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Dense and Accurate DNN Training
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Goal: Training DNNs using fixed-point arithmetic with FP32 accuracy

Relative logic area of multiply-and-accumulate (MAC) using 

different datatypes on the same silicon [Fox et al., ICLR’21]

int8 mul w/ int32 add

FP8 mul w/ FP16 add
FP16

FP32



A Narrow Bitwidth Format: HBFP

▪ High accuracy of floating point 

▪ The superior hardware density of fixed point

▪ Block Floating Point (BFP) for dot products (> 90% ops)

▪ Floating Point for activations and other arithmetic
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Drumond et al., Training DNNs with Hybrid Block Floating Point, NeurIPS’18



A Narrow Bitwidth Format: HBFP
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The parameter space of HBFP is yet to be explored!
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▪ Explore the HBFP parameter space

▪ Maximizing block size 

▪ Minimizing mantissa bits

⇒ Study the tensor distribution similarities

⇒ Analyze the loss landscapes



Contributions

▪ Explore the HBFP parameter space

▪ Maximizing block size 

▪ Minimizing mantissa bits

▪Accuracy Boosters 

▪ HBFP6 only in the last epoch and first/last layers

▪ HBFP4 for the rest (99.7% of ops)
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We can get the HW benefits of HBFP4 while maintaining FP32 accuracies

⇒ Study the tensor distribution similarities

⇒ Analyze the loss landscapes …
First/last 

layers:
HBFP6

Inner layers:
HBFP4

HBFP4 training
Last epoch

HBFP6



Tensor Distributions: HBFP4 vs. HBFP6
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Tensor distributions are much more distorted for HBFP4 compared to HBFP6
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Tensor Distributions: Block Sizes
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HBFP6 is not sensitive to the block size, while HBFP4 is sensitive
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Tensor Distributions: First/Last Layers
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Wasserstein distance of first/last layers is higher than the other layers



Analyzing the Loss Landscapes
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▪ Plot the landscape around the current position of the minimizer

▪Dimensionality reduction

▪ Pick two random directions and form a plane

▪ Add a third dimension → will be the loss value calculated at each point within that plane

▪ Position the current state of the minimizer at the center

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS’18



Analyzing the Loss Landscapes
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Loss landscapes provides information for the interplay between generalization & optimization

▪ Plot the landscape around the current position of the minimizer

▪Dimensionality reduction

▪ Pick two random directions and form a plane

▪ Add a third dimension → will be the loss value calculated at each point within that plane

▪ Position the current state of the minimizer at the center

▪ Loss value → Optimization

▪ Flatness → Generalization

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS’18



Loss Landscapes: FP32 vs Standalone HBFP
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HBFP4 fails to converge to good minimum in contrast to HBFP6

     
    

     

                    

 

 

 

 

 

  
  
  
  



            

                    

 

 

 

 

 

  
  
  
  

     
    

     

Loss Landscapes: HBFP4+Layers
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Increase in accuracy but there is still imbalance btw. optimization and generalization



            

     
    

     

            

                    

 

 

 

 

 

  
  
  
  

Loss Landscapes: Accuracy Boosters
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Accuracy Boosters is the recipe to reach the sweet spot between generalization & optimization



Accuracy Boosters: Model Accuracies
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FP32 level accuracy while using HBFP4 for majority of operations with 21.3x higher density

DenseNet40 on CIFAR100



Accuracy Boosters: Model Accuracies
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FP32 level accuracy while using HBFP4 for majority of operations with 21.3x higher density

Configuration BLEU Score

FP32 34.77

HBFP6 34.47

HBFP4 32.64

Booster 36.08

Transformer-Base trained on 

IWSLT’14 De→En

DenseNet40 on CIFAR100



Summary

▪HBFP has a rich parameter space → Opportunities to increase arithmetic density

▪ Explore HBFP parameters

▪ Block size

▪ Mantissa bitwidth

▪Accuracy Boosters: Mixed-mantissa BFP across layers and epochs

▪Accuracy Boosters employs HBFP4 for the 99.7% of total operations

▪ FP32-level accuracies

▪ Up to 21.3× higher arithmetic density over FP32 
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⇒ Tensor distribution similarities

⇒ Loss landscapes



Thank You!

For more information please visit 
us at parsa.epfl.ch

or contact me via 
simla.harma@epfl.ch
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…
First/last 

layers:
HBFP6

Inner layers:
HBFP4

HBFP4 training
Last epoch

HBFP6



Wasserstein Distance

where Π(𝑃, 𝑄) is the set of all joint distributions 𝛾(𝑥, 𝑦) whose marginal 
distributions are equal to 𝑃 and 𝑄

▪ 𝛾(𝑥, 𝑦) can be interpreted as the amount of mass that must be transported from 
𝑥 to 𝑦 to transform 𝑃 to 𝑄
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HBFP Parameter Space: Why Minimize?
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Considerable power and area savings!



Hardware Support 

▪HBFP4 hardware can support HBFP6 operations in 4 steps

▪ Lower HBFP6 operations into HBFP4:

▪ Support 24 and 28 by modifying the BFloat16 accumulators

▪ Offset the exponent by 4 or 8

▪ With little hardware can achieve lower HBFP6 throughput
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