
README.md 6/9/2020

1 / 8

AReLU: Attention-based-Rectified-Linear-Unit

Activation Function Player with PyTorch.

Content

Introduction

Install

Run

Explore

More tasks

Transfer learning

Json to Latex

README.md 6/9/2020

2 / 8

1. Introduction

This repository is the implementation of paper AReLU: Attention-based-Rectified-Linear-Unit.

While developing, we found that this repo is quite convenient for people doing experiments with different

activation functions, datasets, learning ratings, optimizers and network structures. It is easy for us to add

new activation functions and network structures into program. What's more, based on visdom and ploty, a

nice visualization of training procedure and testing accuracy has been provided.

This project is friendly to newcomers of PyTorch.

2. Install

conda create -n AFP python=3.7 -y
conda activate AFP
pip install -r requirements.txt

NOTE: PAU is only CUDA supported. You have to compile it first:

pip install airspeed==0.5.14

cd activations/pau/cuda
python setup.py install

The code of PAU is directly token from PAU, if you occur any problems while compiling, please refer to the

original repository.

If you just want to have a quick start, and do not want to compile with PAU, just comment out the following

lines in activations/__init__.py:

try:
 from .pau.utils import PAU
 __class_dict__["PAU"] = PAU
except Exception:
 raise NotImplementedError("")

3. Run

Prepare

We use visdom to visualize training process. Before training, please setup visdom server:

python -m visdom.server &

file:///home/densechen/Documents/AReLU/AReLU
https://github.com/ml-research/pau.git
file:///home/densechen/Documents/AReLU/activations/__init__.py

README.md 6/9/2020

3 / 8

Now, you can click here to check your training loss and testing accuracy while runtime.

NOTE: Don't worry about training data. The program will download dataset while runtime and save it under

args.data_root

Quick start

If you want to have a quick start with default parameters, just run:

python main.py --cuda

We plot the Continuous Error Bars with ploty and save it as a html file under results folder. A json file

which records same static data is also generated and saved under results.

Training loss (visualzie on visdom: http://localhost:8097/):

http://localhost:8097/
http://localhost:8097/

README.md 6/9/2020

4 / 8

Testing accuracy (visualize on visdom: http://localhost:8097/):

Continuous Error Bars of training loss with five runs (saved under results as html file):

http://localhost:8097/

README.md 6/9/2020

5 / 8

Continuous Error Bars of testing accuracy with five runs (saved under results as html file):

Run with different parameters

python main.py -h
 usage: main.py [-h] [--batch_size BATCH_SIZE] [--lr LR] [--epochs
EPOCHS]
 [--times TIMES] [--data_root DATA_ROOT]
 [--dataset {MNIST,SVHN}] [--num_workers NUM_WORKERS]
 [--net {BaseModel,ConvMNIST,LinearMNIST}] [--resume RESUME]
 [--af
{APL,AReLU,GELU,Maxout,Mixture,SLAF,Swish,ReLU,ReLU6,Sigmoid,LeakyReLU,ELU,
PReLU,SELU,Tanh,RReLU,CELU,Softplus,PAU,all}]
 [--optim {SGD,Adam}] [--cuda]
 [--exname
{AFS,TransferLearningPretrain,TransferLearningFinetune}]

 Activation Player with PyTorch.

 optional arguments:

README.md 6/9/2020

6 / 8

 -h, --help show this help message and exit
 --batch_size BATCH_SIZE
 batch size for training
 --lr LR learning rate
 --epochs EPOCHS training epochs
 --times TIMES repeat runing times
 --data_root DATA_ROOT
 the path to dataset
 --dataset {MNIST,SVHN}
 the dataset to play with.
 --num_workers NUM_WORKERS
 number of workers to load data
 --net {BaseModel,ConvMNIST,LinearMNIST}
 network architecture for experiments. you can
add new
 models in ./models.
 --resume RESUME pretrained path to resume
 --af
{APL,AReLU,GELU,Maxout,Mixture,SLAF,Swish,ReLU,ReLU6,Sigmoid,LeakyReLU,ELU,
PReLU,SELU,Tanh,RReLU,CELU,Softplus,PAU,all}
 the activation function used in experiments.
you can
 specify an activation function by name, or try
with
 all activation functions by `all`
 --optim {SGD,Adam} optimizer used in training.
 --cuda with cuda training. this would be much faster.
 --exname {AFS,TransferLearningPretrain,TransferLearningFinetune}
 experiment name of visdom.

Full training

We provide a script for doing a full training with all activation functions, learning rates, optimizers and

network structures.

Just run:

./train.sh

NOTE: This step is time consuming.

4. Explore

New activation functions

1. write a python script file under activations, such as new_activation_functions.py, where contains

the implementation of new activation function.

2. import new activation functions in activations/__init__.py, like:

file:///home/densechen/Documents/AReLU/activations/__init__.py

README.md 6/9/2020

7 / 8

from .new_activation_functions import NewActivationFunctions

3. Enjoy it!

New network structure

1. Write a python script file under models, such as new_network_structure.py, where contains the

definition of new network structure. New defined network structure should be a subclass of

BaseModel, which defined in models/models.py. Such as:

from models import BaseModel
import torch
import torch.nn as nn
import torch.nn.functional as F

class LinearMNIST(BaseModel):
 def __init__(self, activation: nn.Module):
 super().__init__(activation)

 self.linear1 = nn.Sequential(
 nn.Linear(28 * 28, 512),
 activation(),
)

 self.linear2 = nn.Sequential(
 nn.Linear(512, 10),
 nn.LogSoftmax(dim=-1)
)

 def forward(self, x):
 x = x.view(-1, 28 * 28)

 x = self.linear1(x)

 x = self.linear2(x)

 return x

2. Import new network structure in models/__init__/py, like:

from .conv import ConvMNIST

3. Enjoy it!

More

file:///home/densechen/Documents/AReLU/models/__init__.py

README.md 6/9/2020

8 / 8

You can modify main.py to try with more datasets and optimizers.

5. More tasks

Classification

You can refer to CIFAR10 and CIFAR100 for more experiments with popular network structures. After

downloading the repo, you just copy activations folder into repo, and modify some code.

Segmentation

You can refer to Detectron2 for more experiments on segmentation. And refer to UNet-Brain for a simple

test with UNet on brain segmentation.

6. Transfer learning

We provide a simple script to play with transfer learning between MNIST and SVHN.

./transfer_learning.sh

7. Json to Latex

We provide a lightly python script that can collect the json file data which generated under result folder

to readable latex code.

python json_to_latex.py -h
 usage: json_to_latex.py [-h] [--exname EXNAME] [--data {best,mean,std}]
 [--epoch {first epoch,best}] [--output OUTPUT]

 Json to LaTex (Lightly)

 optional arguments:
 -h, --help show this help message and exit
 --exname EXNAME exname to generate json
 --data {best,mean,std}
 best: best accuracy, mean: mean accuracy, std:
std of
 acc
 --epoch {first epoch,best}
 which epoch to load.
 --output OUTPUT output filename

https://github.com/kuangliu/pytorch-cifar.git
https://github.com/weiaicunzai/pytorch-cifar100.git
https://github.com/facebookresearch/detectron2.git
https://github.com/mateuszbuda/brain-segmentation-pytorch.git

