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1 Details of ConvMNIST

2 ConvMNIST is a VGG [18]-like network but with fewer layers, as shown in Figure[I} The activation

3

layers will be placed with specified activation functions while experiments.
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Figure 1: The network architecture of ConvMNIST. The number under the block indicates that output
channels of current layer.

2 More results on MNIST

In Table[T] best testing accuracy on MNIST for five trainings of MNIST-Conv after the first epoch with
different optimizers and learning rates are reported. In Table 3] mean testing accuracy of five-time
training of MNIST-Conv trained for 20 epochs with different learning rates on MNIST are reported.
in Table [2] best testing accuracy of five-time training of MNIST-Conv trained for 20 epochs with
different learning rates on MNIST are reported. We compare AReLU with 13 non-learnable and 5
learnable activation functions. The number of parameters per activation unit are listed beside the
name of the learnable activation functions. The best numbers are shown in bold text with blue color
for non-learnable methods and red for learnable ones. At the bottom of the table, we report the
improvement of AReLU over the best among other non-learnable and learnable methods, in blue and
red respectively.

At the meantime, we also plot the mean training loss and testing accuracy of five runs with different
optimizers and learning rates in Figure [2|and Figure

3 Full result of transfer learning

The full table of transfer learning is shown in Table ]
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Table 1: Best testing accuracy (%) on MNIST for five trainings of MNIST-Conv after the first epoch
with different optimizers and learning rates. We compare AReLU with 13 non-learnable and 5
learnable activation functions. The number of parameters per activation unit are listed beside the
name of the learnable activation functions. The best numbers are shown in bold text with blue color
for non-learnable methods and red for learnable ones. At the bottom of the table, we report the
improvement of AReLU over the best among other non-learnable and learnable methods, in blue and
red color respectively.

Learning Rate 1x1072 1x1073 1x 1074 1x107° \
Optimizer Adam  SGD | Adam  SGD | Adam SGD Adam SGD
CELU [2] 98.49 96.56 | 9641  75.67 | 85.62 17.64 34.23 10.79
ELU [3] 98.36  96.64 | 9634 65.66 | 86.77  22.61 28.91 11.36
GELU [g] 98.68 96.02 | 9633 14.44 | 84.45 14.61 20.64  13.30

LeakyReLU [12] | 98.29 9593 | 96.19 44.76 | 84.86 13.20 20.55 11.49
Maxout [5]] 97.79  96.09 | 9645 79.21 | 85.62 13.99 22.05 10.55
ReLU [15] 98.13  96.33 | 96.07 49.78 | 86.07 12.67 19.87 10.24
ReLUG6 [11] 98.18 96.05 | 96.55 56.07 | 83.42 13.13 17.42 10.27
RReLU [19] 98.52  96.30 | 9598 61.78 | 86.97 10.36 20.61 11.35
SELU [10] 97.72 96.88 | 97.01 83.85 | 87.53  22.09 37.98 10.59

Sigmoid 97.62 11.35 | 8529 1135 | 11.47 11.35 11.35 10.28
Softplus [4] 97.80 93.83 | 9458 1135 | 75.05 11.35 11.35 10.32
Swish [16] 98.32 9528 | 9647 1238 | 85.52 11.82 15.51 10.27

Tanh 97.32 9440 | 96.84 69.29 | 81.50 16.32 29.92 11.35

APL [1] (2) 98.48 96.25 | 9550 27.75 | 80.56  10.28 19.50 1547
Comb [[13] (1) 98.42 96.54 | 96.07 57.88 | 85.59 11.67 2540  10.72
PAU [14] (10) 9842 97.94 | 97.07 76.69 | 89.71 11.35 18.11 14.54
PReLU [[7] (1) 98.52  96.10 | 96.33 61.72 | 87.24  15.86 18.31 11.40
SLAF [6]] (2) 96.69 9727 | 9576 84.13 | 76.84  15.60 11.19 13.09

AReLU (2) 9846 97.60 | 97.29 93.83 | 90.91  61.06 48.06 19.84
Improvement —-0.22 +0.72 | +0.28 +9.98 | +3.38 +38.45 | +10.08 +6.54
Improvement —-0.02 —-0.34 | +0.22 +49.70 | +1.20 +45.20 | +22.66 +4.37

4 More results on Segmentation

We visualize the learning procedure of UNet [17] on a testing MRI image in Figure. 4| AReLU can
learn a better silhouette information than ReLU.
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Table 2: Best testing accuracy (%) of five-time training of MNIST-Conv trained for 20 epochs with
different learning rates on MNIST. We compare AReLU with 13 non-learnable and 5 learnable
activation functions. The number of parameters per activation unit are listed beside the name of the
learnable activation functions. The best numbers are shown in bold text with blue color for non-
learnable methods and red for learnable ones. At the bottom of the table, we report the improvement of
AReLU over the best among other non-learnable and learnable methods, in blue and red respectively.

Learning Rate 1x1072 1x1073 1x1074 1x107° |
Optimizer Adam  SGD [ Adam SGD | Adam  SGD | Adam  SGD
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Maxout [S]] 98.30 98.86 | 98.82 9798 | 97.69 89.98 | 91.04  23.90
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Softplus [4] 99.07 98.86 | 99.04 97.52 | 96.86 11.88 | 80.60 16.34
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Table 3: Mean testing accuracy (%) of five-time training of MNIST-Conv trained for 20 epochs
with different learning rates on MNIST. We compare AReL.U with 13 non-learnable and 5 learnable
activation functions. The number of parameters per activation unit are listed beside the name of the
learnable activation functions. The best numbers are shown in bold text with blue color for non-
learnable methods and red for learnable ones. At the bottom of the table, we report the improvement of
AReLU over the best among other non-learnable and learnable methods, in blue and red respectively.

Learning Rate 1x1072 1x1073 1x 1074 1x107°

Optimizer Adam SGD | Adam SGD | Adam SGD | Adam SGD
CELU 2] 98.62 9893 [ 99.05 97.73 [ 97.70 89.58 [ 90.58 14.96
ELU [3] 98.55 98.94 | 99.02 97.82 | 97.70 89.24 | 90.46 15.41
GELU [9] 98.85 98.93 | 99.08 97.51 | 97.67 51.19 | 88.94 10.94
LeakyReLU [12] | 98.66 98.92 | 9896 97.74 | 97.61 74.01 | 89.21 13.27
Maxout [3] 9823 9878 | 98.76  97.67 | 97.46  89.52 | 90.04 14.85
ReLU [15] 98.72 9898 | 99.05 97.57 | 97.58 81.63 | 88.88 11.03
ReLU6 [11] 98.51 98.93 | 99.02 97.79 | 97.96 81.96 | 88.14 12.44
RReLU [19] 98.78 98.94 | 99.06 97.77 | 97.62 87.64 | 89.59 13.37
SELU [10] 98.34 9891 | 98.84 9798 | 97.88 91.56 | 90.91  33.48
Sigmoid 81.05 9624 | 98.72 11.35 | 9296 11.35 | 11.35 10.67
Softplus [4] 98.95 98.78 | 98.93 97.30 | 96.57 11.52 | 78.36 12.50
Swish [16] 98.77 98.80 | 99.02 97.44 | 97.51 23.77 | 88.53 10.05
Tanh 97.91 9886 | 98.96 9694 | 97.97 75.66 | 86.99 14.76
APL [1]] (2) 9872 9892 [ 9894 9756 [ 9722 37.67 | 84.95 13.52
Comb [13] (1) 98.88  99.01 | 99.04 97.56 | 97.55 85.60 | 88.39 10.94
PAU [14] (10) 99.17  99.01 | 99.07 98.78 | 98.15 9521 | 92.22 12.86
PReLU [7] (1) 98.89 98.86 | 99.01 97.81 | 97.77 88.67 | 89.69 13.36
SLAF [6] (2) 98.80 98.86 | 98.67 9837 | 97.60 94.61 | 86.10 18.91
AReLU (2) 98.94 99.01 | 9897 9846 | 9822 96.00 | 93.48  73.00
Improvement —0.01 +40.03 | —0.11 4048 | 40.25 +4.44 | +2.57 +39.52
Improvement —0.23  40.00 | —0.10 —0.32 | 40.07 +0.79 | +1.26 +54.09

Table 4: Test accuracy (%) on SVHN by models (with different activation functions) trained directly
on SVHN (w/o pretrain), trained on MNIST but not finetuned (w/o finetune), as well as pretrained on
MNIST and finetuned on SVHN (pretrain+finetune).

CELU| ELU |GELU|LReLU |Maxout|RReLU|ReLU|ReLU6|SELU|Sigmoid|Softplus| Swish| Tanh | APL |Comb| PAU |PReLU|SLAF|AReLU
wi/o pretrain | 15.59 [19.59] 19.59 | 19.58 | 23.01 | 19.58 [19.58] 19.96 [19.58 | 19.58 | 19.58 |19.58[19.58]19.58|19.58[19.58] 19.58 |19.58| 24.95
wi/o finetune| 28.56 |[31.95] 37.38 | 28.11 | 36.52 | 33.38 |36.87| 31.74 |32.57| 15.73 | 14.39 |27.23]21.92]36.20|35.89|24.67| 33.45 |35.74| 31.91
w/ finetune | 71.11]72.39|71.64| 72.18 | 71.88 | 69.87 |70.58] 69.90 |73.43| 33.83 | 69.18 |67.75(64.78]74.21|69.92(74.70| 71.15 |73.12| 76.77

[19] Bing Xu, Naiyan Wang, Tiangi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853, 2015.
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Figure 2: The plots of mean training loss and testing accuracy (%) on MNIST for five-time trainings
of MNIST-Conv over increasing training epochs with different optimizers and learning rates.
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Figure 3: The plots of mean training loss and testing accuracy (%) on MNIST for five-time trainings
of MNIST-Conv over increasing training epochs with different optimizers and learning rates.
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Figure 4: The learning procedure of UNet at 2k, 4k, 6k, 8k, 10k iterations.



	Details of ConvMNIST
	More results on MNIST
	Full result of transfer learning
	More results on Segmentation

