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Abstract

We study the problem of list-decodable linear regression, where an adversary can
corrupt a majority of the examples. Specifically, we are given a set T of labeled
examples (x, y) ∈ Rd × R and a parameter 0 < α < 1/2 such that an α-fraction
of the points in T are i.i.d. samples from a linear regression model with Gaussian
covariates, and the remaining (1 − α)-fraction of the points are drawn from an
arbitrary noise distribution. The goal is to output a small list of hypothesis vectors
such that at least one of them is close to the target regression vector. Our main
result is a Statistical Query (SQ) lower bound of dpoly(1/α) for this problem. Our
SQ lower bound qualitatively matches the performance of previously developed
algorithms, providing evidence that current upper bounds for this task are nearly
best possible.

1 Introduction

1.1 Background and Motivation

Linear regression is one of the oldest and most fundamental statistical tasks with numerous applica-
tions in the sciences [RL87, Die01, McD09]. In the standard setup, the data are labeled examples
(x(i), y(i)), where the examples (covariates) x(i) are i.i.d. samples from a distribution Dx on Rd and
the labels y(i) are noisy evaluations of a linear function. More specifically, each label is of the form
y(i) = β · x(i) + η(i), where η(i) is the observation noise, for an unknown target regression vector
β ∈ Rd. The objective is to approximately recover the hidden regression vector. In this basic setting,
linear regression is well-understood. For example, under Gaussian distribution, the least-squares
estimator is known to be statistically and computationally efficient.

Unfortunately, classical efficient estimators inherently fail in the presence of even a very small
fraction of adversarially corrupted data. In several applications of modern data analysis, including
machine learning security [BNJT10, BNL12, SKL17, DKK+19] and exploratory data analysis, e.g.,
in biology [RPW+02, PLJD10, LAT+08], typical datasets contain arbitrary or adversarial outliers.
Hence, it is important to understand the algorithmic possibilities and fundamental limits of learning
and inference in such settings. Robust statistics focuses on designing estimators tolerant to a small
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amount of contamination, where the outliers are the minority of the dataset. Classical work in this
field [HRRS86, HR09] developed robust estimators for various basic tasks, alas with exponential
runtime. More recently, a line of work in computer science, starting with [DKK+16, LRV16],
developed the first computationally efficient robust learning algorithms for various high-dimensional
tasks. Subsequently, there has been significant progress in algorithmic robust statistics by several
communities, see [DK19] for a survey on the topic.

In this paper, we study high-dimensional robust linear regression in the presence of a majority of
adversarial outliers. As we explain below, in several applications, asking for a minority of outliers
is too strong of an assumption. It is thus natural to ask what notion of learning can capture the
regime when the clean data points (inliers) constitute the minority of the dataset. While outputting a
single accurate hypothesis in this regime is information-theoretically impossible, one may be able
to compute a small list of hypotheses with the guarantee that at least one of them is accurate. This
relaxed notion is known as list-decodable learning [BBV08, CSV17], formally defined below.
Definition 1.1. (List-Decodable Learning) Given a parameter 0 < α < 1/2 and a distribution
family D on Rd, the algorithm specifies n ∈ Z+ and observes n i.i.d. samples from a distribution
E = αD + (1−α)N , where D is an unknown distribution in D and N is arbitrary. We say D is
the distribution of inliers, N is the distribution of outliers, and E is an (1−α)-corrupted version of
D. Given sample access to an (1−α)-corrupted version of D, the goal is to output a “small” list of
hypotheses L at least one of which is (with high probability) close to the target parameter of D.

We note that a list of size O(1/α) typically suffices; an algorithm with a poly(1/α) sized list, or
even a worse function of 1/α (but independent of the dimension d) is also considered acceptable.

Natural applications of list-decodable learning include crowdsourcing, where a majority of partic-
ipants could be unreliable [SVC16, MV18], and semi-random community detection in stochas-
tic block models [CSV17]. List-decoding is also useful in the context of semi-verified learn-
ing [CSV17, MV18], where a learner can audit a very small amount of trusted data. If the trusted
dataset is too small to directly learn from, using a list-decodable learning procedure, one can pinpoint a
candidate hypothesis consistent with the verified data. Importantly, list-decodable learning generalizes
the task of learning mixture models, see, e.g., [DeV89, JJ94, ZJD16, LL18, KC20, CLS20, DK20] for
the case of linear regression studied here. Roughly speaking, by running a list-decodable estimation
procedure with the parameter α equal to the smallest mixing weight, each true cluster of points is an
equally valid ground-truth distribution, so the output list must contain candidate parameters close to
each of the true parameters.

In list-decodable linear regression (the focus of this paper), D is a distribution on pairs (X, y), where
X is a standard Gaussian on Rd, y is approximately a linear function of x, and the algorithm is asked
to approximate the hidden regressor. The following definition specifies the distribution family D of
the inliers for the case of linear regression with Gaussian covariates.
Definition 1.2. (Gaussian Linear Regression) Fix σ > 0. For β ∈ Rd, let Dβ be the distribution
over (X, y), X ∈ Rd, y ∈ R, such that X ∼ N (0, Id) and y = βTX + η, where η ∼ N (0, σ2)
independently of X . We define D to be the set {Dβ : β ∈ S′} for some set S′ ⊆ Rd.

Recent algorithmic progress [KKK19, RY20a] has been made on this problem using the sum-of-
squares (SoS) hierarchy. The guarantees in [KKK19, RY20a] are very far from the information-
theoretic limit in terms of sample complexity. In particular, they require dpoly(1/α) samples and time
to obtain non-trivial error guarantees (see Table 1): [KKK19] obtains an error guarantee of O(σ/α)
with a list of size O(1/α), whereas [RY20a] obtains an error guarantee of O(σ/α3/2) with a list of
size (1/α)O(log(1/α)).

On the other hand, as shown in this paper (see Theorem 1.4), poly(d/α) samples information-
theoretically suffice to obtain near-optimal error guarantees. This raises the following natural
question:

What is the complexity of list-decodable linear regression?
Are there efficient algorithms with significantly better sample-time tradeoffs?

We study the above question in a natural and well-studied restricted model of computation, known as
the Statistical Query (SQ) model [Kea98]. As the main result of this paper, we prove strong SQ lower
bounds for this problem. Via a recently established equivalence [BBH+20], our SQ lower bound also
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Table 1: The table summarizes the sample complexity, running time, and list size of the known
list-decodable linear regression algorithms in order to obtain a 1/4-additive approximation to the
hidden regression vector β in the setting of Theorem 1.5, i.e., when ‖β‖2 ≤ 1 and σ is sufficiently
small as a function of α: [KKK19] requires σ = O(α) and [RY20a] requires σ = O(α3/2).

Algorithmic Result Sample Size Running Time List size

Karmalkar-Klivans-Kothari [KKK19] (d/α)O(1/α4) (d/α)O(1/α8) O(1/α)

Raghavendra and Yau [RY20a] dO(1/α4) dO(1/α8)(1/α)log(1/α) (1/α)O(log(1/α))

implies low-degree testing lower bounds for this task. Our lower bounds can be viewed as evidence
that current upper bounds for this problem may be qualitatively best possible.

Before we state our contributions in detail, we give some background on SQ algorithms. SQ
algorithms are a broad class of algorithms that are only allowed to query expectations of bounded
functions of the distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 1.3 (STAT Oracle). Let D be a distribution on Rd. A statistical query is a bounded
function q : Rd → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query q with a value v
such that |v −EX∼D[q(X)]| ≤ τ . We call τ the tolerance of the statistical query.

The SQ model was introduced by Kearns [Kea98] in the context of supervised learning as a natural
restriction of the PAC model [Val84]. Subsequently, the SQ model has been extensively studied in a
plethora of contexts (see, e.g., [Fel16] and references therein). The class of SQ algorithms is rather
broad and captures a range of known supervised learning algorithms. More broadly, several known
algorithmic techniques in machine learning are known to be implementable using SQs. These include
spectral techniques, moment and tensor methods, local search (e.g., Expectation Maximization), and
many others (see, e.g., [FGR+17, FGV17]).

1.2 Our Results

We start by showing that poly(d/α) samples are sufficient to obtain a near-optimal error estimator,
albeit with a computationally inefficient algorithm.

Theorem 1.4 (Information-Theoretic Bound). There is a (computationally inefficient) list-decoding
algorithm for Gaussian linear regression that uses O(d/α3) samples, returns a list of O(1/α) many
hypothesis vectors, and has `2-error guarantee of O((σ/α)

√
log(1/α)). Moreover, if the dimension

d is sufficiently large, any list-decoding algorithm that outputs a list of size poly(1/α) must have
`2-error at least Ω((σ/α)/

√
log(1/α)).

Due to space limitations, the proof of Theorem 1.4 is deferred to the supplementary material (see
Theorems D.1 and D.4). We note that the (computationally inefficient) estimator achieving the upper
bound in Theorem 1.4 is implicit in [KKK19]. See Appendix D.1 for more details.

Our main result is a strong SQ lower bound for the list-decodable Gaussian linear regression problem.
We establish the following theorem (see Theorem 2.1 for a more detailed formal statement).

Theorem 1.5 (SQ Lower Bound). Assume that the dimension d ∈ Z+ is sufficiently large and
consider the problem of list-decodable linear regression, where the fraction of inliers is α ∈ (0, 1/2),
the regression vector β ∈ Rd has norm ‖β‖2 ≤ 1, and the additive noise has standard deviation
σ ≤ α. Then any SQ algorithm that returns a list L of candidate vectors containing a β̂ such that
‖β̂ − β‖2 ≤ 1/4 does one of the following: (i) it uses at least one query with tolerance at most
d−Ω(1/

√
a)/σ, (ii) it makes 2d

Ω(1)

queries, or (iii) it returns a list of size |L| = 2d
Ω(1)

.

Informally speaking, Theorem 1.5 shows that no SQ algorithm can approximate β to constant
accuracy with a sub-exponential in dΩ(1) size list and sub-exponential in dΩ(1) many queries, unless
using queries of very small tolerance – that would require at least σdΩ(1/

√
α) samples to simulate.

For σ not too small, e.g., σ = poly(α), in view of Theorem 1.4, this result can be viewed as an
information-computation tradeoff for the problem, within the class of SQ algorithms.
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A conceptual implication of Theorem 1.5 is that list-decodable linear regression is harder (within
the class of SQ algorithms) than the related problem of learning mixtures of linear regressions
(MLR). Recent work [DK20] gave an algorithm (easily implementable in SQ) for learning MLR
with k equal weight separated components (under Gaussian covariates) with sample complexity and
running time kpolylog(k), i.e., quasi-polynomial in k. Recalling that one can reduce k-MLR (with
well-separated components) to list-decodable linear regression for α = 1/k, Theorem 1.5 implies
that the aforementioned algorithmic result cannot be obtained via such a reduction.

Remark 1.6. We note that our lower bounds rule out efficient algorithms in the SQ model, which is
a broad class of algorithms. The two existing algorithms [RY20a, KKK19] for the present problem
are based on the sum-of-squares (SoS) hierarchy. In general, SQ lower bounds do not imply lower
bounds against all SoS algorithms, and SoS lower bounds do not imply SQ lower bounds. At the
same time, lower bounds against low-degree tests [HS17, HKP+17, Hop18, KWB19] have become
the standard heuristic for SoS lower bounds, and we establish hardness against low-degree tests as
well. In particular, recent work [BBH+20] established that (under certain assumptions) an SQ lower
bound also implies a qualitatively similar lower bound in the low-degree model. By leveraging this
connection, we deduce a similar lower bound in the latter model as well (see Appendix F).

1.3 Overview of Techniques

In this section, we provide a detailed overview of our SQ lower bound construction. We recall that
there exists a general methodology for establishing SQ lower bounds via an appropriate complexity
measure, known as SQ dimension. Several related notions of SQ dimension exist in the literature,
see, e.g., [BFJ+94, FGR+17, Fel17]. Here we focus on the framework introduced in [FGR+17]
for search problems over distributions, which is more natural in our setting. A lower bound on the
SQ dimension of a search problem provides an unconditional lower bound on the SQ complexity
of the problem. Roughly speaking, for a notion of correlation between distributions in our family
D (Definition 1.8), establishing an SQ lower bound amounts to constructing a large cardinality
sub-family D′ ⊆ D such that every pair of distributions in D′ are nearly uncorrelated with respect to
a given reference distribution R (see Definition 1.10 and Lemma 1.11).

A general framework for constructing SQ-hard families of distributions was introduced in [DKS17],
which showed the following: Let the reference distribution R be N (0, I) and A be a univariate
distribution whose low-degree moments match those of the standard Gaussian (and which satisfies
an additional mild technical condition). Let PA,v be the distribution that is a copy of A in the v-
direction and standard Gaussian in the orthogonal complement (Definition 1.12). Then the distribution
family {PA,v}v∈S , where S is a set of nearly orthogonal unit vectors, satisfies the pairwise nearly
uncorrelated property (Lemma 1.13), and is therefore SQ-hard to learn.

Unfortunately, the [DKS17] framework does not suffice in the supervised setting of the current paper
for the following reason: The joint distribution over labeled examples (X, y) in our setting does not
possess the symmetry properties required for moment-matching with the reference R = N (0, I) to
be possible. Specifically, the behavior of y will necessarily be somewhat different than the behavior of
X . To circumvent this issue, we leverage an idea from [DKS19]. The high-level idea is to construct
distributions Ev on (X, y) such that for any fixed value y0 of y, the conditional distribution of
X | y = y0 under Ev is of the form PA,v described above, where A is replaced with some Ay0

.

We further explain this modified construction. Note that Ev should be of the form αDv + (1−α)Nv ,
where Dv is the inlier distribution (corresponding to the clean samples from the linear regression
model) and Nv is the outlier (noise) distribution. To understand what properties our distribution
should satisfy, we start by looking at the inlier distribution D. By definition, for (X, y) ∼ D, we
have that y = βTX + η, where X ∼ N(0, I) and η ∼ N(0, σ2) is independent of X . A good
place to start here is to understand the distribution of X conditioned on y = y0, for some y0, under
D. It is not hard to show (Fact 2.3) that this conditional distribution is already of the desired form
PA,β : it is a product of a (d − 1)-dimensional standard Gaussian in directions orthogonal to β,
while in the β-direction it is a much narrower Gaussian with mean proportional to y0. To establish
our SQ-hardness result, we would like to mix this conditional distribution with a carefully selected
outlier distribution N | y = y0, such that the resulting mixture E | y = y0 matches many of its
low-degree moments with the standard Gaussian in the β-direction, while being standard Gaussian
in the orthogonal directions. In the setting of minority of outliers, [DKS19] was able to provide an
explicit formula for N and match three moments to show an SQ lower bound of Ω(d2). The main
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technical difficulty in our paper is that, in order to prove the desired SQ lower bound of Ω(dpoly(1/α)),
we need to match poly(1/α) many moments. We explain how to achieve this below.

Here we take a different approach and establish the existence of the desired outlier distribution
N |y = y0 in a non-constructive manner. We note that our problem is an instance of the moment-
matching problem, where given a sequence of real numbers, the goal is to decide whether a distribution
exists having that sequence as its low-degree moments. At a high-level, we leverage classical results
that tackle this general question by formulating a linear program (LP) and using LP-duality to derive
necessary and sufficient feasibility conditions (see [KS53] and Theorem 3.1). This moment-matching
via LP duality approach is fairly general, but stumbles upon two technical obstacles in our setting.

The first technical issue is that our final distributions Ev on (X, y) need to have bounded χ2-
divergence with respect to the reference distribution, since the pairwise correlations scale with this
quantity (see Lemma 1.13). To guarantee this, we can ensure that the outlier distribution in the
β-direction is in fact equal to the convolution of a distribution with bounded support with a narrow
Gaussian: (i) The contraction property of this convolution operator means that it can only reduce the
χ2-divergence, and (ii) the bounded support can be used in combination with tail-bounds on Hermite
polynomials (Lemma 3.6) to bound from above the contribution to the χ2-divergence of each Hermite
coefficient of our distribution (Lemma 2.6). These additional constraints necessitate a modification to
the moment-matching problem, but it can still be readily analyzed (Theorem 2.5).

The second and more complicated issue involves the fraction of outliers, i.e., the parameter “1−α”.
Unfortunately, it is easy to see that the fraction of outliers necessary to make the conditional
distributions match the desired number of moments must necessarily go to 1 as |y| goes to infinity:
As |y| gets bigger, the conditional distribution of inliers moves further away from N (0, I) (Fact 2.3)
and thus needs to be mixed more heavily with outliers to be corrected. This is a significant problem,
since by definition we can only afford to use a (1−α)-fraction of outliers overall. To handle this issue,
we consider a reference distribution R on (X, y) that has much heavier tails in y than the distribution
of inliers has. This essentially means that as |y| gets large, the conditional probability that a sample
is an outlier gets larger and larger. This is balanced by having slightly lower fraction of outliers for
smaller values of |y|, in order to ensure that the total fraction of outliers is still at most 1−α. To
address this issue, we leverage the fact that the probability that a clean sample has large value of |y|
is very small. Consequently, we can afford to make the error rates for such y quite large without
increasing the overall probability of error by very much.

1.4 Preliminaries

Notation We use N to denote natural numbers and Z+ to denote positive integers. For n ∈ Z+ we
denote [n]

def
= {1, . . . , n} and use Sd−1 for the d-dimensional unit sphere. We denote by 1(E) the

indicator function of the event E . We use Id to denote the d × d identity matrix. For a random
variable X , we use E[X] for its expectation. For m ∈ Z+, the m-th moment of X is defined as
E[Xm]. We use N (µ,Σ) to denote the Gaussian distribution with mean µ and covariance matrix Σ.
We let φ denote the pdf of the one-dimensional standard Gaussian. When D is a distribution, we use
X ∼ D to denote that the random variable X is distributed according to D. For a vector x ∈ Rd, we
let ‖x‖2 denote its `2-norm. For y ∈ R, we denote by δy the Dirac delta distribution at y, i.e., the
distribution that assigns probability mass 1 to the single point y ∈ R and zero elsewhere. When there
is no confusion, we will use the same letters for distributions and their probability density functions.

Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-Uhlenbeck)
operator Uρ as the operator that maps a distribution F on R to the distribution of the random variable
ρX +

√
1− ρ2Z, where X ∼ F and Z ∼ N (0, 1) independently of X .

Background on the SQ Model We provide the basic definitions and facts that we use.

Definition 1.7 (Search problems over distributions). Let D be a set of distributions over Rd, F be
a set called solutions, and Z : D → 2F be a map that assigns sets of solutions to distributions of
D. The distributional search problem Z over D and F is to find a valid solution f ∈ Z(D) given
statistical query oracle access to an unknown D ∈ D.

The hardness of these problems is conveniently captured by the SQ dimension. For this, we first need
to define the notion of correlation between distributions.
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Definition 1.8 (Pairwise Correlation). The pairwise correlation of two distributions with probability
density functions D1, D2 : Rd → R+ with respect to a reference distribution with density R : Rd →
R+, where the support of R contains the supports of D1 and D2, is defined as χR(D1, D2)

def
=∫

Rd D1(x)D2(x)/R(x) dx− 1. When D1 = D2, the pairwise correlation becomes the same as the

χ2-divergence between D1 and R, i.e., χ2(D1, R)
def
=
∫
Rd D

2
1(x)/R(x)dx− 1.

Definition 1.9. For γ, β > 0, the set of distributions D = {D1, . . . , Dm} is called (γ, β)-correlated
relative to the distribution R if |χR(Di, Dj)| ≤ γ, if i 6= j, and |χR(Di, Dj)| ≤ β otherwise.

The statistical dimension of a search problem is based on the largest set of (γ, β)-correlated distribu-
tions assigned to each solution.
Definition 1.10 (Statistical Dimension). For γ, β > 0, a search problem Z over a set of solutions
F and a class D of distributions over X , we define the statistical dimension of Z , denoted by
SD(Z, γ, β), to be the largest integer m such that there exists a reference distribution R over X and
a finite set of distributions DR ⊆ D such that for any solution f ∈ F , the set Df = DR \ Z−1(f) is
(γ, β)-correlated relative to R and |Df | ≥ m.
Lemma 1.11 (Corollary 3.12 in [FGR+17]). Let Z be a search problem over a set of solutions F and
a class of distributions D over Rd. For γ, β > 0, let s = SD(Z, γ, β) be the statistical dimension
of the problem. For any γ′ > 0, any SQ algorithm for Z requires either sγ′/(β − γ) queries or at
least one query to STAT(

√
γ + γ′) oracle.

We continue by recalling the machinery from [DKS17] that will be used for our construction.
Definition 1.12 (High-Dimensional Hidden Direction Distribution). For a unit vector v ∈ Rd and a
distribution A on the real line with probability density function A(x), define PA,v to be a distribution
over Rd, where PA,v is the product distribution whose orthogonal projection onto the direction of v is
A, and onto the subspace perpendicular to v is the standard (d−1)-dimensional normal distribution.
That is, PA,v(x) := A(vTx)φ⊥v(x), where φ⊥v(x) = exp

(
−‖x− (vTx)v‖22/2

)
/(2π)(d−1)/2.

The distributions {PA,v} defined above are shown to be nearly uncorrelated as long as the directions
where A is embedded are pairwise nearly orthogonal.
Lemma 1.13 (Lemma 3.4 in [DKS17]). Let m ∈ Z+. Let A be a distribution over R that agrees
with the first m moments of N (0, 1). For any v, let PA,v denote the distribution from Definition 1.12.
For all v, u ∈ Rd, we have that χN (0,Id)(PA,v, PA,u) ≤ |uT v|m+1χ2(A,N (0, 1)).

The following result shows that there are exponentially many nearly-orthogonal unit vectors.
Lemma 1.14 (see, e.g., Lemma 3.7 of [DKS17]). For any 0 < c < 1/2, there is a set S, of at least
2Ω(dc) unit vectors in Rd, such that for each pair of distinct v, v′ ∈ S, it holds |vT v′| ≤ O(dc−1/2).

1.5 Prior and Related Work

Early work in robust statistics, starting with the pioneering works of Huber and Tukey [Hub64, Tuk75],
pinned down the sample complexity of high-dimensional robust estimation with a minority of outliers.
In contrast, until relatively recently, even the most basic computational questions in this field were
poorly understood. Two concurrent works [DKK+16, LRV16] gave the first provably robust and
efficiently computable estimators for robust mean and covariance estimation. Since the dissemination
of these works, there has been a flurry of activity on algorithmic robust estimation in a variety of
high-dimensional settings; see [DK19] for a recent survey on the topic. Notably, the robust estimators
developed in [DKK+16] are scalable in practice and yield a number of applications in exploratory
data analysis [DKK+17] and adversarial machine learning [TLM18, DKK+19]

The list-decodable learning setting studied in this paper was first considered in [CSV17] with a
focus on mean estimation. [CSV17] gave a polynomial-time algorithm with near-optimal statis-
tical guarantees for list-decodable mean estimation under a bounded covariance assumption on
the clean. Subsequent work has led to significantly faster algorithms for the bounded covariance
setting [DKK20a, CMY20, DKK+20b, DKK+21] and polynomial-time algorithms with improved
error guarantees under stronger distributional assumptions [DKS18, KSS18]. More recently, a
line of work developed list-decodable learners for more challenging tasks, including linear regres-
sion [KKK19, RY20a] and subspace recovery [RY20b, BK21].
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2 Main Result: Proof of Theorem 1.5

In this section, we present the main result of this paper: SQ hardness of list-decodable linear regression
(Definitions 1.1 and 1.2). We consider the setting when β has norm less than 1, i.e., β = ρv for
v ∈ Sd−1 and ρ ∈ (0, 1).1 Note that the marginal distribution of the labels is N (0, σ2

y), where
σ2
y = ρ2 + σ2. We ensure that the labels y have unit variance by using σ2 = 1− ρ2. Specifically, the

choice of parameters will be such that obtaining a ρ/2-additive approximation of the regressor β is
possible information-theoretically with poly(d/α) samples (cf. Appendix D.1), but the complexity of
any SQ algorithm for the task must necessarily be at least dpoly(1/α)/σ. We show the following more
detailed statement of Theorem 1.5.
Theorem 2.1 (SQ Lower Bound). Let c ∈ (0, 1/2), d ∈ Z+ with d = 2Ω(1/(1/2−c)), α ∈ (0, 1/2),
ρ ∈ (0, 1), σ2 = 1 − ρ2, and m ∈ Z+ with m ≤ c1/

√
α for some sufficiently small constant

c1 > 0. Any list-decoding algorithm that, given statistical query access to a (1−α)-corrupted
version of the distribution described by the model of Definition 1.2 with β = ρv for v ∈ Sd−1,
returns a list L of hypotheses vectors that contains a β̂ such that ‖β̂ − β‖2 ≤ ρ/2, does one of the

following: (i) it uses at least one query to STAT
(

Ω(d)−(2m+1)(1/4−c/2)eO(m)/
√

1− ρ2
)

, (ii) it

makes 2Ω(dc)d−(2m+1)(1/2−c) many queries, or (iii) it returns a list L of size 2Ω(dc).

In the rest of this section, we will explain the hard-to-learn construction for our SQ lower bound, i.e.,
a set of distributions with large statistical dimension. The proof would then follow from Lemma 1.11.
We begin by describing additional notation that we will use.

Notation: As β = ρv for a fixed ρ, we will slightly abuse notation by using Dv(x, y) to denote
the joint distribution of the inliers and we use Ev(x, y) to denote the (1−α)-corrupted version of
Dv(x, y). To avoid using multiple subscripts, we use Dv(x|y) to denote the conditional distribution
of X|y according to the distribution Dv and similarly for the other distributions. In addition, we use
Dv(y) to denote the marginal distribution of y under Dv and similarly for other distributions.

Following the general construction of [DKS17], we will specify a reference joint distribution R(x, y)
where X and y are independent, and X ∼ N (0, Id). We will find a marginal distribution R(y) and a
way to add the outliers so that the following hold for each Ev (where m = Θ(1/

√
α)):

(I) Ev is indeed a valid distribution of (X, y) in our corruption model (i.e., can be written as a
mixture αDv(x, y)+(1−α)Nv(x, y) for some noise distributionNv). Moreover, the marginal
of Ev on the labels, Ev(y), coincides with R(y).

(II) For every y ∈ R, the conditional distribution Ev(x|y) is of the form PAy,v of Definition 1.12,
with Ay being a distribution that matches the first 2m moments with N (0, 1).2

(III) For Ay defined above, Ey∼R(y)[χ
2(Ay,N (0, 1))] is bounded.

We first briefly explain why a construction satisfying the above properties suffices to prove our main
theorem (postponing a formal proof for the end of this section). We start by noting the following
decomposition (proved in Appendix B).
Lemma 2.2. For u, v ∈ Sd−1, if Eu andEv have the same marginalsR(y) on the labels, they satisfy
χR(x,y)(Ev(x, y), Eu(x, y)) = Ey∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Using the decomposition in Lemma 2.2 for Eu and Ev satisfying Property (II), Lemma 1.13 implies
that |χR(x,y)(Ev(x, y), Eu(x, y))| ≤ |uT v|2m+1 Ey∼R(y)[χ

2(Ay, N(0, 1))]. Letting D = {Ev :
v ∈ S}, where S is the set of nearly uncorrelated unit vectors from Lemma 1.14, we get that
D is (γ, b)-correlated relative to R, for b = Ey∼R(y)[χ

2(Ay,N (0, 1))] and γ ≤ d−Ω(m)b. As
|S| = 2Ω(dc), b is bounded, and the list size is much smaller than |S|, we can show that the statistical
dimension of the list-decodable linear regression is large.

Thus, in the rest of the section we focus on showing that such a construction exists. We first note
that according to our linear model of Definition 1.2, the conditional distribution of X given y for the
inliers is Gaussian with unit variance in all but one direction (see Appendix B for a proof).

1This is a standard assumption and considered by existing works [KKK19, RY20a] (cf. Remark B.4).
2We use even number of moments for simplicity. The analysis would slightly differ for odd number.
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Fact 2.3. Fix ρ > 0, v ∈ Sd−1, and consider the regression model of Definition 1.2 with β = ρv.
Then the conditional distributionX|y of the inliers isN (yρv, Id−ρ2vvT ), i.e., independent standard
Gaussian in all directions perpendicular to v and N (ρy, 1− ρ2) in the direction of v.

Since Fact 2.3 states that Dv(x|y) is already of the desired form (standard normal in all directions
perpendicular to v and N (yρ, 1− ρ2) in the direction of v), the problem becomes one-dimensional.
More specifically, for every y ∈ R, we need to find a one-dimensional distributionQy and appropriate
values αy ∈ [0, 1] such that the mixture Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy matches the first
2m moments with N (0, 1). Then, multiplying by φ⊥v (which denotes the contribution of the
space orthogonal to v to the density of standard Gaussian, as defined in Definition 1.12) yields
the d-dimensional mixture distribution αyDv(x|y) + (1−αy)Qy(vTx)φ⊥v(x). We show that an
appropriate selection of αy can ensure that this is a valid distribution for our contamination model.

Lemma 2.4. Let R be a distribution on pairs (x, y) ∈ Rd+1 such that αy := αDv(y)/R(y) ∈ [0, 1]
for all y ∈ R. Suppose that for every y ∈ R there exists a univariate distribution Qy such that
Ay := αyN (yρ, 1−ρ2)+(1−αy)Qy matches the first 2m moments withN (0, 1). If the distribution
of the outliers is Nv(x, y) = ((1−αy)/(1−α))Qy(vTx)φ⊥v(x)R(y), Properties (I) and (II) hold.

The proof of Lemma 2.4 is included in Appendix B. We will choose the reference distribution R(x, y)
to have X ∼ N (0, Id) and y ∼ N (0, 1/α) independently, which makes the corresponding value of
αy to be αy = αDv(y)/R(y) =

√
α exp(−y2(1− α)/2). This satisfies the condition in Lemma 2.4

that αy ∈ [0, 1]. Our choice ofR(y) ∼ N (0, 1/α) is informed by Properties (II) and (III), and will be
used later on in the proofs of Theorem 2.5 and Lemma 2.6 (also see the last paragraph of Section 1.3
for more intuition). Going back to our goal, i.e., making Ay = αyN (yρ, 1−ρ2) + (1−αy)Qy match
moments with N (0, 1), we will argue that it suffices to only look for Qy of the specific form UρFy,
where Uρ is the Ornstein-Uhlenbeck operator. This suffices because Uρδy = N (yρ, 1− ρ2) and the
operator Uρ preserves the moments of a distribution if they match with N (0, 1) (see Lemma 2.6 (i)
below). Letting Ay = Uρ(αyδy + (1 − αy)Fy), the new goal is to show that the argument of Uρ
matches moments with N (0, 1). We show the following structural result:

Theorem 2.5. Let y ∈ R, B ∈ R, α ∈ (0, 1/2), and define αy :=
√
α exp(−y2(1−α)/2). For any

m ∈ Z+ such that m ≤ C1/
√
α and B ≥ C2

√
m, with C1 > 0 being a sufficiently small constant

and C2 being a sufficiently large constant, there exists a distribution Fy that satisfies the following:

1. The mixture distribution αyδy + (1− αy)Fy matches the first 2m moments with N (0, 1).

2. Fy is a discrete distribution supported on at most 2m+ 1 points, all of which lie in [−B,B].

The proof of Theorem 2.5 is the bulk of the technical work of this paper and is deferred to Section 3. As
mentioned before, applying Uρ preserves the required moment-matching property. More crucially, it
allows us to bound the χ2-divergence: the following result bounds χ2(Ay,N (0, 1)) using contraction
properties of Uρ, tail bounds of Hermite polynomials, and the discreteness of Fy .

Lemma 2.6. In the setting of Theorem 2.5, let ρ > 0 and Qy = UρFy. Then the following holds
for the mixture Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy: (i) Ay matches the first 2m moments with
N (0, 1), and (ii) χ2(Ay,N (0, 1)) ≤ αO(ey

2(α−1/2))/(1− ρ2) +O(eB
2/2)/(1− ρ2).

We prove Lemma 2.6 in Appendix B. We are now ready to sketch the proof of Theorem 2.1 (see
Appendix B for the detailed proof).

Proof Sketch of Theorem 2.1. Consider the search problem Z , where D is the set of all distributions
Ev satisfying properties (I),(II), and (III) (let β(v) = ρv be the corresponding regressors). For each
Ev, the corresponding solution set is defined to consist of all lists L of size ` having one element
that is (ρ/2)-close to β(v). Let the subset DR = {Ev}v∈S , for S being the set of nearly orthogonal
vectors of Lemma 1.14. Since |uT v| ≤ O(dc−1/2) for any distinct u, v ∈ S and d = 2Ω(1/(1/2−c)),
for any vector w, at most one element of S can be (ρ/2)-close to w. Thus, for any list L of size
` = |S|/2, |DR \Z−1(L)| ≥ |S|−` ≥ 2Ω(dc). Using Lemmas 2.2 and 1.13 along with the χ2-bound
of Lemma 2.6, we get that DR is (γ, b)-correlated with respect to R, for b := eO(m)/(1− ρ2) and
γ := Ω(d)−(2m+1)(1/2−c)b. An application of Lemma 1.11 completes the proof.
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3 Duality for Moment Matching: Proof of Theorem 2.5

We now prove the existence of a bounded distribution Fy such that the mixture αyδy + (1−αy)Fy
matches the first 2m moments with N (0, 1). The proof follows a non-constructive argument based
on the duality between the space of moments and the space of non-negative polynomials.

Let B > 0 and m ∈ Z+. Let P(m) denote the class of all polynomials p : R → R with
degree at most m. Let P≥0(2m,B) be the class of polynomials that can be represented in either
the form p(t) = (

∑m
i=0 ait

i)2 or the form p(t) = (B2 − t2)(
∑m−1
i=0 bit

i)2. The intuition for
P≥0(2m,B) is that every polynomial of degree at most 2m that is non-negative in [−B,B] can
be written as a finite sum of polynomials from P≥0(2m,B). By slightly abusing notation, for
a polynomial p(t) =

∑m
i=0 pit

i, we also use p to denote the vector in Rm+1 consisting of the
coefficients (p0, . . . , pm). The following classical result characterizes when a vector is realizable as
the moment sequence of a distribution with support in [−B,B] (for simplicity, we focus on matching
an even number of moments in the rest of this section).

Theorem 3.1 (Theorem 16.1 of [KS53]). Let B > 0, k ∈ Z+, and x = (x0, x1, . . . , x2k) ∈ R2k+1

with x0 = 1. There exists a distribution with support in [−B,B] having as its first 2k moments the
sequence (x1, . . . , x2k) if and only if for all p ∈ P≥0(2k,B) it holds that

∑2k
i=0 xipi ≥ 0.

As we require the distribution to be discrete, we prove the following result using Theorem 3.1:

Proposition 3.2. Fix y ∈ R, αy ∈ (0, 1), B > 0, and m ∈ Z+. There exists a discrete distribution
Fy supported on at most 2m+ 1 points in [−B,B] such that αyδy + (1− αy)Fy matches the first
2m moments with N (0, 1) if and only if EX∼N (0,1)[p(X)] ≥ αyp(y) for all p ∈ P≥0(2m,B).

The proof of Proposition 3.2 is deferred to Appendix C.1. To prove Theorem 2.5, we need to establish
the condition of Proposition 3.2. To this end, we first need the following two technical lemmas, whose
proofs are sketched towards the end of this section (for detailed proofs see Sections C.2 and C.3).

Lemma 3.3. Let m ∈ Z+. If B ≥ C
√
m for some sufficiently large constant C > 0, then for every

q ∈ P(m), it holds that B2 EX∼N (0,1)[q
2(X)] ≥ 2EX∼N (0,1)[X

2q2(X)].

Lemma 3.4. Let y ∈ R, α ∈ (0, 1/2), m ∈ Z+, and αy =
√
α exp(−y2(1 − α)/2). Sup-

pose m ≤ C/
√
α for some sufficiently small constant C > 0. Then for all r ∈ P(m), r 6≡ 0:

r2(y)/(EX∼N (0,1)[r
2(X)]) ≤ 1/(2αy).

Proof of Theorem 2.5. By Proposition 3.2, it remains to show that if B ≥ C2
√
m, then the condition

EX∼N (0,1)[p(X)] ≥ αyp(y) holds for all p ∈ P≥0(2m,B). Thus, it suffices to ensure that the
following two inequalities hold for X ∼ N (0, 1):

sup
r∈P(m),r 6≡0

r2(y)

E[r2(X)]
≤ 1

αy
and sup

q∈P(m−1),q 6≡0

(B2 − y2)q2(y)

E[(B2 −X2)q2(X)]
≤ 1

αy
, (1)

where we use Lemma 3.3 to show that E[(B2 − X2)q2(X)] > 0 for all non-zero polynomials
q ∈ P(m − 1). The first expression can be bounded using Lemma 3.4 when m ≤ C1/

√
α.

We now focus on the second expression. By Lemma 3.3, EX∼N (0,1)[(B
2 − X2)q2(X)] ≥

0.5EX∼N (0,1)[B
2q2(X)]. Therefore, we have that

sup
q∈P(m−1),q 6≡0

(B2 − y2)q2(y)

EX∼N (0,1)[(B2 −X2)q2(X)]
≤ sup
q∈P(m−1),q 6≡0

B2q2(y)

EX∼N (0,1)[(B2 −X2)q2(X)]

≤ sup
q∈P(m−1),q 6≡0

B2q2(y)

EX∼N (0,1)[0.5B2q2(X)]
= 2 sup

q∈P(m−1),q 6≡0

q2(y)

EX∼N (0,1)[q2(X)]
,

where the first inequality uses that the denominator is positive and y2q2(y) ≥ 0 and the second
inequality uses that EX∼N (0,1)[(B

2 − X2)q2(X)] ≥ 0.5EX∼N (0,1)[B
2q2(X)]. The expression

above is of the same form as the first expression in Equation (1), and thus is also bounded above by
1/αy when m ≤ C1/

√
α using Lemma 3.4. This completes the proof of Theorem 2.5.
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Proof sketch of Lemma 3.3: The proof of Lemma 3.3 is a relatively straightforward application
of Hölder’s inequality and the Gaussian Hypercontractivity Theorem (stated below). For p ∈ (0,∞),
we define the Lp-norm of a random variable X to be ‖X‖Lp := (E[|X|p])1/p.
Fact 3.5 (Gaussian Hypercontractivity [Bog98, Nel73]). Let X ∼ N (0, 1). If p ∈ P(d) and t ≥ 2,
then ‖p(X)‖Lt ≤ (t− 1)d/2 ‖p(X)‖L2 .

Proof sketch of Lemma 3.4: The proof is based on Hermite Analysis (see Appendix A for more
details). The normalized probabilist’s Hermite polynomials, {hi, i ∈ [m]} form a basis of P(m) and
satisfy the property EX∼N (0,1)[hi(X)hj(X)] = 1(i = j). Since r is a polynomial of degree at most
m, we can represent r(x) =

∑m
i=1 aihi(x) for some ai ∈ R. Using orthonormality of hi under the

Gaussian measure, we get that EX∼N (0,1)[r
2(X)] =

∑m
i=1 a

2
i . By a standard optimization argument,

we get that the supremum of r2(y)/E[r2(X)] is exactly
∑m
i=1 h

2
i (y). It remains to show that for

every y ∈ R,
∑m
i=1 αyh

2
i (y) ≤ 1/2. As m ≤ C/

√
α for a small enough constant C, it suffices to

show that for every i ∈ [m], αyh2
i (y) ≤ O(

√
α). As αy :=

√
α exp(−y2(1−α)/2), the following

tail bound on the Hermite polynomials can be used:
Lemma 3.6. Let hi be the i-th normalized probabilist’s Hermite polynomial. Then
maxx∈R h

2
k(x)e−x

2/2 = O(k−1/6).

We break our analysis in two cases:

Case 1: |y| ≤ 1/
√
α. Since α2y ≤ 1, Lemma 3.6 implies that for every |y| ≤ 1/

√
α, αyh2

i (y) =√
α exp(1)h2

i (y) exp(−y2/2) = O(
√
α).

Case 2: |y| > 1/
√
α. In this case, we use rather crude bounds. A direct calculation shows that

|hi(x)| ≤ ii(1 + |x|)i. Since α ∈ (0, 1/2), we get that αyh2
i (y) ≤

√
α exp(−y2/4 + 2i log(2i|y|)).

It remains to show that exp(−y2/4 + 2i log(2i|y|)) = O(1) under given conditions on i and y. We
have that exp(−y2/4 + 2i log(2i|y|)) = O(1) whenever |y| = Ω(

√
i log i). Since |y| ≥ 1/

√
α, the

former condition is satisfied whenever i = O(1/
√
α). This completes the proof sketch.
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Appendix

A Omitted Background: Basics on Hermite Analysis

Hermite polynomials form a complete orthogonal basis of the vector space L2(R,N (0, 1)) of all
functions f : R → R such that EX∼N (0,1)[f

2(X)] < ∞. There are two commonly used types
of Hermite polynomials. The physicist’s Hermite polynomials, denoted by Hk for k ∈ N satisfy
the following orthogonality property with respect to the weight function e−x

2

: for all k,m ∈ N,∫
RHk(x)Hm(x)e−x

2

dx =
√
π2kk!1(k = m). The probabilist’s Hermite polynomials Hek for

k ∈ N satisfy
∫
RHek(x)Hem(x)e−x

2/2dx = k!
√

2π1(k = m) and are related to the physicist’s
polynomials through Hek(x) = 2−k/2Hk(x/

√
2). We will mostly use the normalized proba-

bilist’s Hermite polynomials, hk(x) = Hek(x)/
√
k!, k ∈ N for which

∫
R hk(x)hm(x)e−x

2/2dx =√
2π1(k = m). These polynomials are the ones obtained by Gram-Schmidt orthonormalization

of the basis {1, x, x2, . . .} with respect to the inner product 〈f, g〉N (0,1) = EX∼N (0,1)[f(X)g(X)].
Every function f ∈ L2(R,N (0, 1)) can be uniquely written as f(x) =

∑
i∈N aihi(x) and we have

limn→nEx∼N (0,1)[(f(x)−
∑n
i=0 aihi(x))2] = 0 (see, e.g., [AAR99]).

We now state a well-known property of Ornstein–Uhlenbeck operator that we use in our proofs,
which is the fact that Uρ operates diagonally with respect to Hermite polynomials.

Fact A.1 (see, e.g., [O’D14]). For any Hermite polynomial hi, any distribution F on R, and
ρ ∈ (0, 1), it holds that EX∼UρF [hi(X)] = ρiEX∼F [hi(X)].

B Omitted Proofs from Section 2

In this section we restate and prove the following results.

Lemma 2.2. For u, v ∈ Sd−1, if Eu andEv have the same marginalsR(y) on the labels, they satisfy
χR(x,y)(Ev(x, y), Eu(x, y)) = Ey∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Proof. Let φ denote the density of N (0, 1). Using the fact that Ev and Eu have the same marginal
R(y) we have that

χR(x,y)(Ev(x, y), Eu(x, y)) + 1 =

∫
R

∫
Rd

Ev(x, y)Eu(x, y)

φ(x)R(y)
dxdy

=

∫
R

∫
Rd

Ev(x|y)Eu(x|y)

φ(x)
R(y)dxdy

=

∫
R

(
1 + χN (0,Id)(Ev(x|y)Eu(x|y))

)
R(y)dy

= 1 + E
y∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Fact 2.3. Fix ρ > 0, v ∈ Sd−1, and consider the regression model of Definition 1.2 with β = ρv.
Then the conditional distributionX|y of the inliers isN (yρv, Id−ρ2vvT ), i.e., independent standard
Gaussian in all directions perpendicular to v and N (ρy, 1− ρ2) in the direction of v.

Proof. This is due to the following fact for the conditional distribution of the Gaussian distribution.

Fact B.1. If
[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, then y1|y2 ∼ N (µ̄, Σ̄), with µ̄ = µ1+Σ12Σ−1

22 (y2−

µ2) and Σ11 − Σ12Σ−1
22 Σ21.

We apply this fact for the pair (X, y) by setting y1 = X, y2 = y, µ1 = µ2 = 0 and Σ11 = Id,Σ12 =

β,Σ21 = βT ,Σ22 = σ2 + ‖β‖22.
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Lemma 2.4. Let R be a distribution on pairs (x, y) ∈ Rd+1 such that αy := αDv(y)/R(y) ∈ [0, 1]
for all y ∈ R. Suppose that for every y ∈ R there exists a univariate distribution Qy such that
Ay := αyN (yρ, 1−ρ2)+(1−αy)Qy matches the first 2m moments withN (0, 1). If the distribution
of the outliers is Nv(x, y) = ((1−αy)/(1−α))Qy(vTx)φ⊥v(x)R(y), Properties (I) and (II) hold.

Proof. First note that the noise distribution Nv is indeed a valid distribution since it is non-negative
everywhere because of the assumption αy ∈ [0, 1] and it integrates to one:

1

1− α

∫
R

∫
Rd

(1− αy)Qy(vTx)φ⊥v(x)R(y)dxdy

=
1

1− α

(∫
R

∫
Rd
R(y)Qy(vTx)φ⊥v(x)dxdy − α

∫
R

∫
Rd
Dv(y)Qy(vTx)φ⊥v(x)dxdy

)
= 1 .

The joint distribution Ev(x, y) can be written as

Ev(x, y) = αDv(x, y) + (1− α)Nv(x, y)

= αDv(x, y) + (1− α)
1− αy
1− α

Qy(vTx)φ⊥v(x)R(y)

=
(
αyDv(x|y) + (1− αy)Qy(vTx)φ⊥v(x)

)
R(y) .

This means that the marginal of y underEv isR(y), which establishes Property (I), and the conditional
distribution of X|y under Ev is Ey(x|y) = αyDv(x|y) + (1− αy)Qy(vTx)φ⊥v(x).

The moment matching part of Property (II) holds by assumption. For the other part of Property (II),
we note that Ev(x|y) is standard Gaussian in directions perpendicular to v because of Fact 2.3 and
the form of the term Qy(vTx)φ⊥v(x) that corresponds to the outliers.

Lemma 2.6. In the setting of Theorem 2.5, let ρ > 0 and Qy = UρFy. Then the following holds
for the mixture Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy: (i) Ay matches the first 2m moments with
N (0, 1), and (ii) χ2(Ay,N (0, 1)) ≤ αO(ey

2(α−1/2))/(1− ρ2) +O(eB
2/2)/(1− ρ2).

Proof. The first property follows by noting that Ay = αyN (yρ, 1− ρ2) + (1−αy)Qy = Uρ(αyδy +
(1−αy)Fy) and using Fact A.1. This implies that for all i ≤ 2m we have that

E
X∼Uρ(αyδy+(1−αy)Fy)

[hi(X)] = ρi E
X∼αyδy+(1−αy)Fy

[hi(X)] = ρi E
X∼N (0,1)

[hi(X)] = E
X∼N (0,1)

[hi(X)],

where the last equation uses that EX∼N (0,1)[hi(X)] = 0 for i > 0 and EX∼N (0,1)[h0(X)] = 1.
Since {hi : i ∈ [2m]} form a basis of P(2m), the space of all polynomials of degree at most 2m, it
follows that Ay continues to matches 2m moments with N (0, 1).

The χ2 bound is due to the bounded support in [−B,B] and the Gaussian smoothing operation and
can be shown as follows. First, we need the following fact whose proof is included in Appendix G
for completeness.

Fact B.2. For any one-dimensional distribution P that matches the first m moments with N (0, 1)
and has χ2(P,N (0, 1)) <∞ the following identity is true:

χ2(P,N (0, 1)) =

∞∑
i=m+1

(
E

X∼P
[hi(X)]

)2

.

Let My denote the distribution αyδy + (1− αy)Fy, i.e., the mixture before applying the Ornstein-
Uhlenbeck operator. In order to apply Fact B.2 toMy , we need to argue that its χ2-divergence is finite.
Note that Fy is a discrete distribution, the Uρ operator will transform it to a finite sum of Gaussians
with variances strictly less than 2. We defer the proof of the following claim to Appendix G.

Claim B.3. If P =
∑k
i=1 λiN(µi, σ

2
i ) with µi ∈ R, σi <

√
2 and λi ≥ 0 such that

∑k
i=1 λi = 1,

we have that χ2(P,N (0, 1)) <∞.
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Using the formula of Fact B.2 and Fact A.1 for the individual terms, we get that

χ2(Ay,N (0, 1)) =

∞∑
i=2m+1

E
X∼UρMy

[hi(X)]2 =

∞∑
i=2m+1

ρ2i E
X∼My

[hi(X)]2

=

∞∑
i=2m+1

ρ2i

(
αyhi(y) + (1− αy) E

x∼Fy
[hi(X)]

)2

≤ 2α2
y

∞∑
i=2m+1

ρ2ih2
i (y) + 2(1− αy)2

∞∑
i=2m+1

ρ2i E
x∼Fy

[hi(X)]2 , (2)

where the inequality uses that (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R. To bound this expression from
above we will use the following tail bound for Hermite polynomials.

Lemma 3.6. Let hi be the i-th normalized probabilist’s Hermite polynomial. Then
maxx∈R h

2
k(x)e−x

2/2 = O(k−1/6).

More details on how Lemma 3.6 follows from the result of [Kra04] can be found in Section C.3. For
the first term of Equation (2), we have that

∞∑
i=2m+1

ρ2iα2
yh

2
i (y) ≤

∞∑
i=2m+1

ρ2iαe−y
2+αy2

O(ey
2/2)

≤ αO(ey
2(α−1/2))

∞∑
i=2m+1

ρ2i

≤ αO(ey
2(α−1/2))ρ2(2m+1)/(1− ρ2) ,

where the first inequality uses Lemma 3.6 and the definition of αy. For the second term, we use the
bounded support of Fy in [−B,B] along with the bound of Lemma 3.6 to obtain
∞∑

i=2m+1

ρ2i E
x∼Fy

[hi(X)]2 ≤
∞∑

i=2m+1

ρ2iO(eB
2/2) ≤ O(eB

2/2)

∞∑
i=2m+1

ρ2i ≤ O(eB
2/2)

ρ2(2m+1)

1− ρ2
.

This completes the proof of Lemma 2.6.

We include a detailed proof of Theorem 2.1 here for completeness.

Proof of Theorem 2.1. We will show that the following search problem Z has large statistical di-
mension: D is the set of distributions of the form Ev(x, y) = αDv(x, y) + (1−α)Nv(x, y) for
every v ∈ Sd−1 and noise distribution Nv as in Lemma 2.4. The reference distribution R is
R = N (0, Id)×N (0, 1/α). Let β(v) = ρv denote the regression vector corresponding to Ev . The
set of solutions F is the set of all lists of size ` containing vectors of norm ρ in Rd and the solution
set Z(Ev) for the distribution Ev is exactly the set of lists from F having at least one element
u at distance ‖u− β(v)‖2 ≤ ρ/2. The appropriate subset of D that we will consider is the one
corresponding to the set S of nearly orthogonal vectors of Lemma 1.14, DR = {Ev}v∈S .

Note that for any vector u ∈ Rd with norm ρ, there exists at most one element Ev in DR that satisfies
‖u− β(v)‖2 ≤ ρ/2, since if there exists another v′ with ‖u− β(v′)‖2 ≤ ρ/2, then by triangle
inequality ‖β(v)− β(v′)‖2 ≤ ρ. However, this cannot happen because |vT (v′)| ≤ O(dc−1/2) for all
v, v′ ∈ S together with d = 2Ω(1/(1/2−c)) implies that ‖β(v) − β(v′)‖2 ≥ ρ

√
2(1− vT (v′)) ≥ ρ.

This implies that for any solution list L, |DR \ Z−1(L)| ≥ |DR| − `. We choose ` = |DR|/2. We
now calculate the pairwise correlation of the set DR. Let a pair of u, v ∈ Sd−1.

χR(x,y)(Ev(x, y), Eu(x, y)) = E
y∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
≤ |uT v|2m+1 E

y∼R(y)

[
χ2(Ay,N (0, 1))

]
= |uT v|2m+1

(
O(eB

2/2)/(1− ρ2) +

∫
R
αO(ey

2(α−1/2))
√
αe−y

2αdy

)
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≤ |uT v|2m+1O(eB
2/2)/(1− ρ2)

≤ Ω(d)−(2m+1)(1/2−c)O(eB
2/2)/(1− ρ2) ,

where the first line is due to Lemma 2.2, the second line is from Lemma 1.13 along with the
observation that Ev(x|y) is of the form PAy,v, the third line comes from the second part of
Lemma 2.6, and the last one uses Lemma 1.14. Thus, by recalling that we can choose B = C2

√
m

for a sufficiently large constant C2, the set DR is (γ, b)-correlated with respect to R, where
γ := Ω(d)−(2m+1)(1/2−c)eO(m)/(1 − ρ2) and b := eO(m)/(1 − ρ2). The proof is concluded
by applying Lemma 1.11 with γ′ = γ.

We conclude this section with a note on the model and existing algorithmic results (extending the
relevant discussion of Section 1.1).
Remark B.4 (Comparison of SQ Lower Bound to Existing Upper Bounds). We remark that the
model used in Theorem 1.5 (i.e., having a regressor with norm at most one and additive noise with
small variance) is considered in both recent works [KKK19, RY20a] that provided list-decoding
algorithms for the problem. In particular, these works give the following upper bounds:

• [KKK19] considers the model where ‖β‖2 ≤ 1 and gives an algorithm that for every ε > 0,

runs in time (d/(αε))O( 1
α8ε8

) and outputs a list of size O(1/α) containing a β̂ such that
‖β̂ − β‖2 ≤ O(σ/α) + ε. Note that this guarantee is better than the trivial upper bound of 1

only if σ = O(α). To achieve error 1/4, this algorithm runs in time (d/α)O( 1
α8 ). On the

other hand, our lower bound for the complexity of any SQ algorithm becomes αdΩ(1/
√
α).

• [RY20a] does not impose any constraint on ‖β‖2 and gives an algorithm that runs in time
(‖β‖2/σ)log(1/α)dO(1/α4) and outputs a list of sizeO((‖β‖2/σ)log(1/α)) including a β̂ with
the guarantee that ‖β̂ − β‖2 ≤ O(σ/α3/2). For the special case where ‖β‖2 ≤ 1 (and
σ = O(α3/2) in order for the error guarantee to be meaningful), this algorithm can achieve
error 1/4 in time (1/α3/2)log(1/α)dO(1/α4). In comparison, our lower bound becomes
α3/2dΩ(1/

√
α).

C Omitted Proofs from Section 3

C.1 Proof of Proposition 3.2

We restate and prove the following proposition:
Proposition 3.2. Fix y ∈ R, αy ∈ (0, 1), B > 0, and m ∈ Z+. There exists a discrete distribution
Fy supported on at most 2m+ 1 points in [−B,B] such that αyδy + (1− αy)Fy matches the first
2m moments with N (0, 1) if and only if EX∼N (0,1)[p(X)] ≥ αyp(y) for all p ∈ P≥0(2m,B).

We require the following result stating that for every distribution Q with bounded support, there exists
a discrete distribution P with bounded support that matches the low-degree moments of Q.
Lemma C.1. Let B > 0, k ∈ Z+, and Q be any distribution with support in [−B,B]. Then there
exists a discrete distribution P with the following properties: (i) the support of P is contained in
[−B,B], (ii) the first k moments of P agree with the first k moments of Q, and (iii) P is supported
on at most k + 1 points.

Proof. Let Q be the set of distributions on R that are supported in [−B,B] and let Q′ ⊂ Q be the
set of Dirac delta distributions supported in [−B,B], i.e., Q′ = {δy : y ∈ [−B,B]}. Let C ⊂ Rk
and C′ ⊂ Rk be the set of all vectors (x1, . . . , xk) whose coordinates x1, . . . , xk are the moments of
a distribution in Q and Q′ respectively, i.e.,

C := {x ∈ Rk : ∃Q ∈ Q : ∀i ∈ [k], xi = E
X∼Q

[Xi]},

C′ := {x ∈ Rk : ∃Q′ ∈ Q′ : ∀i ∈ [k], xi = E
X∼Q′

[Xi]}.
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Note that there is a bijection between C′ and Q′. We now recall the following classical result stating
convexity properties of C and its relation with C′. We say a set M is a convex hull of a set M ′ if every
x ∈M can be written as x =

∑j
i=1 λiyi, where j ∈ Z+,

∑j
i=1 λi = 1, and for all i ∈ [j]: λi ≥ 0,

yi ∈M ′.
Lemma C.2 (Theorem 7.2 and 7.3 of [KS53]). C is convex, closed, and bounded. Moreover, C is a
convex hull of C′.

Let x∗ = (x∗1, . . . , x
∗
k) be the first k moments of Q. Since x∗ ∈ C, Caratheodory theorem and

Lemma C.2 implies that x∗ can be written as a convex combination of at most k + 1 elements of C′.
This implies that there is a distribution, which is a convex combination of at most k + 1 Dirac delta
distributions in Q′, that matches the first k moments with x∗. This completes the proof.

We can now prove the main result of this section.

Proof of Proposition 3.2. Let X ∼ N (0, 1). We note that Fy should have the moment sequence
x = (x1, . . . , x2m) where xi = (EX∼N (0,1)[X

i] − αyy
i)/(1 − αy) for i ∈ [2m]. Theo-

rem 3.1 implies that this happens if and only if for all p = (p0, . . . , p2m) ∈ P≥0(2m,B),
we have that

∑2m
i=0 xipi ≥ 0. The desired expression follows by noting that

∑2m
i=0 xipi =

(
∑2m
i=0 piEX∼N (0,1)[X

i] − αypiy
i)/(1 − αy) = (EX∼N (0,1)[p(X)] − αyp(y))/(1 − αy). The

result that Fy is discrete follows from Lemma C.1.

C.2 Proof of Lemma 3.3

For convenience, we restate the lemma below.
Lemma 3.3. Let m ∈ Z+. If B ≥ C

√
m for some sufficiently large constant C > 0, then for every

q ∈ P(m), it holds that B2 EX∼N (0,1)[q
2(X)] ≥ 2EX∼N (0,1)[X

2q2(X)].

Proof. Let X ∼ N (0, 1). We can assume that q is a non-zero polynomial. Then it suffices to bound
B from above by

√
2 times the following expression:

sup
q∈P(m),q 6≡0

√
E[X2q2(X)]

E[q2(X)]
≤ sup
q∈P(m),q 6≡0

√√√√ (E[(X2)m+1])
1/(m+1)

(
E[(q2(X))

m+1
m ]
) m
m+1

E[q2(X)]

= sup
q∈P(m),q 6≡0

‖X‖L2m+2‖q(X)‖
L

2m+2
m

‖q(X)‖L2

,

where the first step uses Hölder’s inequality. Using standard concentration bounds for the stan-
dard Gaussian (or Fact 3.5 with p(x) = x), we get that ‖X‖L2m+2 = O(

√
m). Gaussian

Hypercontractivity (Fact 3.5) implies that for any polynomial of degree at most m and r > 2,
‖q(X)‖Lr ≤ (r − 1)m/2 ‖q(X)‖L2 . For r = (2m+ 2)/m, we get that

‖q(X)‖
L

2m+2
m

‖q(X)‖L2

≤
(

2m+ 2

m
− 1

)m
2

=

(
1 +

2

m

)m
2

≤ exp(1).

Therefore, B ≥ C
√
m suffices for a sufficiently large constant C.

C.3 Proof of Lemma 3.4

We restate and prove the following:
Lemma 3.4. Let y ∈ R, α ∈ (0, 1/2), m ∈ Z+, and αy =

√
α exp(−y2(1 − α)/2). Sup-

pose m ≤ C/
√
α for some sufficiently small constant C > 0. Then for all r ∈ P(m), r 6≡ 0:

r2(y)/(EX∼N (0,1)[r
2(X)]) ≤ 1/(2αy).

We first recall the result on the tails of Hermite polynomials.
Lemma 3.6. Let hi be the i-th normalized probabilist’s Hermite polynomial. Then
maxx∈R h

2
k(x)e−x

2/2 = O(k−1/6).
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For completeness, we give an explicit calculation that translates the result of [Kra04] in our setting.

Proof of Lemma 3.6. We will split the analysis in two cases. First suppose the case when k < 6. As
hk(·) is a constant degree polynomial, we get that maxx∈R h

2
k(x) exp(−x2/2) is a constant. For the

rest of the proof, we will assume that k ≥ 6.

For brevity, we will only consider the case where k is even. The case where k is odd is similar. Let
Hk(·) be the physicist’s Hermite polynomial. Recall that we can relate hk(·) with Hk(·) with the
following change of variable: Hk(x) =

√
2kk!hk(

√
2x).

[Kra04, Theorem 1] implies the following:

max
x∈R

(
(Hk(x))2e−x

2
)

= O

(√
kk−1/6

(
k

0.5k

)
k!

)
. (3)

From Equation (3) we obtain:

max
x∈R

2kk!h2
k(
√

2x)e−x
2

= max
x∈R

2kk!h2
k(x)e−x

2/2 = O

(√
kk−1/6

(
k

0.5k

)
k!

)
.

This implies the following:

max
x∈R

h2
k(x)e−x

2/2 = O

(
k−1/6

√
k

(
k

0.5k

)
2−k

)
= O(k−1/6),

where we use that
(
k

0.5k

)
2−k/

√
k = O(1).

Proof of Lemma 3.4. Let hi be the i-th normalized probabilist’s Hermite polynomial. Since r is
a polynomial of degree at most m and {hi, i ∈ [m]} form a basis for P(m), we can represent
r(x) =

∑m
i=1 aihi(x) for some ai ∈ R. Using orthonormality of hi under the Gaussian measure, we

get that EX∼N (0,1)[r
2(X)] =

∑m
i=1 a

2
i . Since r is a non-zero polynomial, we have that

∑m
i=1 a

2
i > 0.

We thus have that

sup
r∈P(m),r 6≡0

r2(y)

EX∼N (0,1)[r2(X)]
= sup
a1,...,am∈R,

∑m
i=1 a

2
i>0

∑m
i=1

∑m
j=1 aiajhi(y)hj(y)∑m

i=1 a
2
i

= sup
a1,...,am∈R,

∑m
i=1 a

2
i>0

√∑m
i=1

∑m
j=1 a

2
i a

2
j

√∑m
i=1

∑m
j=1 h

2
i (y)h2

j (y)∑m
i=1 a

2
i

=

m∑
i=1

h2
i (y).

Therefore, we need to show that, for all y ∈ R,
∑m
i=1 αyh

2
i (y) ≤ 1/2 whenever m ≤ C/

√
α for a

sufficiently small constant C > 0. We will now split the analysis in two cases:

Case 1: |y| ≤ 1/
√
α. Using Lemma 3.6 and the assumption that |y|2α ≤ 1, we can bound the

desired expression as follows:

max
|y|≤1/

√
α
αyh

2
i (y) = max

|y|≤1/
√
α

√
α exp(y2α/2) exp(−y2/2)h2

i (y)

≤
√
αe sup

y∈R
exp(−y2/2)h2

i (y)

= O(
√
αi−1/6).

Therefore, we get the following bound on
∑
i h

2
i (y).

m∑
i=1

αyh
2
i (y) = O

(
√
α

m∑
i=1

i−1/6

)
= O(

√
αm5/6) .

The last expression is less than 1/2 when m = O(1/α3/5).
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Case 2: |y| ≥ 1/
√
α. We will use rather crude bounds here. We have the following explicit

expression of hi(·) (see, for example, [AAR99, Sze89]):

|hi(x)| =
∣∣∣∣Hei(x)√

i!

∣∣∣∣ =

∣∣∣∣∣∣√i!
bi/2c∑
j=0

(−1)j

j!(i− 2j)!

xi−2j

2j

∣∣∣∣∣∣ =

∣∣∣∣∣∣√i!xi
bi/2c∑
j=0

(−1)j

(2j)!(i− 2j)!
x−2j (2j)!

j!2j

∣∣∣∣∣∣
≤
√
i!|x|i

i∑
k=0

i!

k!(i− k)!
|x|−k ≤ (i|x|)i(1 + |x|−1)i = ii(1 + |x|)i.

Therefore, we get the following relation for all |y| > 1, α < 0.5, and i ∈ N:

αyh
2
i (y) =

√
α exp(−y2(1− α)/2)h2

i (y)

≤
√
α exp(−y2/4)(2i|y|)2i

=
√
α exp(−y2/4 + 2i log(2i|y|)).

The expression above is at most C ′
√
α for a constant C ′ > 0 for all |y| ≥ c′

√
i log i for a constant

c′ > 0. The latter condition holds whenever 1/
√
α ≥ c′

√
i log i. It suffices that i = O(1/α0.9).

Overall, we get the following bound when m = O(1/α0.9):

sup
|y|>1/

√
α

m∑
i=1

αyh
2
i (y) = O(

√
αm).

The last expression is less than 1/2 when m ≤ C/
√
α for some constant C > 0. This completes the

proof of Lemma 3.4.

D Information-Theoretic Bounds

D.1 Upper Bound on Sample Complexity

In this section, we show that n = poly(d, 1/α) samples suffice for list-decodable linear regression.
We note that the similar guarantees can be achieved by modifying the analysis in [KKK19] although
the sample complexity details are not explicit there. At a high level, both Theorem D.1 and [KKK19]
rely on the following properties of inliers: anti-concentration of covariates (X) and concentration of
additive noise (η).
Theorem D.1. There is a (computationally inefficient) algorithm that uses O(d/α3) samples from
a (1−α)-corrupted version of a Gaussian linear regression model of Definition 1.2 with S′ = Rd,
and returns a list L of |L| = O(1/α) many hypotheses such that with high probability at least one of
them is within `2-distance O((σ/α)

√
log(1/α)) from the regression vector.

The proof strategy is similar to [DKS18]. When S is a set, we use the notation X ∼u S to denote
that X is distributed according to the uniform distribution on S. We require the following theorem:
Theorem D.2 (VC Inequality). Let F be a class of Boolean functions with finite VC dimension
VC(F) and let a probability distribution D over the domain of these functions. For a set S of n
independent samples from D

sup
f∈F

∣∣∣ Pr
X∼uS

[f(X)]− Pr
X∼D

[f(X)]
∣∣∣ .√VC(F)

n
+

√
log(1/τ)

n
,

with probability at least 1− τ .

Proof of Theorem D.1. Recall the notation in Definitions 1.1 and 1.2. Let T be the set of points
generated from the (1−α)-corrupted version of Dβ∗ for some unknown β∗ ∈ Rd. Let S1 be the set
of points that are sampled from Dβ∗ . Since inliers are sampled with probability α, we have that
|S1| ≥ α|T |/2 with high probability. For a t ≥ 0, defineHt,γ as follows:

Ht,γ :=

{
β ∈ Rd : ∃T ′ ⊂ T, |T ′| = α|T |/2, (4)
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Pr
(X,y)∼uT ′

[|y −XTβ| > σt] ≤ α/20, (5)

∀v ∈ Sd−1, γ′ ≥ γ : Pr
(X,y)∼uT ′

[|y −XTβ − γ′vTX| ≤ σt] ≤ α/20

}
. (6)

Recall that the distribution of inliers is X ∼ N (0, Id) and y = XTβ∗ + η, where η ∼ N (0, σ2)
independent of X . If |S1| ≥ Cd/α2 for a sufficiently large constant C, then we claim that β∗ ∈ Ht,γ
with t = Θ(

√
log(1/α)) and γ = 40σt/α = Θ((σ/α)

√
log(1/α)). Let S′ be a set of i.i.d. points

sampled from Dβ∗ with |S′| = |T |α/2. We first argue that conditions (5) and (6) hold under
(X, y) ∼ Dβ∗ , even after replacing α/20 with α/40 in conditions (5) and (6), with the claimed
bounds on t and γ, and then the required result on (X, y) ∼u S′ will follow from the VC inequality.
Since y − XTβ∗ ∼ N (0, σ2) under Dβ∗ , we get that Pr[|y − XTβ∗| > σt] ≤ α/40 because of
Gaussian concentration. Let G ∼ N (0, 1) independent of η. For condition (6), the expression again
reduces to concentration of a Gaussian distribution:

Pr
η∼N (0,σ2),G∼N (0,1)

[|η + γ′G| ≤ σt] = Pr
Z∼N (0,σ2+γ′2)

[|Z| ≤ σt] . σt

γ′
,

which is less than α/40 for γ′ ≥ γ = 40tσ/α. The desired conclusion now follows by noting that
conditions (5) and (6) follow by uniform concentration of linear threshold functions on (X, y), which
have VC dimension O(d) and the condition that |S′| = Ω(d/α2).

We then show that any (2γ)-packing of the set Ht,γ has size O(1/α). Having this, it follows that
there exists a (2γ)-cover of size O(1/α) and the output of the algorithm, L, consists of returning any
such cover. The key claim for bounding the size of any (2γ)-packing is that the pairwise intersection
between the sets T ′ from condition (4) are small.

Claim D.3. Let β1, . . . , βk ∈ Ht,γ such that ‖βi − βj‖2 > 2γ for all i, j ∈ [k] and i 6= j. Let T ′i be
the corresponding subsets of T satisfying the condition (4). Then |T ′i ∩ T ′j | ≤ α(|T ′i |+ |T ′j |)/20.

Proof. Fix an i 6= j. Let βi − βj = 2vγ′, where v ∈ Sd−1 and γ′ ≥ γ. Let E be the event
{(X, y) : |y −XTβj | ≤ σt} and Ec be its complement. As T ′i and T ′j are sets of size α|T |/2, we
have that

|T ′i ∩ T ′j | =
|T ′i |+ |T ′j |

2

(
|T ′i ∩ T ′j ∩ E|
|T ′i |

+
|T ′i ∩ T ′j ∩ Ec|

|T ′j |

)

≤
|T ′i |+ |T ′j |

2

(
|T ′i ∩ E|
|T ′i |

+
|T ′j ∩ Ec|
|T ′j |

)
=
|T ′i |+ |T ′j |

2

(
Pr

(X,y)∼uT ′i
[E ] + Pr

(X,y)∼uT ′j
[Ec]

)
.

As βj ∈ Ht,γ , we have that P(X,y)∼uT ′j [E
c] ≤ α/20 by condition (5). We now bound the first term.

Pr
(X,y)∼uT ′i

[E ] = Pr
(X,y)∼uT ′i

[|y −XTβi − γvTX| ≤ σt],

which is less than α/20 by the condition (6). This completes the proof of the claim.

We use this to show that there cannot exist a (2γ)-packing of size k ≥ 4/α. To see this, assume that
k = 4/α, then

|T | ≥
k∑
i=1

|T ′i | −
∑

1≤i<j≤k

|T ′i ∩ T ′j | ≥
(

1− α

20
(k − 1)

) k∑
i=1

|T ′i | ≥
4

5
kα
|T |
2
> |T | .

This yields a contradiction, completing the proof of Theorem D.1.

D.2 Information-Theoretic Lower Bound on Error

We establish the following lower bound on the error of any list-decoding algorithm for linear
regression.
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Theorem D.4. Let 0 < α < 1/2, σ > 0, k > 1 such that k = O(1/(α2 log(1/α))), and d ∈ Z+

such that d > (log(1/αk))C , where C is a sufficiently large constant. Any list-decodable algorithm
that receives a (1−α)-corrupted version of Dβ (defined in Definition 1.2) for some unknown β ∈

Rd, and returns a list L of size |L| = O((1/α)k) has error bound Ω

(
σ

α
√
k log(1/α)

)
with high

probability.

Proof. Let ρ > 0 to be decided later. We will take β to be of the form ρv for some unit vector v. By
abusing notation, letDv(x, y) be the joint distribution on (X, y) from the linear modelX ∼ N (0, Id),
y = βTX+η, where η ∼ N (0, σ2) independently ofX and β = ρv. As d is large enough, let S′ be a
subset of the set S of nearly orthogonal unit vectors of Rd from Lemma 1.14 with |S′| = b0.5(1/α)kc
for k > 1. Consider the set of distributions {Dv}v∈S′ and note that for every distinct pair u, v ∈ S
we have that ‖ρu− ρv‖2 ≥ cρ for some c > 0. We want to show that after adding (1− α)-fraction
of outliers these distributions become indistinguishable, i.e., there exists some distribution that is
pointwise greater than αDv for every v ∈ S′. This will lead to a lower bound on error of the form
Ω(ρ). Let P be the joint pseudo-distribution on (X, y) such that P (x, y) = maxv∈S Dv(x, y) and
denote by ‖P‖1 the normalizing factor

∫
R
∫
Rd P (x, y)dxdy. We will show that P/‖P‖1 ≥ αDv

pointwise. To this end, it suffices to show that ‖P‖1 ≤ 1/α. Denote z := vTx. Noting that Dv’s
marginal on x is N (0, Id) and the conditional Dv(y|x) is N (ρz, σ2) we can write

Dv(x, y) =
1√
2πσ

exp

(
−|y − ρz|

2

2σ2

)
1

(
√

2π)d
exp

(
−‖x‖

2

2

)
=

1

(
√

2π)d+1σ
exp

(
−|y − ρz|

2

2σ2
− ‖x‖

2

2

)
.

For some σ1 to be defined later, take R to be the reference distribution where X ∼ N (0, Id) and
y ∼ N (0, σ2

1) independently. We now calculate the ratio of density of R with Dv at arbitrary (x, y):

R(x, y)

Dv(x, y)
=

R(y)R(x|y)

Dv(y)Dv(x|y)

=

1
(
√

2π)d+1σ1
exp

(
−0.5‖x‖2 − 0.5y2/σ2

1

)
1

(
√

2π)d+1σ
exp

(
−0.5‖x‖2 − 0.5 ρ

2

σ2

(
z − y

ρ

)2
)

=
σ

σ1
exp

(
− y2

2σ2
1

+
ρ2

2σ2

(
z − y

ρ

)2
)

≥ σ

σ1
exp

(
− y2

2σ2
1

)
.

We want that this expression is greater than 2α with high probability under Dv. Under Dv, y ∼
N (0, σ2

y), with probability 1−αk−1, |y| ≤ 10
√
kσy

√
log(1/α). Setting σ1 = 10

√
kσy

√
log(1/α),

we get that for |y| ≤ 10
√
kσy

√
log(1/α),

R(x, y)

Dv(x, y)
≥ 1

100
√
k

σ

σy
√

log(1/α)
. (7)

We can now try to maximize ρ (and thus σy) so that the expression on the right-hand side in (7) is
greater than 2α. This holds as long as ρ satisfies the following:

σ2
y = σ2 + ρ2 ≤ σ2

C ′kα2 log(1/α)
,

As k = O(1/(α2 log(1/α))), the condition above shows that ρ can be as large as
Θ((σ/(

√
kα))/

√
log(1/α)). Finally we show that ‖P‖1 is less than 1/α as follows:

‖P‖1 =

∫
R

∫
Rd
P (x, y)dxdy
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=

∫
R

∫
Rd
P (x, y)1(|y| ≤ 10

√
kσy

√
log(1/α))dxdy +

∫
R

∫
Rd
P (x, y)1(|y| > 10

√
kσy

√
log(1/α))dxdy

≤ 1

2α

∫
R

∫
Rd
R(x, y)dxdy +

∫
R

∫
Rd
P (x, y)1(|y| > 10

√
kσy

√
log(1/α))dxdy

≤ 1

2α
+
∑
v∈S′

Pr
(X,y)∼Dv

[
|y| > 10

√
kσy

√
log(1/α)

]
≤ 1

2α
+ |S′|αk−1 ≤ 1/α,

where the first inequality uses that for |y| ≤ 10
√
kσy

√
log(1/α)), we have that P (x, y)/R(x, y) =

maxvDv(x, y)/R(x, y) ≤ 1/2α from (7), and the last inequality follows by noting that |S′| ≤
0.5(1/α)k.

E Hypothesis Testing Version of Robust Linear Regression

Organization We introduce Problem E.2, which is the hypothesis testing variant of the search
problem that we discussed in the main text of this paper. We first show the SQ hardness of Problem E.2
in Theorem E.3. In Section E.2, we give an efficient reduction from Problem E.2 to list-decodable
linear regression, showing that Problem E.2 is indeed easier than the list-decodable linear regression
problem.

We begin by formally defining a hypothesis problem.
Definition E.1 (Hypothesis testing). Let a distribution D0 and a set S = {Du}u∈S of distributions
on Rd. Let µ be a prior distribution on the indices S of that family. We are given access (via i.i.d.
samples or oracle) to an underlying distribution where one of the two is true:

• H0: The underlying distribution is D0.

• H1: First u is drawn from µ and then the underlying distribution is set to be Du.

We say that a (randomized) algorithm solves the hypothesis testing problem if it succeeds with
non-trivial probability (i.e., greater than 0.9).

We now introduce the following hypothesis testing variant of the (1−α)-contaminated linear regres-
sion problem:
Problem E.2. Let α ∈ (0, 1/2), ρ ∈ (0, 1). Let S be the set of d-dimensional nearly orthogonal
vectors from Lemma 1.14. We are given access (via i.i.d. samples or oracle) to an underlying
distribution where one of the two is true:

• H0: The underlying distribution is R = N (0, Id)×N (0, 1/α).

• H1: First, a vector v is chosen uniformly at random from S. The underlying distribution is
set to be Ev , i.e., the (1-α)-additively corrupted linear model of Definition 1.2 with β = ρv,
σ2 = 1− ρ2, and a fixed noise distribution Nv as specified in Lemma 2.4.

Using the reduction outlined in Lemma E.9, it follows that O(d/α3) samples suffice to solve
Problem E.2 when σ ≤ O(α/

√
log(1/α)). On the other hand, the following result shows an SQ

lower bound of dpoly(1/α).
Theorem E.3 (SQ Hardness of Problem E.2). Let 0 < c < 1/2, m ∈ Z+ with m ≤
c1/
√
α for some sufficiently small constant c1 > 0 and d = mΩ(1/c). Every SQ algorithm

that solves Problem E.2 either performs 2Ω(dc/4) queries or performs at least one query to
STAT

(
Ω(d)−(2m+1)(1/4−c/2)eO(m)/

√
1− ρ2

)
.

We note that the lower bound on the (appropriate) statistical dimension implies SQ hardness of
the (corresponding) hypothesis testing problem. As the Problem E.2 differ slightly from the kind
of hypothesis testing problems considered in [FGR+17], we provide the proof of Theorem E.3 in
Section E.1, where we introduce the relevant statistical dimension from [BBH+20] (Definition E.4 in
this paper). In Section F, we also show the hardness of Problem E.2 against low-degree polynomial
tests.
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E.1 Hardness of Hypothesis Testing in SQ Model

We need the following variant of the statistical dimension from [BBH+20], which is closely related to
the hypothesis testing problems considered in this section. Since this is a slightly different definition
from the statistical dimension (SD) used so far, we will assign the distinct notation (SDA) for it.

Notation For f : R→ R, g : R→ R and a distribution D, we define the inner product 〈f, g〉D =

EX∼D[f(X)g(X)] and the norm ‖f‖D =
√
〈f, f〉D.

Definition E.4 (Statistical Dimension). For the hypothesis testing problem of Definition E.1, we
define the statistical dimension SDA(S, µ, n) as follows:

SDA(S, µ, n) = max

{
q ∈ N : E

u,v∼µ
[|〈D̄u, D̄v〉D0 − 1| | E ] ≤ 1

n
for all events E s.t. Pr

u,v∼µ
[E ] ≥ 1

q2

}
.

We will omit writing µ when it is clear from the context.
Theorem E.5 (Theorem A.5 of [BBH+20]). Let S = {Du}u∈S vs. D0 be a hypothesis testing
problem with prior µ on S. If SDA(S, µ, 3/t) > q, then every SQ algorithm that solves the
hypothesis testing problem either makes at least q queries, or makes at least one query to STAT(

√
t).

In order to prove Theorem E.2, we will prove a lower bound on the SDA of Problem E.2. As we will
show later, Problem E.2 is a special case of the following hypothesis testing problem:
Problem E.6 (Non-Gaussian Component Hypothesis Testing). Let R be the joint distribution R
over the pair (X, y) ∈ Rd+1 where X ∼ N (0, Id) and y ∼ R(y) independently of X . Let Ev
be the joint distribution over pairs (X, y) ∈ Rd+1 where the marginal on y is again R(y) but the
conditional distribution Ev(x|y) is of the form PAy,v (with PAy,v as in Definition 1.12). Define
S = {Ev}v∈S for S being the set of d-dimensional nearly orthogonal vectors from Lemma 1.14 and
let the hypothesis testing problem be distinguishing between R vs. S with prior µ being the uniform
distribution on S.

The following lemma translates the (γ, β)-correlation of S to a lower bound for the statistical
dimension of the hypothesis testing problem. The proof is very similar to that of Corollary 8.28
of [BBH+20] but it is given below for completeness.

Lemma E.7. Let 0 < c < 1/2 and d,m ∈ Z+ such that d = mΩ(1/c). Consider the hypothesis
testing problem of Problem E.6 where for every y ∈ R the distribution Ay matches the first m
moments with N (0, 1) and Ey∼R(y)[χ

2(Ay,N (0, 1))] <∞. Then, for any q ≥ 1,

SDA

D, Ω(d)(m+1)(1/2−c)

Ey∼R(y)[χ2(Ay,N (0, 1))]
(

q2

2Ω(dc/2)
+ 1
)
 ≥ q .

Proof. The first part is to calculate the correlation of the set S exactly as we did in the proof of Theo-
rem 2.1. By Lemma 1.14, Lemma 1.13 and Lemma 2.2 we know that the set S is (γ, β)-correlated
with γ = Ω(d)−(m+1)(1/2−c) Ey∼R(y)[χ

2(Ay,N (0, 1))] and β = Ey∼R(y)[χ
2(Ay,N (0, 1))].

We next calculate the SDA according to Definition E.4. We denote by Ēv the ratios of the density of
Ev to the density of R. Note that the quantity 〈Ēu, Ē,v〉 − 1 used there is equal to 〈Ēu − 1, Ēv − 1〉.
Let E be an event that has Pru,v∼µ[E ] ≥ 1/q2. For d sufficiently large we have that

E
u,v∼µ

[|〈Ēu, Ēv〉 − 1|E ] ≤ min

(
1,

1

|S|Pr[E ]

)
E

y∼R(y)
[χ2(Ay,N (0, 1))]

+ max

(
0, 1− 1

|S|Pr[E ]

)
Ey∼R(y)[χ

2(Ay,N (0, 1))]

Ω(d)(m+1)(1/2−c)

≤ E
y∼R(y)

[χ2(Ay,N (0, 1))]

(
q2

2Ω(dc)
+

1

Ω(d)(m+1)(1/2−c)

)
= E
y∼R(y)

[χ2(Ay,N (0, 1))]
q2Ω(d)(m+1)(1/2−c) + 2Ω(dc)

2Ω(dc)Ω(d)(m+1)(1/2−c)
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= E
y∼R(y)

[χ2(Ay,N (0, 1))]

(
Ω(d)(m+1)(1/2−c)

q2Ω(d)(m+1)(1/2−c)/2Ω(dc) + 1

)−1

= E
y∼R(y)

[χ2(Ay,N (0, 1))]

(
Ω(d)(m+1)(1/2−c)

q2/2Ω(dc/2) + 1

)−1

,

where the first inequality uses that Pr[u = v|E ] = Pr[u = v, E ]/Pr[E ] and bounds the numerator
in two different ways: Pr[u = v, E ]/Pr[E ] ≤ Pr[u = v]/Pr[E ] = 1/(|D|Pr[E ]) and Pr[u =
v, E ]/Pr[E ] ≤ Pr[E ]/Pr[E ] = 1.

We note that the lemma above and Theorem E.5 show SQ hardness of Problem E.6. In the remainder
of this section, we will apply these results to Problem E.2.
Corollary E.8. Let 0 < c < 1/2, m ∈ Z+ with m ≤ c1/

√
α for some sufficiently small constant

c1 > 0 and d = mΩ(1/c). Consider the hypothesis testing problem of Problem E.2. Then, for any
k < dc/4:

SDA

(
D, Ω(d)(2m+1)(1/2−c)

eO(m)/(1− ρ2)

)
≥ 100k .

Proof. We note that Problem E.2 is a special case of Problem E.6 (see Fact 2.3 and Lemma 2.4
which show that the conditional distributions are of the form PAy,v). In Lemma E.7 we use q =√

2Ω(dc/2)(n/n′) with n′ = n = Ω(d)(2m+1)(1/2−c)

Ey∼R(y)[χ2(Ay,N (0,1))] to get that SDA(D, n) > 100k for k < dc/4.
The first part of Lemma 2.6 states that the distributionsAy’s match the first 2mmoments withN (0, 1)
for m ≤ c1/

√
α and the second part implies that Ey∼R(y)[χ

2(Ay,N (0, 1))] = O(em)/(1 − ρ2).
This completes the proof.

We conclude by noting the hardness of Problem E.6 and thus Problem E.2 in the SQ model. The
proof of Theorem E.3 follows from Corollary E.8 and Theorem E.5.

E.2 Reduction from Hypothesis Testing to List-Decodable Regression

We now show that any list-decoding algorithm for robust linear regression can be efficiently used to
solve Problem E.2, that is, hypothesis testing efficiently reduces to list-decodable estimation. For a
list L and i ∈ [|L|], we use L(i) to denote the i-th element of L.

Lemma E.9. Let d ∈ Z+ with d = 2Ω(1/(1/2−c)). Consider the (1−α)-corrupted linear regression
model of Definition 1.2 with β = ρv for v ∈ Sd−1, ρ ∈ (0, 1), σ2 = 1−ρ2. There exists an algorithm
LIST_REGRESSION_TO_TESTING that, given a list-decoding algorithm A with the guarantee of
returning a list L of candidate vectors such that for some i ∈ {1, . . . , |L|}, ‖L(i) − β‖2 ≤ ρ/4,
solves the hypothesis testing Problem E.2 with probability at least 1− |L|2e−Ω(d2c). The running
time of this reduction is quadratic in |L|.

Proof. The reduction is described in Algorithm E.2. To see correctness, first assume that the
alternative hypothesis holds. We note that the rotated points (AX ′1, y

′
1), . . . , (AX ′n, y

′
n) come from

the Gaussian linear regression model of Definition 1.2 having β′ = Aβ as the regressor. Thus
A finds lists L1,L2 such that there exist i∗ ∈ {1, . . . , |L1|} with ‖L1(i∗) − β‖2 ≤ ρ/4 and
j∗ ∈ {1, . . . , |L2|} with ‖ATL2(j∗)− β‖2 ≤ ρ/4, where we use that ATA = I . Moreover, since
we are considering the regression model with ‖β‖2 = ρ, L1(i∗) and ATL2(j∗) must have norms
belonging in [3ρ/4, 5ρ/4]. By the triangle inequality we get that ‖L1(i∗)−ATL2(j∗)‖2 ≤ ρ/2 and
thus the algorithm correctly outputs H1.

Now assume that the null hypothesis holds, where the marginal on points is N (0, Id) and la-
bels are independently distributed as N (0, 1/α). Fix a pair i ∈ [|L1|], j ∈ [|L2|] for which
‖L1(i)‖2, ‖L2(j)‖2 ∈ [3ρ/4, 5ρ/4]. Note that, by rotation invariance of the standard Gaussian
distribution and the independence between covariates and response under the null distribution, the
input {(AX ′i, y′i)}ni=1 for the second execution of the list-decoding algorithm is independent of A.
Thus the list L2 is independent of A (and also independent of L1). Thus, ATL2(j) is a random vector
selected uniformly from the sphere of radius ‖L2(j)‖2 and independently of L1(i). Recall that two
random vectors are almost orthogonal with high probability.
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Algorithm 1 Reduction from Hypothesis Testing to List-Decodable Linear Regression.
A(ρ, (X1, y1), . . . , (Xn, yn)): List-decoding algorithm returning a listL such that ‖L(i)−β‖2 ≤
ρ/4 for some i ∈ {1, . . . , |L|}.

1: function LIST_REGRESSION_TO_TESTING(ρ, (X1, y1), . . . , (X2n, y2n))
2: Split dataset into two equally sized parts {(Xi, yi)}ni=1, {(X ′i, y′i)}ni=1.
3: Let A be a random rotation matrix independent of data.
4: L1 ← A(ρ, (X1, y1), . . . , (Xn, yn)).
5: L2 ← A(ρ, (AX ′1, y

′
1), . . . , (AX ′2n, y

′
n)).

6: for i← 1 to |L1| do
7: for j ← 1 to |L2| do
8: if ‖L1(i)‖2, ‖L2(j)‖2 ∈ [3ρ/4, 5ρ/4] and ‖L1(i)−ATL2(j)‖2 ≤ ρ/2 then
9: return H1

10: return H0

Lemma E.10 (see, e.g., [CFJ13]). Let θ be the angle between two random unit vectors uniformly
distributed over Sd−1. Then we have that Pr[|cosθ| ≥ Ω(dc−1/2)] ≤ e−Ω(d2c) for any 0 < c < 1/2.

Taking a union bound over the |L1| · |L2| possible pairs of candidate vectors, we have that with
probability at least 1− |L1| · |L2|e−Ω(d2c), for all i ∈ [|L1|], j ∈ [|L2|] we have that

‖L1(i)−ATL2(j)‖2 =
√
‖L1(i)‖22 + ‖ATL2(j)‖22 − 2(L1(i))T (ATL2(j))

≥
√

2(3ρ/4)2(1− Ω(dc−1/2)) > ρ ,

where in the last inequality we used that d = 2Ω(1/(1/2−c)). This concludes correctness for the case
of the null hypothesis.

We note that the Algorithm E.2 can be implemented in both of the models of computation that
we consider: SQ model and low-degree polynomial test (Section F). For the SQ model, we can
simulate the queries on the rotated X by modifying the queries to explicitly perform the rotation on
X by a matrix A. For the low-degree polynomial test, Remark F.5 shows that this reduction can be
implemented as a polynomial test.

F Hardness Against Low-Degree Polynomial Algorithms

In this section, we recall the recent connections between the statistical query framework and low-
degree polynomials that was shown in [BBH+20], and extend our hardness results to the latter model.
Sections F.1 and Section F.2 are dedicated to hypothesis problems. In Section F.3 we show that the
reduction of Section E can be expressed as a low-degree polynomial test.

F.1 Preliminaries: Low-Degree Method

We begin by recording the necessary notation, definitions, and facts. This section mostly fol-
lows [BBH+20].

Notation For a distribution D, we denote by D⊗n the joint distribution of n independent samples
from D. For f : R → R, g : R → R and a distribution D, we define the inner product 〈f, g〉D =

EX∼D[f(X)g(X)] and the norm ‖f‖D =
√
〈f, f〉D. We will omit the subscripts when they are

clear from the context.

Low-Degree Polynomials A function f : Ra → Rb is a polynomial of degree at most k if it can
be written in the form

f(x) = (f1(x), f2(x), . . . , fb(x)) ,

where each fi : Ra → R is a polynomial of degree at most k. We allow polynomials to have
random coefficients as long as they are independent of the input x. When considering list-decodable
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estimation problems, an algorithm in this model of computation is a polynomial f : Rd1×n → Rd2×`,
where d1 is the dimension of each sample, n is the number of samples, d2 is the dimension of the
output hypotheses, and ` is the number of hypotheses returned. On the other hand, [BBH+20] focuses
on binary hypothesis testing problems defined in Definition E.1.

A degree-k polynomial test for Definition E.1 is a degree-k polynomial f : Rd×n → R and a
threshold t ∈ R. The corresponding algorithm consists of evaluating f on the input x1, . . . , xn and
returning H0 if and only if f(x1, . . . , xn) > t.

Definition F.1 (n-sample ε-good distinguisher). We say that the polynomial p : Rd×n → R is an
n-sample ε-distinguisher for the hypothesis testing problem in Definition E.1 if |EX∼D⊗n0

[p(X)]−

Eu∼µEX∼D⊗nu [p(X)]| ≥ ε
√
VarX∼D⊗n0

[p(X)]. We call ε the advantage of the distinguisher.

Let C be the linear space of polynomials with degree at most k. The best possible advantage is given
by the low-degree likelihood ratio

max
p∈C

E
X∼D⊗n0

[p2(X)]≤1

∣∣∣ E
u∼µ

E
X∼D⊗nu

[p(X)]− E
X∼D⊗n0

[p(X)]
∣∣∣ =

∥∥∥∥ E
u∼µ

[
(D̄⊗nu )≤k

]
− 1

∥∥∥∥
D⊗n0

,

where we denote D̄u = Du/D0 and the notation f≤k denotes the orthogonal projection of f to C.

Another notation we will use regarding a finer notion of degrees is the following: We say that the
polynomial f(x1, . . . , xn) : Rd×n → R has samplewise degree (r, k) if it is a polynomial, where
each monomial uses at most k different samples from x1, . . . , xn and uses degree at most d for each
of them. In analogy to what was stated for the best degree-k distinguisher, the best distinguisher of
samplewise degree (r, k)-achieves advantage

∥∥Eu∼µ[(D̄⊗nu )≤r,k]− 1
∥∥
D⊗n0

the notation f≤r,k now
means the orthogonal projection of f to the space of all samplewise degree-(r, k) polynomials with
unit norm.

F.2 Hardness of Hypothesis Testing Against Low-Degree Polynomials

In this section, we show the following result:
Theorem F.2. Let 0 < c < 1/2 and m ∈ Z+ with m ≤ c1/

√
α for some sufficiently small constant

c1 > 0. Consider the hypothesis testing problem of Problem E.2. For d ∈ Z+ with d = mΩ(1/c), any
n ≤ Ω(d)(2m+1)(1/2−c)e−O(m)(1− ρ2) and any even integer k < dc/4, we have that∥∥∥∥ E

u∼µ

[
(Ē⊗nu )≤∞,Ω(k)

]
− 1

∥∥∥∥2

R⊗n
≤ 1 .

We prove Theorem F.2 by using the lower bound on SDA in Corollary E.8 and the relation between
SDA and low-degree polynomials established in [BBH+20]. In [BBH+20], the following relation
between SDA and low-degree likelihood ratio is established.
Theorem F.3 (Theorem 4.1 of [BBH+20]). Let D be a hypothesis testing problem on Rd with
respect to null hypothesis D0. Let n, k ∈ N with k even. Suppose that for all 0 ≤ n′ ≤ n,
SDA(S, n′) ≥ 100k(n/n′)k. Then, for all r,

∥∥Eu∼µ [(D̄⊗nu )≤r,Ω(k)
]
− 1
∥∥2

D⊗n0
≤ 1.

We first apply Theorem F.3 to the more general Problem E.6. In Lemma E.7 we set n =
Ω(d)(m+1)(1/2−c)

Ey∼R(y)[χ2(Ay,N (0,1))] and q =
√

2Ω(dc/2)(n/n′). Then, SDA(S, n′) ≥
√

2Ω(dc/2)(n/n′) ≥
(100n/n′)k for k < dc/4. Thus, we have shown the following.
Corollary F.4. Let 0 < c < 1/2 and the hypothesis testing problem of Problem E.6 where for
every y ∈ R the distribution Ay matches the first m moments with N (0, 1). For any d ∈ Z+

with d = mΩ(1/c), any n ≤ Ω(d)(m+1)(1/2−c)/Ey∼R(y)[χ
2(Ay,N (0, 1))] and any even integer

k < dc/4, we have that ∥∥∥∥ E
u∼µ

[
(D̄⊗nu )≤∞,Ω(k)

]
− 1

∥∥∥∥2

R⊗n
≤ 1 .
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Proof of Theorem F.2. We now apply the Corollary F.4 to Problem E.2, which is a special case of
Problem E.6. The first part of Lemma 2.6 states that the distributions Ay’s match the first 2m mo-
ments with N (0, 1) for m ≤ c1/

√
α and the second part implies that Ey∼R(y)[χ

2(Ay,N (0, 1))] =

O(em)/(1− ρ2). An application of Corollary F.4 completes the proof.

F.3 Low-Degree Polynomial Reduction to List-Decodable Regression

Remark F.5. We note that the reduction of Lemma E.9 is an algorithm that can be expressed in the
low-degree polynomials model. The modification of the algorithm is the following: First note that
the `2-norm of a vector is indeed a polynomial of degree two in each coordinate. Second, one can
check whether there exists a pair i ∈ [|L1|], j ∈ [|L2|] with ‖L1(i)‖2, ‖L2(j)‖2 ∈ [3ρ/4, 5ρ/4] for
which ‖L1(i)−ATL2(j)‖2 ≤ ρ/2 using the condition

|L1|∑
i∈1

|L2|∑
j∈1

1(‖L1(i)‖22 ≥ (3ρ/4)2) · 1(‖ATL2(j)‖22 ≤ (5ρ/4)2) · 1(‖L1(i)−ATL2(j)‖22 ≤ ρ2/4) = 0 ,

and use a polynomial approximation for the step function in order to express each term as a polynomial.
The degree needed for a uniform ε-approximation has been well-studied [GR08, Gan02, EY07].
Lemma F.6 ([EY07]). Let f : R → R be the step function defined as f(x) = 1 for all x ≥ 0 and
f(x) = 0 otherwise. The minimum k ∈ Z+ for which there exists a degree-k polynomial p : R→ R
such that maxx∈[−1,1] |f(x)− p(x)| ≤ ε is k = Θ(1/ε2).

For our purpose, it suffices to approximate the step function up to error ε = Θ(1/(|L1| · |L2|)), thus
the resulting polynomial test has degree Θ(|L1|2 · |L2|2).

G Additional Technical Facts

Our bounds in Lemma 2.6 required the standard fact below. Here we provide its proof for complete-
ness.
Fact G.1. For any one-dimensional distribution P that matches the first m moments with N (0, 1)
and has χ2(P,N (0, 1)) <∞ the following identity is true

χ2(P,N (0, 1)) =

∞∑
i=m+1

(
E

X∼P
[hi(X)]

)2

.

Proof. . Let φ denote the pdf of the standard one-dimensional Gaussian. For this proof, we
use a slightly different definition of the space L2(R,N (0, 1)). We define it as the space of func-
tions for which

∫
R f

2(x)/φ(x)dx < ∞ with the inner product 〈f, g〉 :=
∫
R f(x)g(x)/φ(x)dx

(note the similarity with the definition of χ2-divergence). The Hermite functions (or often called
Hermite-Gauss functions) hi(x)φ(x) for i = 0, 1, . . . form a complete orthonormal basis of the
space L2(R,N (0, 1)) with respect to that inner product. It is easy to check that this statement is
equivalent to the statement that Hermite polynomials {hi}N form a complete orthonormal basis of
the space of all functions f : R → R for which Ex∼N (0,1)[f

2(x)] < ∞ (i.e., our old definition of
L2(R,N (0, 1))). . Since χ2(P,N (0, 1)) <∞ we have P ∈ L2(R,N (0, 1)) and thus we can write
P (x) =

∑∞
i=0 aihi(x)φ(x), where ai = EX∼P [hi(X)]. Using the fact that P agrees with the first

m moments of N (0, 1) and the property of Hermite polynomials EX∼N (0,1)[hi(X)] = 1(i = 0) we
get that a0 = EX∼N (0,1)[h0(X)] = 1 and ai = EX∼N (0,1)[hi(X)] = 0 for 0 < i ≤ m. Thus

P (x) = φ(x) +

∞∑
i=m+1

aihi(x)φ(x) .

The χ2-divergence can then be written as

χ2(P,N (0, 1)) =

∫
R

(P (x)− φ(x))2

φ(x)
dx =

∫
R

1

φ(x)

( ∞∑
i=m+1

aihi(x)φ(x)

)2

dx =

∞∑
i=m+1

a2
i ,

where the last part uses orthonormality of the functions hi(x)φ(x).
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We now turn to Claim B.3 which is restated below.
Claim G.2. If P =

∑k
i=1 λiN(µi, σ

2
i ) with µi ∈ R, σi <

√
2 and λi ≥ 0 such that

∑k
i=1 λi = 1,

we have that χ2(P,N (0, 1)) <∞.

For that we need the following two facts about χ2-distance between Gaussians. Their proofs can be
done by direct calculations.

Fact G.3. Let k ∈ Z+, distributions Pi and λi ≥ 0, for i ∈ [k] such that
∑k
i=1 λi = 1. We have that

χ2
(∑k

i=1 λiPi, D
)

=
∑k
i=1

∑k
j=1 λiλiχD(Pi, Pj).

Proof.

χ2

(
k∑
i=1

λiPi, D

)
+ 1 =

∫
R

(
k∑
i=1

λiPi(x)

)2

/D(x)dx =

k∑
i=1

k∑
j=1

λiλj

∫
R
Pi(x)Pj(x)/D(x)dx

=

k∑
i=1

k∑
j=1

λiλj (χD(Pi, Pj) + 1) =

k∑
i=1

k∑
j=1

λiλjχD(Pi, Pj) +

(
k∑
i=1

λi

)2

=

k∑
i=1

k∑
j=1

λiλjχD(Pi, Pj) + 1 .

Fact G.4.

χN (0,1)

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)

=
exp

(
−µ

2
1(σ2

2−1)+2µ1µ2+µ2
2(σ2

1−1)

2σ2
1(σ2

2−1)−2σ2
2

)
√
σ2

1 + σ2
2 − σ2

1σ
2
2

− 1 .

The proof of Claim G.2 then consists of applying Fact G.3 and using Fact G.4 for each one of the
generated terms.
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