Accuracy Boosters Epoch-Driven Mixed-Mantissa Block Floating Point for DNN Training

Simla Burcu Harma, Ayan Chakraborty, Babak Falsafi, Martin Jaggi, Yunho Oh

Dense and Accurate DNN Training

Relative logic area of multiply-and-accumulate (MAC) using different datatypes on the same silicon [Fox et al., ICLR'21]

Goal: Training DNNs using fixed-point arithmetic with FP32 accuracy

Drumond et al., Training DNNs with Hybrid Block Floating Point, NeurIPS'18

A Narrow Bitwidth Format: HBFP

- High accuracy of floating point
- The superior hardware density of fixed point
- Block Floating Point (BFP) for dot products (> 90% ops)
- Floating Point for activations and other arithmetic

BFP representation with an exponent per tensor

A Narrow Bitwidth Format: HBFP

- Explore the HBFP parameter space
 - Maximizing block size
 - Minimizing mantissa bits
 - \Rightarrow Study the tensor distribution similarities
 - \Rightarrow Analyze the loss landscapes

BFP representation with an exponent per tensor

The parameter space of HBFP is yet to be explored!

Contributions

- Explore the HBFP parameter space
 - Maximizing block size
 - Minimizing mantissa bits
 - \Rightarrow Study the tensor distribution similarities
 - \Rightarrow Analyze the loss landscapes

- Accuracy Boosters
 - HBFP6 only in the last epoch and first/last layers
 - HBFP4 for the rest (99.7% of ops)

We can get the HW benefits of HBFP4 while maintaining FP32 accuracies

Tensor Distributions: HBFP4 vs. HBFP6

Tensor distributions are much more distorted for HBFP4 compared to HBFP6

Tensor Distributions: Block Sizes

HBFP6 is not sensitive to the block size, while HBFP4 is sensitive

Tensor Distributions: First/Last Layers

0.04

0.03

0.02

0.01

0.00

16

Wasserstein Distance

256

64

576

Wasserstein distance of first/last layers is higher than the other layers

576

16

Block Sizes

256

64

Analyzing the Loss Landscapes

- Plot the landscape around the current position of the minimizer
- Dimensionality reduction
 - Pick two random directions and form a plane
 - Add a third dimension \rightarrow will be the loss value calculated at each point within that plane
 - Position the current state of the minimizer at the center

Analyzing the Loss Landscapes

- Plot the landscape around the current position of the minimizer
- Dimensionality reduction
 - Pick two random directions and form a plane
 - Add a third dimension \rightarrow will be the loss value calculated at each point within that plane
 - Position the current state of the minimizer at the center
- Loss value \rightarrow Optimization
- Flatness \rightarrow Generalization

Loss landscapes provides information for the interplay between generalization & optimization

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS'18

Loss Landscapes: FP32 vs Standalone HBFP

HBFP4 fails to converge to good minimum in contrast to HBFP6

Loss Landscapes: HBFP4+Layers

Increase in accuracy but there is still imbalance btw. optimization and generalization

Loss Landscapes: Accuracy Boosters

Accuracy Boosters is the recipe to reach the sweet spot between generalization & optimization

DenseNet40 on CIFAR100

FP32 level accuracy while using HBFP4 for majority of operations with 21.3x higher density

BLEU Score

34.77

34.47

32.64

36.08

FP32 level accuracy while using HBFP4 for majority of operations with 21.3x higher density

- HBFP has a rich parameter space ightarrow Opportunities to increase arithmetic density
- Explore HBFP parameters
 - Block size ⇒ Tensor distribution similarities
 - Mantissa bitwidth ⇒ Loss landscapes
- Accuracy Boosters: Mixed-mantissa BFP across layers and epochs
- Accuracy Boosters employs HBFP4 for the 99.7% of total operations
 - FP32-level accuracies
 - Up to 21.3× higher arithmetic density over FP32

For more information please visit us at parsa.epfl.ch or contact me via simla.harma@epfl.ch

$$W(P,Q) = \inf_{\gamma \in \Pi(P,Q)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||],$$

where $\Pi(P,Q)$ is the set of all joint distributions $\gamma(x,y)$ whose marginal distributions are equal to P and Q

• $\gamma(x, y)$ can be interpreted as the amount of mass that must be transported from x to y to transform P to Q

HBFP Parameter Space: Why Minimize?

Considerable power and area savings!

Hardware Support

- HBFP4 hardware can support HBFP6 operations in 4 steps
- Lower HBFP6 operations into HBFP4:

$$A \times B = (2^4 \cdot A_{\rm HI} + A_{\rm LO}) \times (2^4 \cdot B_{\rm HI} + B_{\rm LO})$$
$$A \times B = 2^8 \cdot A_{\rm HI} \times B_{\rm HI} + 2^4 \cdot (A_{\rm HI} \times B_{\rm LO} + A_{\rm LO} \times B_{\rm HI}) + A_{\rm LO} \times B_{\rm LO}$$

Support 2⁴ and 2⁸ by modifying the BFloat16 accumulators

- Offset the exponent by 4 or 8
- With little hardware can achieve lower HBFP6 throughput