
each function in the shared libraries. The tool then removes
unused functions, compacting the shared libraries. During
compaction, the tool needs to reconstruct the library such
that any memory offsets used in the compacted library are
correct when the operating system loads the program in
memory. To do so, Negativa utilizes a novel approach that
maintains the memory offsets intact while reducing the file
size and memory usage of shared libraries. Our contributions
can be summarised as follows:

• We propose a novel lightweight dynamic analysis
method to detect all used libraries and all used func-
tions in software.

• We develop a novel approach to compacting shared
libraries that preserves the correct memory mapping
while reducing the file size and memory usage.

• We develop a prototype of Negativa which we test on
21 popular software packages with various complex-
ities evaluating the tool comprehensively. Our eval-
uations show that Negativa successfully debloats 21
applications, removing up to 91% of the unused func-
tions, resulting in up to 59% reduction in file size, and
for some applications up to 20% reduction in memory
usage.

• We evaluate Negativa using seven different security
metrics measuring security improvements. We con-
duct a real-world case study to demonstrate how Neg-
ativa removes a critical vulnerability and improves
software security.

2 Background and Related Work
There has been a huge body of research on debloating, with
more than 70 papers published in the past 10 years, and many
companies aiming to provide debloating tools and services.
In this section, we provide an overview of this research,
discussing some limitations of the previous work.

2.1 Bloat and Debloating
There is no formal definition of what constitutes “bloat”.
Most of the debloating literature assumes that there is a
workload input set that is used with a program to find out
which parts of the software are being used, with everything
else considered bloat. This means that most debloating tools
will remove parts of the program that are not activated by
the selected input set. Software bloat can be classified into
two categories [21]. In the first category, the discovered
bloat is universally unnecessary code and can be removed
without impacting the program’s behavior for all intended
end uses (Type I bloat). The second category of bloat is end-
use dependent; code may or may not be bloat depending on
how its user(s) uses the program (Type II bloat).
Recently, there have been increased efforts to systemize

the knowledge around bloat and debloating tools. Brown et
al. [21] survey the field of program debloating, evaluating
10 debloating tools using 20 benchmark programs, across 12
performance, security, and correctness metrics. They show
that the debloating tools success rate is only 42.5% across all
tools and all benchmarks. For medium- and high-complexity
programs, the success rate is only 21%, with only 3.3% suc-
cess rate in removing Type II bloat. Furthermore, none of the
debloating tools Brown et al. evaluate debloated all 20 bench-
mark programs successfully. Their results indicate that the
available debloating tools are not mature enough to provide
sound and working debloated programs.

2.2 Static and Dynamic Analysis in Debloating
Debloating tools can be categorized by the types of bloat they
remove: Type I and Type II debloaters. Type I debloaters of-
ten do not require running target software with workloads,
relying on static or compiler-assisted analysis [13, 30, 31,
47, 48, 56] to identify and remove universally unnecessary
bloat. Some Type I debloaters may also incorporate dynamic
analysis by running the software to improve static analy-
sis results [24, 53, 59]. Type II debloaters require executing
certain workloads or specifying features of the software to

2



detect and remove unnecessary code for the specific end-
use [14, 15, 22, 28, 32, 40, 41, 45, 52]. Our work, Negativa, is
a Type II debloater.
Static Analysis. Static analysis involves analyzing the soft-
ware without executing it. This method typically constructs
a Function Call Graph (FCG), where any functions not reach-
able within the graph are considered to be bloat. FCGs can
be built by analyzing the source code directly [30, 31, 56], us-
ing compilers to create dependency graphs that show which
functions depend on each others [47], or analyzing the bi-
naries by disassembling them and leveraging symbol and
relocation information [13]. Additionally, static analysis can
also construct the Control Flow Graph (CFG). A Control
Flow Graph (CFG) provides finer granularity than an FCG,
as it tracks basic blocks (sequences of code) within functions
rather than focusing solely on function call [48]. Any code
that is unreachable in the CFG is similarly identified as bloat.
However, the generation of the ideal CFG is proven to be an
undecidable problem [34].
Dynamic Analysis. Dynamic analysis based methods re-
quire executing the application with prespecified workloads
to determine which code is used at run time. It is often used
alongside static analysis to improve its results or act as a
starting point for constructing the FCG. One type of dy-
namic analysis approach involves recompiling the target
application and inserting logs at function calls [20]. These
logs are then used to construct the FCG. However, this ap-
proach requires access to the source code, limiting its appli-
cability. Another approach to dynamic analysis uses binary
tracing, which records the binary’s execution and its inter-
actions with the operating system without needing source
code or recompilation [35, 45, 59]. Tools like DynamoRIO [6]
and PIN [39] are two popular binary tracing frameworks.
Based on these frameworks, some library function call trac-
ing tools, such as drltrace [3] (based on DynamoRIO) and
TinyTracer [10] (based on PIN), are developed to detect
used library functions. However, all tools we studied either
fail to correctly detect all used library functions or have high
overheads to the target application, as we show in § 4.2.

Relying solely on dynamic analysis can lead to wrong de-
tections of used code, which is why traditional debloating
methods often combine dynamic and static analysis. This
combination aims to cover more functions, particularly those
that dynamic analysis might overlook. However, the com-
bined approach can result in overestimation, where unused
functions are mistakenly marked as necessary. As noted
by Ali et al. [16], although static analysis debloaters pro-
duce more correct applications, dynamic analysis debloaters
achieve better bloat reduction. We argue that dynamic analy-
sis, if done correctly, is sufficient to accurately and efficiently
detect all used functions in a shared library, achieving both
better correctness and bloat reduction.

ELF
header

Program
header
table

.symtab .text.dynsym
Section
header
table

...

Figure 1. ELF format.

2.3 Shared Library Debloating
Many debloating tools have been proposed in the literature,
mostly focusing on debloating executable binaries [14, 22,
32, 40, 41, 45, 52]. Binary debloaters have a straightforward
scope since each application typically involves a single bi-
nary. These tools however ignore the shared libraries used
by these binaries. From our evaluation of several popular
software packages, we found that shared libraries are much
larger than the binaries that use them. For example, the
shared libraries used by the Nginx binary are 3× larger than
the binary itself. Most of the tools that support shared library
debloating require access to the source code to recompile
the library [20, 47], or cannot remove Type II bloat [13, 44].
In addition, tools that support the debloating of type II bloat
run target applications with prep-selected workloads offline,
using, e.g., test cases, and then remove any parts of the pro-
gram not activated by the pre-selected workloads. However,
this offline approach has an intrinsic limitation: the work-
loads may not represent the actual end-use of the application.
When deployed in a production environment, the actual us-
age of the application may differ from the workloads, leading
to crashes or other undesired behavior.

2.4 Shared Library structure: The ELF format
To build practical shared library debloating tools, we re-
alised that the previously described shortcomings can only
be solved by rethinking how shared libraries are built, loaded,
and run in memory during runtime. To understand how
shared libraries are loaded in memory, we study the Exe-
cutable and Linkable Format (ELF) file structure, the standard
file format for shared libraries in Linux [2].
Figure 1 shows the structure of an ELF file. ELF headers

contain metadata about the ELF file, such as the ELF file type
and the architecture. The ELF file consists of multiple sec-
tions. Each section is well-defined, for instance, the .dynsym
section holds symbol information, while the .text section
holds the program code.
The section header table and the program header table

provide two different views of the file by organizing the
sections in different ways. The section header table speci-
fies each entry for each section, including the metadata of
that section, such as the section name, size, and memory
address. Hence, the section header table provides a view of
the file’s structure. The program table header defines how

3



Library Detector

Run workloads, e.g.: /bin/date -u 

...

Function Detector

used used
...

used

1 2 3

Function Pruner

used
... usedused

libacl.so libpcre.so libacl.so libpcre.so libacl.so libpcre.so

Figure 2. Negativa overview.

the ELF file is loaded into memory. One entry in the pro-
gram header table may point to multiple sections, specifying
which sections to load and which memory addresses to load
them at. This section hence provides a view of the memory
layout when the ELF file is loaded into memory. Before a
shared library is loaded, the system loader decides where
and how to load the shared library into memory based on
the program header table. Another table utilized by Negativa
(the .dynsym and .symtab section) is the symbol table. The
symbol table includes information about functions in the
library, e.g., their names, addresses, and sizes. The symbol
table helps the dynamic linker identify and resolve symbol
addresses, ensuring that the correct functions are accessed
when shared libraries are loaded.

3 Negativa Design
Figure 2 shows an overview of Negativa with its three main
components: Library Detector, Function Detector, and Func-
tion Pruner. When a program is debloated with Negativa,
Negativa calls Library Detector to detect all libraries used
by the workload. Then Function Detector detects used func-
tions in each shared library, marking it as “used” as shown
in the figure. Finally, Function Pruner removes all unused
functions and compacts the shared library, resulting in a de-
bloated shared library with a reduced size. We next describe
the details of each of the three components.

3.1 Library Detector
Library Detector detects all the shared libraries used by a
program’s workload at runtime. To better understand our
design, we first describe how existing approaches detect
shared libraries in programs. Existing debloaters rely on
static analysis to detect used libraries [13, 59]. They analyze
the executable binaries and read the ELF Dynamic section
to find the shared libraries that the executable binaries de-
pend on. However, executable binaries can also load shared
libraries dynamically at runtime (loaded by dlopen). Exist-
ing debloaters do not debloat such shared libraries due to
their inability to detect them [13].

To address this issue, Library Detector detects used shared
libraries at runtime, utilizing a hook function provided by
system loaders, _dl_debug_state. The function is called
by the system loader when a new shared library is loaded
into memory. Before running the workload, we insert a trap

instruction at the beginning of the hook function. Each time
a new shared library is loaded, the workload process will
be paused, and the process memory map, which contains
the shared libraries used, will be read by Library Detector
to identify all used shared libraries, including dynamically
loaded ones.

After detecting all shared libraries used by the workload,
we need to extract the file ranges (the start and end file off-
sets) of each function in each shared library. The file ranges
are used by Function Detector and Function Pruner. We uti-
lize the symbol table of each shared library to get the file
ranges of each function. The symbol table includes the name,
file offset1, and the size of each function. Theoretically, given
a function name, we can get the file range of that function by
checking its file offset and size in the symbol table. However,
we observed that the size of a function in the symbol table is
not always set. This is because the symbol size is an optional
field in the ELF format, i.e., the compiler may not always fill
it. Relying on the file offset and size in the symbol table can
cause the removal of used code, resulting in a broken shared
library.
To address this issue, we first sort the functions by their

offsets in ascending order. Then the file range of a function
starts from the offset of the function and ends at the offset
of the next function. Formally, for each function 𝑓 , there
is a start offset 𝑓 .𝑠 . Given a list of all functions in a shared
library, {𝑓1, 𝑓2, . . . , 𝑓𝑛−1, 𝑓𝑛}, sorted by their offsets in ascend-
ing order, the corresponding file ranges of all functions are
{[𝑓1 .𝑠, 𝑓2.𝑠), [𝑓2 .𝑠, 𝑓3.𝑠), . . . , [𝑓𝑛 .𝑠, 𝑒)}, where 𝑒 is the end offset
of the program code section. The approach may overestimate
function sizes, but it avoids the risk of removing used code
due to the incorrect function size in the symbol table.

3.2 Function Detector
The most critical part for debloaters is the correct identifi-
cation of all functions (or code) in a shared library. Existing
approaches to detect used functions are usually based on
static analysis, dynamic analysis or a combination of both.
However, these approaches face some limitations. First, they
cause significant performance overhead. Second, they either
miss some used functions (false negative) or report unused
functions as used (false positive). To address these limita-
tions, Negativa uses the Function Detector component, a
novel approach to detect used functions in shared libraries,
with negligible performance overheads and better accuracy.
Additionally, it supports multi-processes applications and
the detection of indirect function calls.
Based on the function file ranges obtained from Library

Detector, Function Detector disassembles the shared library
to get all instructions for each function. Then for each func-
tion, Function Detector finds the branch-related instructions,

1Symbol tables include the virtual address of a function, which can be easily
converted to a file offset.

4



such as CALL, RET, JMP and JE. A mapping𝑀 is created from
the memory address of the branch-related instructions to
the first byte of the instructions and the function name, i.e.,

𝑀 = {𝑎𝑑𝑑𝑟𝑒𝑠𝑠 : (𝑓 𝑖𝑟𝑠𝑡_𝑏𝑦𝑡𝑒, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒)}

We then run two processes in parallel, a tracer process, and
a tracee process. The tracer process forks and attaches to
the tracee process using Linux PTRACE. The tracee is the
process that uses the shared libraries and runs the target
application. Once the tracee is forked, and before it runs any
instructions the tracer iterates over all memory addresses in
𝑀 and modifies the first byte of the address to 0xCC, which
is a trap instruction (INT3). When the tracee hits the trap
instruction, it notifies the tracer of the current instruction
memory address of the tracee. The tracer then looks up
the memory address in 𝑀 and gets the function name and
reports the function as used. The tracer then recovers all the
modified bytes of that function.

The main difference between Function Detector and tradi-
tional binary tracing approaches is that it traps all branch-
related instructions in a function, which is also the reason
why Function Detector can detect more used functions. To
detect used functions, traditional binary tracing approaches
utilize the rules of Call Convention [5]. One approach is to
trace the CALL instruction and analyze the operand of the
CALL instruction to get which function is called. Another
approach inserts trap instructions at the beginning of a func-
tion and the RET instruction, assuming that the execution
starts from the first instruction of a function and ends at
the RET instruction [3]. However, from our observation of
many real-world shared libraries, we found that Call Con-
vention is not always followed. Some functions are not called
by the CALL instruction, instead, they are called by the JMP
instruction directly, which nullifies the first approach. On
the other hand, the entrance and exit of a function are not
always at the beginning and the RET instruction, which in-
validates the other approach. Based on this observation, we
assume that if a function is executed, then the function must
exit at branch-related instructions, such as RET, JMP and
CALL. Therefore, we trap all the branch-related instructions
to detect the function usage. In doing so, the effectiveness
of detecting used functions is improved. As for efficiency,
a used function will only be trapped once and the function
will be executed as normal after the trap instruction is hit.
Thus, the performance overhead is also reduced.

To support multi-processes applications, we need to han-
dle the fork and exec system calls. If a tracee process forks
a child process, the child process inherits the memory map
of the tracee process. A new tracer process is created for the
child process. The mapping𝑀 is reused for the new tracer
process. If a tracee process execs a new binary, the memory
map is changed. Therefore, a new mapping𝑀 will be created
for the new memory map.

Another observation we made is that existing binary trac-
ing tools fail to detect indirect functions in shared libraries [3,
8, 10]. The GNU indirect function support (IFUNC) is a fea-
ture allowing developers to create multiple implementations
of a given function and select amongst them at runtime us-
ing a resolver function [4]. The resolver function and all
the functions called by it are executed by the system loader
during shared library loading into memory. Existing tracing
tools start tracing after the shared library has been loaded,
which is too late to detect these functions. To address this
issue, Function Detector uses dlopen to load the shared li-
brary and uses dlsym to trigger the resolver function after
the shared library has been loaded. In this way, Function
Detector postpones the execution of the resolver function
to the time after the shared library has been loaded. There-
fore, these indirect functions can be detected by Function
Detector just as normal functions.
The output of Function Detector is a mapping of used

shared libraries to file ranges of their used functions. Listing
1 shows an example output of Function Detector.

Listing 1. Example output of Function Detector. One file
range of libacl.so is used; Two file ranges of libpcre.so
is used. Step 2 in Figure 2 also illustrates these ranges, which
are marked as “used”.
libacl.so: {[0x400 , 0x461)}
libpcre.so: {[0x70 , 0xBA), [0x1920 , 0x1930)}

3.3 Function Pruner
Function Pruner removes unused code and compacts the
shared library to reduce the size while maintaining the cor-
rect memory mapping. After obtaining the file ranges from
Function Detector, Function Pruner first zeros out the rest
code that is not in the file ranges which is considered bloat.
This results in gaps between remained file ranges. To reduce
the size of the shared library, we need to move the remained
file ranges closer to each other. However, this is a non-trivial
task. First, moving a file range to a new location will in-
validate the offsets in the code. For example, if a function
is moved to a new location, the offsets of the function in
the code should be updated to the new location. Otherwise,
errors will be incurred when executing the code. Updating
all related offsets in the code is not possible because some
offsets are calculated dynamically at runtime. Second, for an
ELF format file, the file offset and memory address where the
file offset is loaded should meet the congruence constraint:

file_offset ≡ memory_address (mod 𝑃) (1)

In other words, the file offset and the memory address should
have the same modulo of the page size 𝑃 . The page size is
configurable and usually set to 0x1000 bytes.
Our solution to the first challenge is as follows: we map

the file offsets to their original memory addresses where the
original shared library is loaded into memory. In doing so,

5



the memory addresses of the file offsets are still valid even if
the file offsets are moved, and it will not cause errors when
executing the code. This mapping can be done by creating
new program headers into the program header table [59].
The second challenge on the other hand, based on the

solution we address the first challenge, can be formally de-
scribed as an optimization problem as follows: Given a list of
file ranges {[𝑠1, 𝑒1), [𝑠2, 𝑒2), . . . , [𝑠𝑛, 𝑒𝑛)} output by Function
Detector and their original memory addresses {[𝑚1,𝑚1+𝑠1−
𝑒1), [𝑚2,𝑚2 + 𝑠2 − 𝑒2), . . . , [𝑚𝑛,𝑚𝑛 + 𝑠𝑛 − 𝑒𝑛)}, the file ranges
are sorted by 𝑠𝑖 in ascending order and there is no overlap
between two file ranges. Our goal is to move the file ranges
to new locations, denoted as {[𝑠′1, 𝑒′1), [𝑠′2, 𝑒′2), . . . , [𝑠′𝑛, 𝑒′𝑛)},
such that the span of the file ranges is minimized under the
congruence constraint, i.e., for any 𝑖 , 𝑠′𝑖 ≡𝑚𝑖 (mod 𝑃).

This constraint can be further simplified: since the original
shared library already meets the congruence constraint, we
have 𝑠𝑖 ≡ 𝑚𝑖 (mod 𝑃). So the congruence for the problem
can be simplified to for any 𝑖 , 𝑠′𝑖 ≡ 𝑠𝑖 (mod 𝑃). In other
words, the new file offset 𝑠′𝑖 should have the same modulo
of the page size 𝑃 as the original file offset 𝑠𝑖 . Based on this
analysis, we propose an 𝑂 (𝑛) algorithm to approximately
solve the problem.

Algorithm 1: Function Pruner Algorithm
/* 𝑅 is sorted by 𝑠𝑖 in ascending order */
Data: 𝑅 = {[𝑠1, 𝑒1), [𝑠2, 𝑒2), . . . , [𝑠𝑛, 𝑒𝑛)}
Result: 𝑅′ = {[𝑠′1, 𝑒′1), [𝑠′2, 𝑒′2), . . . , [𝑠′𝑛, 𝑒′𝑛)}

1 𝑠′1 = 𝑠1;
2 𝑒′1 = 𝑒1;
3 𝑅′ = {[𝑠′1, 𝑒′1)};
4 for 𝑖 from 2 to 𝑛 do
5 𝑠′𝑖 = 𝑠𝑖 − ⌊ 𝑠𝑖−𝑒𝑖−1

𝑃
⌋ × 𝑃 ;

6 𝑒′𝑖 = 𝑠′𝑖 + 𝑒𝑖 − 𝑠𝑖 ;
7 𝑅′ = 𝑅′ ∪ {[𝑠′𝑖 , 𝑒′𝑖 )};
8 𝑠𝑖 = 𝑠′𝑖 ;
9 𝑒𝑖 = 𝑒′𝑖 ;

10 end

As shown in Algorithm 1, Function Pruner iterates over
all original file ranges. A file range [𝑠𝑖 , 𝑒𝑖 ) will be moved
forward by ⌊ 𝑠𝑖−𝑒𝑖−1

𝑃
⌋×𝑃 bytes. The reason is that since 𝑠′𝑖 ≡ 𝑠𝑖

(mod 𝑃), we have 𝑠′𝑖 = 𝑠𝑖 − 𝑘 ∗ 𝑃 , where 𝑘 is a non-negative
integer. In other words, a file range will not be moved if the
gap between two adjacent file ranges is smaller than the
page size (𝑘 = 0). A file range will be moved forward by an
integer multiple of the page size, if the gap is larger than
the page size 𝑘 > 0; By moving the file range forward, it
is closer to the previous file range and the total size of the
shared library is reduced. Also note that after the file range is
moved forward, the space that the file range occupied before
will also be zeroed out and treated as a new gap (lines 8-9).

0x2000
0x2800
0x3000
0x3800
0x4000
0x4800
0x5000
0x5800
0x6000
0x6800
0x7000
0x7800
0x8000
0x8800

0x2000
0x2800
0x3000
0x3800
0x4000
0x4800
0x5000

0x...2000
0x...2800
0x...3000
0x...3800

0x...5000
0x...5800

0x...8000
0x...8800

Compact Map

File Offsets Memory Address

File Offsets

File Ranges output by Function Detector

0x5800

Figure 3. An example of function removal.
In doing so, the congruence constraint is met, and the shared
library is compacted.
Figure 3 shows an example of Algorithm 1. 𝑃 is set to

0x1000 bytes. Initially, there are 4 file ranges of the shared
library, (𝑟1 to 𝑟4), which are obtained from Function Detector.
These file ranges need to be kept in the shared library. The
rest code is zeroed out, as illustrated by the grey areas. The
shared library is compacted by moving the file ranges closer
to each other using Algorithm 1. The gap between 𝑟1 and 𝑟2
is smaller than 𝑃 . So 𝑟2 is not moved. The gap between 𝑟2
and 𝑟3 is 0x1800 bytes, so 𝑟3 is moved forward by 0x1000
(1×𝑃 ) bytes. Since 𝑟3 is moved forward, the space it occupied
originally is zeroed out too. Therefore, the gap between new
𝑟3 and 𝑟4 is 0x3800 bytes, so 𝑟4 is moved forward by 0x3000
(3 × 𝑃 ) bytes. After the compaction, the size of the shared
library is reduced by 0x3000 bytes. When the compacted
shared library is loaded into memory, the file offsets are
mapped to their original memory addresses as shown on
the right side of the figure. The congruence constraint is
met and the size of the shared library is reduced. We note
that there are four discontinuous memory segments. The
memory gap between any two segments is not occupied and
can be re-used by the operating system. In theory, the used
memory is reduced from 0x6800 to 0x2000 bytes. However,
in practice, the memory reduction may be less than that due
to memory fragmentation. We leave addressing the memory
fragmentation problem for future work.

3.4 LibGuard
Although Function Tracer is designed to detect all used func-
tions, some used functions still may be missed due to the
complexity of shared libraries. This issue is also faced by
other Type II debloaters [13, 45, 59]. To mitigate this issue,
we propose a post-debloating verification tool called Lib-
Guard to ensure no used functions are removed. LibGuard
is considered as an experimental feature and is mostly not
used in our evaluation, so it is not shown in Figure 2. Lib-
Guard works as follows: LibGuard runs the application with
the debloated library produced by Function Pruner. If any
necessary functions are mistakenly removed, the workload
crashes, generating a core dump file. LibGuard analyzes the

6



core dump to get the address causing the crash, maps this
address to the file offset within the shared library, and de-
termines the corresponding function name. The identified
function is deemed used and kept in the shared library. This
process iterates until the workload runs normally, indicating
no missing functions.
In §4, we evaluate 21 applications involving hundreds of

shared libraries. Negativa effectively debloats all libraries
without requiring LibGuard, with one exception: a shared
library injected with malicious code, which will be discussed
in §4.4.

3.5 Implementation
We develop a prototype of Negativa with over 9,000 lines of
Rust code. Negativa has two primary components: Function
Tracer and Function Pruner. The Function Tracer integrates
the capabilities of both Library Detector(§3.1) and Function
Detector(§3.2). It identifies used libraries and the functions
within shared libraries. The Function Pruner, as the name
implies, removes unused functions and compacts the shared
libraries as described in §3.3. This implementation allows
Negativa to be used solely as a dynamic analysis tracing tool
without Function Pruner feature, which can be integrated
with existing debloating tools. Additionally, it can be used
for tasks like debugging or security analysis.

4 Experiments
We evaluate Negativa’s performance using a wide set of
applications and use cases. We focus on evaluations of the
performance w.r.t. the overheads, bloat reductions, robust-
ness, and security. All experiments were conducted on an
AWS instance with 8×3.1GHz CPUs and 32 GB of memory.

4.1 Evaluation on Debloater-Eval Benchmark
We first evaluate Negativa’s performance using Debloater-
Eval Benchmark [21], a recently released debloating bench-
mark containing 20 applications. The applications are catego-
rized according to their complexity levels: low (10), medium
(6), and high (4). Each of the applications has a set of pre-
selected workloads to be executed for debloating. Addition-
ally, the benchmark includes the debloating results of nine
state-of-the-art debloaters2. We compare the debloating re-
sults of Negativa with those of other debloaters reported
using the benchmark. In line with the metrics used by the
benchmark, we assessed the following three aspects; eval-
uating the performance of the debloaters; measuring the
performance of the debloated applications; and the correct-
ness of the debloated applications.
Tool Performance. Table 1 presents the performance

metrics of the debloaters. Each debloater was executed 10

2Debloater-Eval Benchmark evaluated 10 debloaters. One of them failed to
generate any functional applications. Therefore, the results of that debloater
is not included in this paper

times on each application. The #Benchmark column shows
the number of applications successfully debloated by each de-
bloater. An application is considered successfully debloated
if the retained features can be executed correctly. Negativa
is the only debloater that successfully debloated all low-,
medium- and high-complexity applications. The Run Time
and Peak Memory columns report the average run time and
average peak memory usage of a debloater to debloat an
application without encountering errors. If a debloater fails
to successfully debloat all applications of a particular com-
plexity level, its runtime and memory usage for that level
are marked as "-". To produce the debloated applications,
Negativa uses the least time across all complexity levels and
uses a maximum of 37 MB of memory for all applications.
For high-complexity applications, Negativa uses the least
peak memory among all debloaters. For other applications,
Negativa is comparable to RAZOR which uses slightly lower
memory. However, RAZOR fails to debloat half the medium-
complexity applications. We note that for each application,
RAZOR only debloats a single executable binary while Neg-
ativa debloats all used shared libraries. Negativa uses much
less memory and time if it only debloats a single library for
each application.

ProgramPerformance. Table 2 displays the performance
results of the debloated applications compared to their origi-
nal versions. As Negativa is a shared library debloater, the
static binary size for Negativa is computed by comparing
the aggregate file sizes of the debloated shared libraries with
their original versions. Negativa demonstrates notable static
binary size reductions, with the size after debloating being
63.6% (2nd best), 74.3% (2nd best) and 67.6% (the best) of the
original size across the three complexity levels, respectively.
However, the actual average program run time increases
slightly when using Negativa due to the increased number of
program headers in the debloated shared libraries. We note
that all debloating tools have produced debloated binaries
with increases in run time. In terms of peak memory usage,
Negativa achieves slight reductions for the low- andmedium-
complexity applications. For the high-complexity applica-
tions, Negativa performs the best, with the debloated applica-
tions using only 88.3% of the peak memory of their original
versions.We further investigated the change in peakmemory
for each of the four high-complexity applications included
in the benchmark: Although nginx has no meaningful re-
duction in the peak memory usage, poppler, imagemagick,
and nmap use only 81.2%, 80.4%, and 91.4% of the original
peak memory, respectively. This may suggest that debloating
tends to yield more benefits for high-complexity applica-
tions.

Correctness. It is important to note that Negativa aims to
retain user-needed features and remove unnecessary func-
tions for those features. Therefore, we evaluate the correct-
ness of a debloated application by assessing the retained fea-
tures: A debloated application must successfully execute the

7



Table 1. Number of successfully debloated applications, average Run Time (CPU minutes) and average Peak Memory per
debloater. The best results are marked in bold.

#Benchmarks Run Time(Min) Peak Memory(MB)
Debloater Low Medium High Low Medium High Low Medium High

CHISEL [28] 7 2 0 282 224 - 306 91 -
CHISEL-GT [28] 7 2 1 4078 4058 13350 2145 1675 3011
RAZOR [45] 10 3 2 <1 <1 10 32 31 71
Binary Reduce (Dyn.) [1] 0 0 1 - - 3 - - 1085
Trimmer (v2) [Agg.] [14, 52] 6 1 2 2 90 18 3442 6518 5270
OCCAM (v2) [Agg.] [41] 10 1 0 <1 150 - 73 5565 -
LMCAS-SIFT [Agg.] [15] 7 0 0 <1 - - 458 - -
Binary Reduce (Static) [1] 9 4 0 1 7 - 415 1577 -
Libfilter [13] 8 2 0 <1 <1 - 304 503 -
Negativa 10 6 4 <1 <1 2 37 37 37

Table 2. Average Change in Static Binary Size, application Run Time and Peak Memory. The best results are marked in bold.
Only the results of debloaters that successfully debloated 50% or more of the applications are listed.

Static Binary Size Run Time Peak Memory
Debloater Low Medium High Low Medium High Low Medium High

CHISEL-GT 80.9% 79.7% 96.6% 97.6% 100.7% 101.8% 99.6% 99.7% 100.4%
RAZOR 117.2% 101.5% 107.3% 95.8% 106.3% 100.9% 99.8% 99.4% 100.6%
OCCAM (v2) [Agg.] 80.5% 74.7% - 128.2% 175.7% - 110.3% 101.4% -
Binary Reduce (Static) 22.2% 46.5% - 95.2% 101.0% - 97.2% 98.2% -
Libfilter 101.3% 101.1% - 102.4% 100.4% - 100.3% 100% -
Negativa 63.6% 74.3% 67.6% 108.8% 101.2% 106.3% 99.5% 97.9% 88.3%

retained features. To do that, we use Differ [21] to fuzz test
the retained features for a debloated application. As reported
by Brown et al. [21], none of the existing debloaters pass
the fuzz tests for all applications in Debloater-Eval Bench-
mark, which pose a significant concern for the correctness of
these debloaters. In our testing, all debloated applications pro-
duced by Negativa successfully pass the fuzz test for retained
features. Moreover, we also observed that removing unnec-
essary functions for user-needed features also disabled the
features not needed by users. For example, for the debloated
objdump application, the user-needed features involve us-
ing the application with the -x option only. The debloated
objdump passes all fuzz tests related to this feature. Addi-
tionally, it fails to execute the -D and –info options, which
is the desired behavior as these options are not user-needed.

4.2 Tracer Evaluation
Function Tracer is a critical component of Negativa. Since
it can be used as a standalone component, in this section
we evaluate the effectiveness and efficiency of Function
Tracer by comparing it with three other function tracers:
ltrace [8], drltrace [3] and TinyTracer [10]. drltrace
and TinyTrace utilizes the same tracing frameworks used
by RAZOR [45]. We evaluate the effectiveness of a tracer
based on two keymetrics, namely, the number of used shared

libraries and the number of used functions detected by each
tracer. An effective tracer should be able to detect all the
shared libraries used by an application, as well as all the
functions used within those libraries.
We use an Nginx server to perform our evaluation. We

start the server while tracing it with each tracer. We send
a request to the server, wait for a response, and then stop
the server. This represents a minimal sample workload for
Nginx. This minimal workload is sufficient for comparison
because our goal here is to compare the effectiveness of the
tracers rather than the debloating of the shared libraries.
The results from our experiments are shown in Table 3.

Negativa’s Function Tracer detects six shared libraries, while
the other tracers only detect four; libdl.so and libz.so
are not detected by any of the other three tracers, yet these
libraries are essential for Nginx, as their removal causes
startup failures. For the detected shared libraries, we use the
tracers to detect the used functions in these libraries. Nega-
tiva detects more functions than the other tracers for all the
detected libraries. If we remove the functions detected by
Negativa but missed by the other tracers, the sample work-
load fails. For example, in the libssl library, Negativa de-
tects three additional functions compared to the other tracers:
SSL_rstate_string, SSL_add_dir_cert_subjects_to_

8



Table 3.Number of detected functions of each shared library
by each tracer. A dash indicates the shared library is not
detected by the tracer.

Library ltrace TinyTracer dltrace Function Tracer

libpthread.so 28 9 25 47
libc.so 105 52 126 224
libcrypto.so 309 2 309 330
libdl.so - - - 1
libssl.so 2 1 2 5
libz.so - - - 1

stack, and ERR_load_SSL_strings. Removing these func-
tions causes the Nginx server to fail to handle the request.
These results demonstrate that Negativa is more effective
than the other tracers, which is crucial for correct debloating.

We also utilize the Nginx server to evaluate efficiency, i.e.,
the performance overhead introduced by each tracer. Similar
to the previous experiment, we start the server with the
tracers and perform load tests using Locust [7] tomeasure the
maximum requests per second (RPS) the server can handle.
We also run the same workload on an untraced Nginx server
to obtain a baseline. We repeat the experiment ten times.
Figure 4a presents a comparison of the startup times be-

tween the traced and original servers. All tracers introduce
noticeable overhead to the startup process of Nginx. How-
ever, Negativa and drltrace show significantly less over-
head compared to the other two tracers. For the throughput
(RPS), Figure 4b shows that Negativa has comparable per-
formance to the original server, whereas the other three
tracers exhibit noticeable performance degradation. Note
that Negativa only traces a function once when it is called
the first time. Hence, for the first few requests of a workload,
Negativa will introduce some overheads. After that, only
negligible overheads occur. This is why Negativa shows a
noticeable overhead at the server startup process, but the
RPS is comparable to the original server. These results indi-
cate that Negativa is both efficient and effective at tracing
used functions within shared libraries, introducing minimal
performance overhead while maintaining accurate tracing
capabilities.

An effective and efficient tracer has important implications
for software debloating. The intrinsic limitation of offline-
debloating is that offline running workloads for debloating
may not reflect the actual usage of the application, leading
to a broken application when the debloated application is
deployed in a production environment. In contrast, Function
Tracer, due to its low overhead, offers the potential for online
debloating. Online debloating involves deploying the applica-
tion in a production environment and using Function Tracer
to trace it. Negativa debloats the shared libraries based on
the actual usage in the production environment. This will
result in more reliable debloating, as it is based on the actual
usage of the application. For example, consider a developer
who wants to debloat an Nginx server. Instead of running

Baseline Negativa ltrace drltraceTinyTracer
0.0

0.2

0.4

0.6

0.8

1.0

S
ta

rt
u

p
T

im
e

(m
s)

×104

7

1150

8723

1179

5999

(a) Startup Time

0 20 40 60 80

0

50

100

150

200

250

300

R
eq

u
es

ts
P

er
S

ec
on

d Baseline

Negativa

ltrace

drltrace

TinyTracer

(b) RPS

Figure 4. Server startup time and RPS comparison.
the server with pre-selected workloads, the developer can
deploy it in a production environment and trace it using
Function Tracer. After running for a period of time, Negativa
debloats the shared libraries based on the actual usage of the
server. Thus, in addition to the traditional offline debloating
approach, we anticipate that Negativa can also be effectively
utilized for online debloating.

4.3 Debloating an ML Framework: PyTorch
Machine learning frameworks are significantly more com-
plex than traditional applications[50, 58]. A typical ML train-
ing task may rely on hundreds of shared libraries, with a
combined size of several gigabytes [58]. To date, no exist-
ing debloaters have been evaluated on applications of such
complexity. In this section, we demonstrate Negativa’s ca-
pability to debloat such complex applications. We debloat
the CPU version of the popular PyTorch framework [43] by
running two typical ML workloads: training and inference,
respectively. Specifically, the training workload involves us-
ing PyTorch to train MobileNetV2 [49] on the CIFAR-10
dataset [33] for two epochs. MobileNetV2 is a lightweight
deep learning model that is widely used in mobile and edge
devices [25, 38, 54]. The inference workload involves using
the trained model to classify the test set of the CIFAR-10
dataset.
The debloating results for the two workloads are shown

in Table 4. Both the training and inference workloads use 91
shared libraries. The original total file size of the 91 shared
libraries is 564 MB, which is much larger than that of the
applications evaluated in Debloater-Eval Benchmark which
have a maximum size of only 9 MB. Negativa reduced the file
size by 58.2% and 58.9% for both training and inference work-
loads, respectively. The original number of functions in the
shared libraries is 451,376. Negativa removes 91.3% and 91.7%
of the functions for the training and inference workloads,
respectively. The inference workload has a slightly higher
reduction in file size and function number than the training
workload. This is because training a model involves both the
forward and backward pass, requiring more functions than
the inference workload, which only includes the forward
pass.

We ran the same workloads 10 times using the debloated
shared libraries and compared the runtime performance with

9



Table 4. Static Binary Size, function count, Peak Memory, Run Time (and reductions in percentage) of the debloated PyTorch .

Workload #Libs Static Binary Size (MB) #Functions Peak Memory (MB) Run Time (s)

Training 91 564 (58.2%) 451,376 (91.3%) 610 (6.7%) 1533(-0.9%)
Inference 91 564 (58.9%) 451,376 (91.7%) 330 (11.8%) 106 (-3.6%)

the original libraries. As shown in Table 4, the peak memory
usage of the debloated libraries is reduced by 6.7% for train-
ing workloads and 11.8% for inference workloads. Inference
time experienced a slight increase, averaging 3.6% slower
than with the original libraries, while training time saw a
smaller increase of just 0.9%. The overhead from multiple
program headers in the debloated libraries occurs only dur-
ing the loading phase and happens only once. The longer
the workload runs, the less significant the relative overhead
becomes. We expect debloating to result in even lower per-
formance overheads for long-running workloads, such as
ML model training or web server operations.

4.4 Security Impacts
In this section, we study how Negativa improves the security
of debloated applications.
We first evaluate the gadget count reduction in the de-

bloated applications for the four high-complexity applica-
tions. Gadgets are short instruction sequences present in
the program that end in a return, indirect jump, or indirect
call instruction. Gadgets can be chained together to per-
form code-reuse attacks. Based on the way to use gadgets,
gadgets are categorized into four types: Return-Oriented Pro-
gramming (ROP), Jump-Oriented Programming (JOP), Call-
Oriented Programming (COP), and Special Purpose (S.P.)
gadgets [23, 51]. As Table 5 shows, in all applications and
for all gadget types, Negativa achieves a significant reduc-
tion in the gadget count, with the total reduction ranging
from 50.2% to 78.0%. Although previous work shows that
debloating introduces new gadgets from 30% to 70% [23],
Negativa introduces less than 1% for all gadget types in all
applications.

We also use three metrics suggested in the literature [21]
to evaluate the security impacts of debloating: Gadget Set
Expressivity, Gadget Set Quality, and S.P. Gadget Availability.
Gadget Set Expressivity measures the collective expressive
power of functional gadgets in a binary (or library) to de-
termine if they are sufficient to launch practical exploits. A
positive value is desired, indicating that the gadget set in the
debloated application has lower expressivity compared to its
original version, thereby reducing the potential for exploits.
A change of 2 or more is considered significant [21]. Gadget
Set Quality assesses the side constraints imposed on gadgets,
which affect their usability for launching practical exploits.
A negative value is desirable for this metric, signifying that
the number of side constraints per gadget has increased after
debloating. A change of 0.5 or more in either direction is

considered significant. S.P. gadget availability measures the
availability of special purpose code reuse gadgets. A positive
value is desired for this metric, indicating that the availabil-
ity of special purpose gadgets in the debloated application
is lower than its original version. We refer the reader to
the details of the definitions in the original work [23]. Ta-
ble 6 presents the average changes for the above security
metrics for Negativa in comparison to the other debloaters
considered in the debloating benchmark. Negativa is the
only debloater that shows significant improvements for both
expressivity and S.P. gadget availability, while not degrading
the gadget set quality.

4.5 A Case Study on XZ Backdoor
In our final experiment, we present a case study showing
how Negativa handles the XZ backdoor vulnerability, i.e.,
CVE-2024-3094 [9]. XZ is a set of open-source command-line
tools and libraries for data compression, which is installed by
default on most Linux distributions. Recently, it was discov-
ered that an attacker injected malicious code into a shared
library of XZ, liblzma.so [11]. The malicious code is loaded
into memory when an SSH server is started, allowing the at-
tacker to connect to the SSH server with his own private key
and execute arbitrary code. This vulnerability has a CVSS
score of 10 out of 10, indicating the most critical security risk.
Assuming users have installed the compromised liblzma.so
library on their systems, we investigate whether Negativa
can remove the malicious code from the shared library.
To do this, we first reproduce the backdoor. We started

an SSH server with the compromised liblzma.so library
so that the server can be connected in two ways: (1) us-
ing a normal SSH connection, and (2) using the backdoor
connection. To debloat the shared library, we connect to it
using a normal SSH connection, which acts as the normal de-
bloating workload. Then we use Negativa with the LibGuard
feature to debloat the shared library. Subsequently, we start
the SSH server with the debloated library. We successfully
connected to the SSH server using a normal SSH connection,
but failed to connect using the backdoor connection. This
indicates that Negativa successfully removed the malicious
code from the shared library, preventing the backdoor from
being exploited.
Moreover, we compare the functions used by a normal

connection and the backdoor connection. Traced by Func-
tion Tracer, we start the SSH server with the compromised
library. Then we connect the server using a normal SSH
connection. Function Tracer detected 26 functions in the

10



Table 5. Gadget count (and reduction in percentage) after debloating, categorized by gadget types for the four high-complexity
applications.

Application ROP Gadgets JOP Gadgets COP Gadgets S.P. Gadgets Total

nginx 2,370 (75.4%) 333 (72.7%) 637 (91.1%) 713 (77.7%) 4,053 (78.0%)
poppler 19,690 (70.8%) 4,730 (77.8%) 14,834 (67.9%) 1,318 (81.0%) 40,572 (70.9%)
imagemagick 14,520 (52.6%) 4,628 (54.5%) 5,177 (38.1%) 1,405 (56.2%) 25,730 (50.2%)
nmap 19,754 (74.7%) 3,330 (85.1%) 7,271 (78.7%) 1,475 (81.3%) 31,830 (77.0%)

Table 6. Average changes in Gadget Set Expressivity, Quality and S.P. Gadget Availability. Only the results of debloaters that
successfully debloated 50% or more of the applications are listed.

Gadget Set Expressivity Gadget Set Quality S.P. Gadget Types Available
Debloater Low Medium High Low Medium High Low Medium High

CHISEL-GT 0.3 0.7 0.5 0.1 0.2 0.1 -0.6 -2.3 -1.5
RAZOR -0.3 -0.3 -0.5 0.2 0 0.1 -0.9 0 0.5
OCCAM (v2) [Agg.] 1.3 0.5 - 0.2 0 - 0.4 -0.5 -
Binary Reduce (Static) 0.3 -0.5 - 0.3 0.1 - 2.9 2 -
Libfilter 1 1 - 0 0 - 0 0 -
Negativa 2 1.7 0.8 -0.1 0.0 0.1 1.2 0.8 0.25

compromised liblzma.so used by this workload. Similarly,
we repeat the process but connect the server using the back-
door connection. Surprisingly, 39 functions are detected by
Function Tracer. This indicates that the backdoor connec-
tion used 13 additional functions in liblzma.so compared
to the normal connection. And these additional functions
were successfully removed by Negativa, which is why the
backdoor connection failed to connect to the SSH server.

5 Discussion
There has been extensive research on software debloating.
Existing debloating tools struggle to improve security, fail
to produce functioning debloated applications for complex
applications, and suffer from usability issues. In this study,
we propose Negativa, a novel shared library debloater that
neither requires access to source code nor recompilation.
We evaluated Negativa on various applications. The re-

sults are promising. To the best of our knowledge, Negativa
is the only debloater that successfully debloats all applica-
tions in Debloater-Eval Benchmark. The reduction in file
size and memory usage offers several advantages, including
lower storage and memory requirements, which is crucial
for mobile and edge devices with limited resources. Addi-
tionally, if the application needs to be transferred over a net-
work—such as being packaged into a container or software
distribution package—the smaller file size saves network
bandwidth and energy. Furthermore, the intrinsic limitation
of offline debloating - the workloads may not represent the
actual end-use of the application - is one of the main rea-
sons why debloating is not widely used in industry. The low
overhead of Function Tracer makes it possible for online de-
bloating, thus addressing this limitation of offline debloating.

One anticipated use case for Negativa is in serverless services.
Serverless services package applications with well-defined
features into containers that often include numerous shared
libraries, leading to bloat [58]. Negativa can be applied to
debloat these serverless services, reducing file size, network
bandwidth usage, energy consumption, memory overhead,
and potential security risks.
Like all debloaters, Negativa incurs some overhead. It in-

troduces additional program headers into debloated shared
libraries, resulting in longer loading times. This overhead is
primarily due to current operating systems not being consid-
ering software debloating. A new system loader, designed
to support debloated shared libraries, could be developed
to mitigate this overhead. This highlights that debloating is
not a standalone issue but part of a broader set of challenges
within the current software stack that must be addressed
collectively.

6 Conclusion
In this work, we proposed Negativa, a novel shared library de-
bloater without requiring source code or recompilation. First,
Negativa utilizes a novel dynamic tracing techniques to de-
tect used functions used shared libraries. Then, it uses a novel
algorithm that safely removes unused functions and reduce
the shared library size while maintaining memory address
mapping correct. Negativa was evaluated on Debloater-Eval
Benchmark, successfully debloating all 20 applications, as
well as the complex PyTorch framework, which includes 91
shared libraries. It was able to eliminate up to 91% of unused
functions, resulting in a reduction of up to 59% in file size
and 20% in memory usage, all while enhancing security.

11



References
[1] Binary Reduction — grammatech.github.io. https://grammatech.

github.io/prj/binary-reduce/. [Accessed 10-09-2024].
[2] ELF Header (Linker and Libraries Guide) — docs.oracle.com.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-
43405/index.html. [Accessed 08-10-2024].

[3] GitHub - mxmssh/drltrace: Drltrace is a library calls tracer for Win-
dows and Linux applications. — github.com. https://github.com/
mxmssh/drltrace. [Accessed 28-08-2024].

[4] GNU_IFUNC - glibc wiki — sourceware.org. https://sourceware.org/
glibc/wiki/GNU_IFUNC. [Accessed 27-09-2024].

[5] Guide: Function Calling Conventions — delorie.com. https://www.
delorie.com/djgpp/doc/ug/asm/calling.html. [Accessed 29-08-2024].

[6] Home — dynamorio.org. https://dynamorio.org/. [Accessed 28-08-
2024].

[7] Locust.io — locust.io. https://locust.io/. [Accessed 07-10-2024].
[8] ltrace — ltrace.org. https://ltrace.org/. [Accessed 08-10-2024].
[9] NVD - CVE-2024-3094 — nvd.nist.gov. https://nvd.nist.gov/vuln/detail/

CVE-2024-3094. [Accessed 26-09-2024].
[10] Tiny tracer: A pin tool for tracing api calls. https://github.com/

hasherezade/tiny_tracer. [Accessed 16-09-2024].
[11] xz-utils backdoor situation (CVE-2024-3094) — gist.github.com. https://

gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27.
[Accessed 18-10-2024].

[12] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan
Xu. {SHARD}:{Fine-Grained} kernel specialization with {Context-
Aware} hardening. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2435–2452, 2021.

[13] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P Kemerlis,
and Georgios Portokalidis. Nibbler: debloating binary shared libraries.
In Proceedings of the 35th Annual Computer Security Applications Con-
ference, pages 70–83, 2019.

[14] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama
Hameed, Shoaib Asif, Mubashir Anwar, Ashish Gehani, Fareed Zaf-
far, and Junaid Haroon Siddiqui. Trimmer: an automated system
for configuration-based software debloating. IEEE Transactions on
Software Engineering, 48(9):3485–3505, 2021.

[15] Mohannad Alhanahnah, Rithik Jain, Vaibhav Rastogi, Somesh Jha, and
Thomas Reps. Lightweight, multi-stage, compiler-assisted application
specialization. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pages 251–269. IEEE, 2022.

[16] Muaz Ali, Muhammad Muzammil, Faraz Karim, Ayesha Naeem,
Rukhshan Haroon, Muhammad Haris, Huzaifah Nadeem, Waseem
Sabir, Fahad Shaon, Fareed Zaffar, et al. Sok: A tale of reduction, secu-
rity, and correctness-evaluating program debloating paradigms and
their compositions. In European Symposium on Research in Computer
Security, pages 229–249. Springer, 2023.

[17] Sumaya Almanee, Arda Ünal, Mathias Payer, and Joshua Garcia. Too
quiet in the library: An empirical study of security updates in android
apps’ native code. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1347–1359. IEEE, 2021.

[18] Babak Amin Azad, Rasoul Jahanshahi, Chris Tsoukaladelis, Manuel
Egele, and Nick Nikiforakis. {AnimateDead}: Debloating web appli-
cations using concolic execution. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5575–5591, 2023.

[19] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is
more: Quantifying the security benefits of debloating web applications.
In 28th USENIX Security Symposium (USENIX Security 19), pages 1697–
1714, 2019.

[20] Priyam Biswas, Nathan Burow, andMathias Payer. Code specialization
through dynamic feature observation. In Proceedings of the Eleventh
ACM Conference on Data and Application Security and Privacy, pages
257–268, 2021.

[21] Michael D Brown, Adam Meily, Brian Fairservice, Akshay Sood,
Jonathan Dorn, Eric Kilmer, and Ronald Eytchison. A broad com-
parative evaluation of software debloating tools. pages 3927–3943,
2024.

[22] Michael D Brown and Santosh Pande. Carve: Practical security-
focused software debloating using simple feature set mappings. In
Proceedings of the 3rd ACMWorkshop on Forming an Ecosystem Around
Software Transformation, pages 1–7, 2019.

[23] Michael D Brown and Santosh Pande. Is less really more? towards
better metrics for measuring security improvements realized through
software debloating. In 12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 19), 2019.

[24] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu,
and Miryung Kim. Jshrink: In-depth investigation into debloating
modern java applications. In Proceedings of the 28th ACM joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, pages 135–146, 2020.

[25] Yu-Chen Chiu, Chi-Yi Tsai, Mind-Da Ruan, Guan-Yu Shen, and Tsu-
Tian Lee. Mobilenet-ssdv2: An improved object detection model for
embedded systems. In 2020 International conference on system science
and engineering (ICSSE), pages 1–5. IEEE, 2020.

[26] Jake Christensen, Ionut Mugurel Anghel, Rob Taglang, Mihai Chi-
roiu, and Radu Sion. {DECAF}: Automatic, adaptive de-bloating and
hardening of {COTS} firmware. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1713–1730, 2020.

[27] CISA. Exploring memory safety in critical open source projects. Tech-
nical report, CISA, FBI, ASD-ACSC, and CCCS, 2024.

[28] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Ef-
fective program debloating via reinforcement learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 380–394, 2018.

[29] Bert Hubert. Why bloat is still software’s biggest vulnerability: A 2024
plea for lean software. IEEE Spectrum, 61(4):22–50, 2024.

[30] Rasoul Jahanshahi, Babak Amin Azad, Nick Nikiforakis, and Manuel
Egele. Minimalist: Semi-automated debloating of {PHP} web appli-
cations through static analysis. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5557–5573, 2023.

[31] Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing
the attack surface of node. js applications. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2020),
pages 121–134, 2020.

[32] Hyungjoon Koo, SeyedhamedGhavamnia, andMichalis Polychronakis.
Configuration-driven software debloating. In Proceedings of the 12th
European Workshop on Systems Security, pages 1–6, 2019.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[34] William Landi. Undecidability of static analysis. ACM Letters on
Programming Languages and Systems (LOPLAS), 1(4):323–337, 1992.

[35] James R. Larus. Efficient program tracing. Computer, 26(5):52–61,
1993.

[36] Jiakun Liu, Xing Hu, Ferdian Thung, Shahar Maoz, Eran Toch, Debin
Gao, and David Lo. Autodebloater: Automated android app debloating.
In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 2090–2093. IEEE, 2023.

[37] Jiakun Liu, Zicheng Zhang, Xing Hu, Ferdian Thung, Shahar Maoz,
Debin Gao, Eran Toch, Zhipeng Zhao, and David Lo. Minimon: Min-
imizing android applications with intelligent monitoring-based de-
bloating. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, pages 1–13, 2024.

[38] Xuefeng Liu, Zhenqing Jia, Xiaoke Hou, Min Fu, Li Ma, and Qiaoqiao
Sun. Real-time marine animal images classification by embedded
system based on mobilenet and transfer learning. In OCEANS 2019-
Marseille, pages 1–5. IEEE, 2019.

12

https://grammatech.github.io/prj/binary-reduce/
https://grammatech.github.io/prj/binary-reduce/
https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-43405/index.html
https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-43405/index.html
https://github.com/mxmssh/drltrace
https://github.com/mxmssh/drltrace
https://sourceware.org/glibc/wiki/GNU_IFUNC
https://sourceware.org/glibc/wiki/GNU_IFUNC
https://www.delorie.com/djgpp/doc/ug/asm/calling.html
https://www.delorie.com/djgpp/doc/ug/asm/calling.html
https://dynamorio.org/
https://locust.io/
https://ltrace.org/
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://github.com/hasherezade/tiny_tracer
https://github.com/hasherezade/tiny_tracer
https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27
https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27


[39] Chi-Keung Luk, Robert Cohn, RobertMuth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. Acm sigplan notices, 40(6):190–200, 2005.

[40] Gregory Malecha, Ashish Gehani, and Natarajan Shankar. Automated
software winnowing. In Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pages 1504–1511, 2015.

[41] Jorge A Navas and Ashish Gehani. Occam-v2: combining static and
dynamic analysis for effective and efficient whole-program specializa-
tion. Communications of the ACM, 66(4):40–47, 2023.

[42] Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi, Anthony
Canino, Kihong Heo, Insup Lee, and Mayur Naik. Pacjam: Secur-
ing dependencies continuously via package-oriented debloating. In
Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, pages 903–916, 2022.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information
processing systems, 32, 2019.

[44] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande.
Blankit library debloating: Getting what you want instead of cutting
what you don’t. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 164–180,
2020.

[45] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo
Kim, and Wenke Lee. {RAZOR}: A framework for post-deployment
software debloating. In 28th USENIX security symposium (USENIX
Security 19), pages 1733–1750, 2019.

[46] Anh Quach, Aravind Prakash, and Lok Yan. Debloating software
through {Piece-Wise} compilation and loading. In 27th USENIX secu-
rity symposium (USENIX Security 18), pages 869–886, 2018.

[47] Anh Quach, Aravind Prakash, and Lok Yan. Debloating software
through {Piece-Wise} compilation and loading. In 27th USENIX secu-
rity symposium (USENIX Security 18), pages 869–886, 2018.

[48] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Gio-
vanni Vigna, and Christopher Kruegel. B in t rimmer: Towards static
binary debloating through abstract interpretation. In Detection of
Intrusions and Malware, and Vulnerability Assessment: 16th Interna-
tional Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019,
Proceedings 16, pages 482–501. Springer, 2019.

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510–4520, 2018.

[50] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden technical debt in machine
learning systems. Advances in neural information processing systems,
28, 2015.

[51] Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the
14th ACM conference on Computer and communications security, pages
552–561, 2007.

[52] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed
Zaffar. Trimmer: application specialization for code debloating. In
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 329–339, 2018.

[53] César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit
Baudry. Coverage-based debloating for java bytecode. ACM Transac-
tions on Software Engineering and Methodology, 32(2):1–34, 2023.

[54] Qian Xiang, Xiaodan Wang, Rui Li, Guoling Zhang, Jie Lai, and Qing-
shuang Hu. Fruit image classification based on mobilenetv2 with
transfer learning technique. In Proceedings of the 3rd international

conference on computer science and application engineering, pages 1–7,
2019.

[55] Qi Xin, Qirun Zhang, and Alessandro Orso. Studying and under-
standing the tradeoffs between generality and reduction in software
debloating. In Proceedings of the 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 1–13, 2022.

[56] Renjun Ye, Liang Liu, Simin Hu, Fangzhou Zhu, Jingxiu Yang, and
Feng Wang. Jslim: Reducing the known vulnerabilities of javascript
application by debloating. In International Symposium on Emerging
Information Security and Applications, pages 128–143. Springer, 2021.

[57] Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming. One size does
not fit all: security hardening of mips embedded systems via static
binary debloating for shared libraries. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 255–270, 2022.

[58] Huaifeng Zhang, Mohannad Alhanahnah, Fahmi Abdulqadir Ahmed,
Dyako Fatih, Philipp Leitner, and Ahmed Ali-Eldin. Machine learn-
ing systems are bloated and vulnerable. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 8(1):1–30, 2024.

[59] Andreas Ziegler, Julian Geus, Bernhard Heinloth, Timo Hönig, and
Daniel Lohmann. Honey, i shrunk the elfs: Lightweight binary tailor-
ing of shared libraries. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1–23, 2019.

13


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Bloat and Debloating
	2.2 Static and Dynamic Analysis in Debloating
	2.3 Shared Library Debloating
	2.4 Shared Library structure: The ELF format

	3 Negativa Design
	3.1 Library Detector
	3.2 Function Detector
	3.3 Function Pruner
	3.4 LibGuard
	3.5 Implementation

	4 Experiments
	4.1 Evaluation on Debloater-Eval Benchmark
	4.2 Tracer Evaluation
	4.3 Debloating an ML Framework: PyTorch
	4.4 Security Impacts
	4.5 A Case Study on XZ Backdoor

	5 Discussion
	6 Conclusion
	References

