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Gaussian Mutual Information Maximization for Efficient Graph
Self-Supervised Learning: Bridging Contrastive-based to

Decorrelation-based
Anonymous Authors

ABSTRACT
Enlightened by the InfoMax principle, Graph Contrastive Learn-

ing (GCL) has achieved remarkable performance in processing

large amounts of unlabeled graph data. Due to the impracticality

of precisely calculating mutual information (MI), conventional con-

trastive methods turn to approximate its lower bound using para-

metric neural estimators, which inevitably introduces additional

parameters and leads to increased computational complexity. Build-

ing upon a common Gaussian assumption on the distribution of

node representations, a computationally tractable surrogate for the

original MI can be rigorously derived, termed as Gaussian Mutual

Information (GMI). Leveraging multi-view priors of GCL, we induce

an efficient contrastive objective based on GMI with performance

guarantees, eliminating the reliance on parameterized estimators

and negative samples. The emergence of another decorrelation-

based self-supervised learning branch parallels contrastive-based

approaches. By positioning the proposed GMI-based objective as

a pivot, we bridge the gap between these two research areas from

two aspects of approximate form and consistent solution, which

contributes to the advancement of a unified theoretical framework

for self-supervised learning. Extensive comparison experiments,

ablation studies, and visual analysis provide compelling evidence

for the effectiveness and efficiency of our method while supporting

our theoretical achievements.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning.

KEYWORDS
Gaussian Mutual Information Maximization, Graph Self-Supervised

Learning, Dimensional Collapse, Unified Theoretical Framework

1 INTRODUCTION
The scarcity of task-related annotations for graph data, which usu-

ally rely on domain knowledge and specific equipment such as

chemical instruments [29], urgently calls for the emergence of

advanced unsupervised learning methods without manual supervi-

sion. In this context, graph self-supervised learning (SSL) [6, 46, 55,
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58, 59] arises naturally in response to the prevailing demand, ap-

proaching and even surpassing the performance of their supervised

counterparts [19, 24, 48]. SSL models are trained on well-designed

pretext objectives in a task-agnostic manner, whose optimization

results in general, meaningful, and transferable representations

for downstream applications. As a distinguished member of the

SSL family, multi-view learning with Siamese networks [27] has

demonstrated exceptional performance and garnered widespread

interest. At the heart of such methods is to extract invariant or

common information from various augmented views of the same

instance (i.e., positive pairs) while adopting specific strategies to

prevent model collapse. The existing multi-view learning meth-

ods can be classified into two distinct categories based on their

means of addressing degradation: contrastive [20, 55, 58, 59] and
non-contrastive [6, 46, 57] approaches. The former suppresses en-

coded representations from collapsing into a constant point by push-

ing negative pairs apart, while the latter employs special strategies

such as decorrelating different representation dimensions [6, 57]

or designing asymmetric network architecture [17, 46].

The concept of contrastive multi-view learning originates from

information theory [2, 51], aiming to improve the consistency be-

tween various views by maximizing their mutual information (MI).

Nevertheless, the exact computation of mutual information for

high-dimensional continuous variables is usually intractable. To

cope with this challenge, some previous endeavors have attempted

to employ parameterized neural estimators to perform an empirical

evaluation of mutual information from finite samples, yielding no-

table achievements like MINE [4], Jensen-Shannon estimator [31],

and InfoNCE [18]. Formally, contrastive learning methods equipped

with the parameterized estimator of MI manifest as a contrastive-

ness between positive pairs from a joint distribution and negative

pairs from two marginal ones. Despite their decent performance,

these methods are accompanied by several inherent drawbacks: a)

a substantial number of samples are required to obtain reliable esti-

mation and achieve satisfactory results, which inevitably increases

computational burden; b) the incorporation of parameterized MI

estimators amplifies the complexity of SSL models.

Deviating from the conventional graph contrastive learning

methods, we delve into lightweight and efficient alternatives with

no reliance on parameterized MI estimators for node-level represen-

tation learning. Assuming node representations obey a Gaussian

distribution, a feasible closed-form solution can be obtained, called

Gaussian Mutual Information (GMI) [36, 38], through tractable

integration operations on the native definition of MI. In its math-

ematical form, the estimation of GMI exclusively depends on the

covariance matrices, which can be effortlessly obtained from em-

pirical data (i.e., node representations). Independent of additional
architectures, the resultant SSL objective under GMI can be di-

rectly calculated within the representation space, leading to higher

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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computational efficiency and better resource friendliness. Most im-

portantly, the performance of the proposed method can still hold

even when actual scenarios deviate from Gaussian distributions,

thereby extending its applicability beyond Gaussian constraints.

As another indispensable branch of the SSL family, the decorrelation-

based non-contrastive methods [3, 6, 12, 57] prevent degenerate

solutions and learn diverse representations by decoupling vari-

ous channels, whose objective functions exhibit an utterly distinct

appearance from those of contrastive-based ones. While the distinc-

tions between the two branches have been thoroughly discussed,

their latent theoretical relationships remain enshrouded in ambigu-

ity. Imposing a cross-view identity constraint, which enhances the

perfect alignment of representations from different views of the

same instance, to our proposed GMI-based objective function, we

employ the newly induced objective as a pivot to elucidate the un-

derlying connections between decorrelation-based and contrastive-

based methods. On the one hand, the former is formally equivalent

to a second-order Taylor series expansion of the latter. On the

other hand, their objectives share consistent solutions. Overall,

the decorrelation-based methods can be regarded as an instantia-

tion of contrastive learning under the Gaussian assumption on the

distribution of node representations and identity constraint.

Our contributions in this paper are summarized as follows:

• In light of multi-view priors and training characteristics of self-

supervised learning, we propound an extremely efficient and

stable training objective based on Gaussian mutual information

maximization, exhibiting unprecedented efficiency compared to

previous contrastive methods. Most significantly, extensive inves-

tigations in contexts beyond normal distributions demonstrate

capability of our method to generalize to non-Gaussian scenarios.

• We bridge decorrelation-based self-supervised methods to our

proposed contrastive objective from two aspects of approxima-

tion of form and consistency of solution, which points out a clue

to demystify the relationships between various self-supervised

learning methods.

• Thorough empirical studies demonstrate the effectiveness and

efficiency of our method compared with advanced peers. Addi-

tionally, exploratory studies and visual analysis further reveal

the advantages of our method and reinforce the understanding

of our theoretical achievements.

2 RELATEDWORK
2.1 Graph Self-Supervised Learning
For its remarkable performance, multi-view-based methods have

been the dominant paradigm of graph self-supervised learning,

which expect to explore common information from various aug-

mented versions. A crucial aspect of these methods is to prevent

degenerate solutions, where all representations are collapsed to a

constant point (i.e., complete collapse) or a subspace (i.e., dimen-

sional collapse) of the entire representation space. The current meth-

ods can be categorized into two groups, namely contrastive [20,

34, 55, 58, 59] and non-contrastive [6, 46, 57] approaches, based on

their ways to circumvent model collapse.

The contrastive-based methods usually follow the criterion of

mutual information maximization [21, 28], whose objective func-

tions take the form of contrasting positive pairs with negative ones.

As pioneer works, DGI [49] and InfoGraph [45] learn unsupervised

representations by maximizing mutual information between node-

level representations and a whole graph summary vector based on

the Jenson-Shannon estimator [31]. GraphCL [55], GRACE [58], and

GCA [59] embed the InfoNCE [18] loss into graph contrastive learn-

ing framework. From the view of information theory, InfoGCL [54]

investigates how to build appropriate contrastive learning frame-

works for specific tasks. GII [53] treats the structure as a separate

view and realizes cross-modal information interaction between

features and structure. M-ILBO [30] leverages MI estimators to

maximize entropy for learning diverse representations.

The non-contrastive methods discard negative samples, which

require special strategies to avoid collapsed solutions. BGRL [46]

utilizes asymmetric architecture and a stop-gradient strategy to

prevent the two branches from merging. Graph Barlow Twins (G-

BT) [6] generalizes the celebrated Barlow Twins [56] from images

to graph data. CCA-SSG [57] learns augmentation-invariant in-

formation while decorrelating features in different dimensions to

prevent degenerated solutions.

2.2 Estimating Mutual Information
Mutual information is a powerful and commonly used measure for

general correlation between random variables, which has been ap-

plied to a range of fields, including medical image processing [37],

feature selection [1, 13], information bottleneck [16], and recom-

mendation system [39]. Nevertheless, the exact computation of MI

for high-dimensional variables is notoriously difficult. An alterna-

tive scheme is to estimate MI from empirical observations.

The non-parametric estimators make no assumptions about the

underlying distribution of data and require no specification of any

parameters. The most popular class in this branch is the k-nearest-

neighbor-based estimators and their extensions [14, 26, 44]. Besides,

the methods based on kernel density estimation (KDE) first estimate

the probability density function and then compute MI by Monte-

Carlo integration [40, 43].

The research on neural-network-based MI estimation [4, 18, 31]

has also made significant process, which has been widely applied

in representation learning. The key technical ingredient of these

methods is to approximate the lower bound of MI based on dual

representations of the 𝑓 -divergence [31].

2.3 Collapse Issues in Self-Supervised Learning
Common types of collapse in multi-view self-supervised learning

include complete collapse and dimensional collapse, which respec-

tively represent the representations collapsing to a constant point

and to a subspace. The most common approach to prevent col-

lapse issues is to use negative samples to push data points apart

in the representation space, including SimCLR [8], GRACE [58],

and MVGRL [20]. Another class of methods employs asymmetric

architectures with stop-gradient strategy to prevent representa-

tions of two views from colliding with each other [7, 9, 17, 47].

Besides, some methods aim to enhance representation diversity and

prevent model collapse by evaluating and maximizing the entropy

of representations. Representative works include CorInfoMax [32],
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Figure 1: An overview of the overall framework based on GMIM. The outputs of well-trained 𝑓𝜃 (·) can be applied to various
node-level downstream tasks. Best viewed in colors.

M-ILBO [30], and literature [50]. Furthermore, methods like VI-

CReg [3] and CCA-SSG [57] decouple correlations between different

representation channels to avoid dimensional collapse.

3 METHODOLOGY
3.1 Preliminaries and Overall Framework

Preliminaries. Before further discussion, the preliminary con-

ceptions presented in this paper are first provided. A graph is de-

noted by 𝐺 (A,X) with node set V = {𝑣1, ..., 𝑣𝑁 } and edge set E,
where |V| = 𝑁 indicates the number of nodes. Each node 𝑣𝑖 ∈ V
has a 𝐷-dimensional feature vector x𝑖 ∈ R𝐷 . Node feature ma-

trix X = [x1, ..., x𝑁 ]⊤ ∈ R𝑁×𝐷
contains feature information of

all nodes and adjacency matrix A ∈ R𝑁×𝑁
describes the connec-

tion relationship between different nodes. The task of node-level

graph self-supervised learning is to seek good node representations

H̃ = [ ˜h1, ..., ˜h𝑁 ]⊤ ∈ R𝑁×𝑑
through learning a continuous map-

ping 𝑓𝜃 (A,X) : R𝑁×𝑁 × R𝑁×𝐷 → R𝑁×𝑑
without manual labels,

where 𝜃 denotes learnable model parameters and 𝑑 indicates the

representation dimension.

Graph ViewGeneration. Let the transformation𝜏 ∈ T : 𝐺 (A,X) →
𝐺 ′ (A′,X′) map the original graph to an augmented version, where

T denotes the whole function space for augmentation. Specifically,

the graph augmentation 𝜏 is jointly implemented from two aspects

of graph topology and feature, following previous works [58]. For

topology-level augmentation, edge removal is adopted, randomly

removing edges of a certain ratio 𝑝𝑒 on the original graph. For

feature-level augmentation, node feature masking randomly sets

feature channels of a specific number 𝐷 · 𝑝 𝑓 in feature matrix

X ∈ R𝑁×𝐷
to zero, where 𝑝 𝑓 is the masking ratio.

Overall Framework. In terms of basic framework, this paper in-

herits the common practice of prior studies. As shown in Figure 1,

two various views 𝐺 ′
𝐴
(A′

𝐴
,X′

𝐴
) = 𝜏𝐴 (𝐺) and 𝐺 ′

𝐵
(A′

𝐵
,X′

𝐵
) = 𝜏𝐵 (𝐺)

are generated based on two graph augmentation functions 𝜏𝐴 and

𝜏𝐵 randomly sampled from T . The two augmented versions are

fed into a shared graph convolutional network [24] 𝑓𝜃 (·) to ob-

tain representations H̃𝐴 = [ ˜h𝐴
1
, ..., ˜h𝐴

𝑁
]⊤ and H̃𝐵 = [ ˜h𝐵

1
, ..., ˜h𝐵

𝑁
]⊤.

To facilitate subsequent discussion, H̃𝐴 and H̃𝐵 are further batch-

normalized into H𝐴 = [h𝐴
1
, ..., h𝐴

𝑁
]⊤ and H𝐵 = [h𝐵

1
, ..., h𝐵

𝑁
]⊤, each

representation channel in which obey a distribution with 0-mean

and 1-standard deviation. “GMIM” is the optimization objective

proposed in the following sections.

3.2 Graph Self-supervised Learning with
Gaussian Mutual Information Maximization

Contrastive learning is initially enlightened by the InfoMax princi-

ple [5], which expects to maximize mutual information between

representations from various views.

Definition 3.1 (Mutual Information). Let 𝑋 and 𝑌 denote two

𝑑-dimensional continuous variables with marginal probability func-

tions 𝑝𝑥 (𝑋 ) and 𝑝𝑦 (𝑌 ), respectively. Their joint probability density
is indicated by 𝑝𝑥,𝑦 (𝑋,𝑌 ). The mutual information 𝐼 (𝑋 ;𝑌 ) between
𝑋 and 𝑌 is defined as

𝐼 (𝑋 ;𝑌 ) =
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln

𝑝𝑥,𝑦 (𝑋,𝑌 )
𝑝𝑥 (𝑋 ) · 𝑝𝑦 (𝑌 )

𝑑𝑋𝑑𝑌, (1)

where X and Y denote domains corresponding to 𝑋 and 𝑌 , respec-

tively.

Nevertheless, the exact computation of mutual information for

high-dimensional continuous variables is usually infeasible. First, it

is challenging to estimate the probability densities from empirical

observations. Second, even though they can be obtained, which

may have complex forms, the integral operation in Eq. (1) remains

difficult, even intractable. To tackle these issues, the conventional

contrastive leaning methods employ parametric networks to di-

rectly estimate a lower bound of MI, which can be trained alongside

the backbone via back-propagation in an end-to-end manner.

Divergent from the peer works, this paper assumes a latent

Gaussian distribution for node representations and drops paramet-

ric estimators, which leads to a computationally tractable surrogate.

The Gaussian assumption is justifiable and extensively employed in
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numerous disciplines to simplify analysis and calculation, including

economics, data science, and physics [33].

Proposition 3.2 (Gaussian Mutual Information). If the variables
𝑋 and 𝑌 obey two multi-dimensional Gaussian distributions, respec-
tively, the Gaussian mutual information 𝐼𝐺 (𝑋 ;𝑌 ) between them is

𝐼𝐺 (𝑋 ;𝑌 ) = 1

2

ln

det(Σ𝑋 ) · det(Σ𝑌 )
det(Σ𝑋,𝑌 )

, (2)

where det(·) indicates the determinant of a matrix, Σ𝑋 and Σ𝑌

are the covariance matrices of 𝑋 and 𝑌 , respectively, and Σ𝑋,𝑌 =[
Σ𝑋 Σ𝑋𝑌

Σ⊤
𝑋𝑌

Σ𝑌

]
is the covariance matrix of variable [𝑋⊤, 𝑌⊤]⊤ with

cross-covariance matrix Σ𝑋𝑌 .

Proof. Please refer to Section 1 of supplementary materials. □

The three covariance matrices Σ𝑋 , Σ𝑌 , and Σ𝑋,𝑌 can be effort-

lessly estimated from the empirical data, which results in a straight-

forward calculation of Gaussian mutual information. The covari-

ance matrix is a real symmetric matrix whose eigenvalues are all

greater than or equal to zero. Mathematically, the determinant of a

matrix is numerically equal to the product of all eigenvalues. Due

to the underlying dimensional collapse issue during self-supervised

pretraining, many eigenvalues of the empirical covariance matrix

tend to be zero, which causes its determinant to approach zero.

Therefore, a direct adoption of Eq. (2) for constructing a contrastive

learning objective will bring about numerical instability. One feasi-

ble strategy to alleviate the numerical issue is to offset and scale the

eigenvalues of the matrix performed by det(·). Considering multi-

view priors and training characteristics of SSL, a practical objective

based on Gaussian Mutual Information Maximization (GMIM) can

be formulated as

LGMIM = ln

det(I + 𝜂 · Σ𝐴,𝐵)
det(I + 𝜂 · Σ𝐴) · det(I + 𝜂 · Σ𝐵)

, (3)

whereΣ𝐴 = 1

𝑁
H⊤
𝐴

H𝐴 ,Σ𝐵 = 1

𝑁
H⊤
𝐵

H𝐵 ,Σ𝐴,𝐵 = 1

𝑁

[
H⊤
𝐴

H𝐴 H⊤
𝐴

H𝐵

H⊤
𝐵

H𝐴 H⊤
𝐵

H𝐵

]
,

I is an identity matrix, and 𝜂 is a scaling factor with a typical value

of 0.1. The eigenvalues of I + 𝜂 · Σ𝐴 fall into [1, +∞), and so do the

other two sibling matrices.

According to [10], the following property holds:

Property 1. For variables𝑋 and𝑌 , the relationship between entropy

and mutual information is

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ), (4)

where𝐻 (𝑋 ) = −
∫
X 𝑝𝑥 (𝑋 ) ln𝑝𝑥 (𝑋 )𝑑𝑋 denote information entropy

of𝑋 under 𝑝𝑥 (𝑋 ), and𝐻 (𝑋 |𝑌 ) =
∫
X

∫
Y 𝑝𝑥,𝑦 (𝑋,𝑌 ) ln

𝑝𝑥,𝑦 (𝑋,𝑌 )
𝑝𝑦 (𝑌 ) 𝑑𝑋𝑑𝑌

is the conditional entropy of 𝑋 given 𝑌 . If 𝑋 is deterministic given

𝑌 , 𝐻 (𝑋 |𝑌 ) = 0. Symmetrically, 𝐼 (𝑋,𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ) holds.

From Property 1, it can be known that mutual information maxi-

mization actually involves two potential processes: increasing infor-

mation entropy and reducing conditional entropy. The conditional

entropy is minimizedwhen the relationship between𝑋 and𝑌 can be

described by a deterministic function 𝑔(·), that is, 𝑌 ′ = 𝑔(𝑋 ′) holds
for any pair (𝑋 ′, 𝑌 ′) ∼ 𝑝𝑥,𝑦 . In our setup of overall framework, a

shared graph neural network is employed, expecting that repre-

sentations of different versions from the same instance can match

each other perfectly. In this circumstance, 𝑔(·) is preferred to be an

identity mapping. By imposing the cross-view identity constraint to

mutual information maximization with the preservation of entropy

maximization, we can obtain an objective under Gaussian Mutual

Information Maximization with Identity Constraint (GMIM-IC):

LGMIM-IC =
1

𝑁

∑︁
𝑣∈V

∥h𝐴𝑣 − h𝐵𝑣 ∥22︸                   ︷︷                   ︸
identity constraint

−
∑︁

∗∈{𝐴,𝐵}
𝛽 · ln det(I + 𝜂 · 𝚺∗)︸                              ︷︷                              ︸

entropy maximization

,

(5)

where 𝛽 is a coefficient balancing identity constraint term and

entropy maximization term. Some analysis about Eq. (5) is placed

in Section 2 of supplementary materials.

The objective functions LGMIM-IC and LGMIM, which maximize

Gaussian mutual information, can be computed directly in the rep-

resentation space without relying on any additional architectures

such as projection heads and estimators, demonstrating extremely

high efficiency.

3.3 Gaussian Constraints
The proposed method is developed under the Gaussian assump-

tion for node representations. The non-Gaussian nature of real-

world scenarios may lead to misleading results in calculations and

analyses conducted under Gaussian assumptions. Therefore, we

design constraint functions from a maximum likelihood perspec-

tive to drive the actual distribution towards the target Gaussian

distribution for alignment. The 𝑗-th column data in the repre-

sentation matrix H𝐴 can be viewed as 𝑁 empirical samples of

a single-dimensional random variable. Let 𝜇
𝑗

𝐴
and 𝜎

𝑗

𝐴
denote its

mean and variance, respectively. A univariate Gaussian distribution

𝑝𝑔𝑎𝑢

(
𝑥 |𝜇 𝑗

𝐴
, 𝜎

𝑗

𝐴

)
can be constructed, and by minimizing the nega-

tive log-likelihood

∑𝑁
𝑖=1 − log𝑝𝑔𝑎𝑢

(
𝐻𝐴
𝑖 𝑗
|𝜇 𝑗
𝐴
, 𝜎

𝑗

𝐴

)
where 𝐻𝐴

𝑖 𝑗
denotes

the element in the 𝑖-th row and 𝑗-th column of matrix H𝐴 , the 𝑗-th

column data can be forced to approach a Gaussian distribution. Con-

sidering all representation channels from both views, the following

objective function for Gaussian constraints can be constructed

L𝑔𝑎𝑢 =
1

𝑁 · 𝑑

𝑑∑︁
𝑗=1

𝑁∑︁
𝑖=1

− log𝑝𝑔𝑎𝑢

(
𝐻
𝑖 𝑗

𝐴
|𝜇 𝑗
𝐴
, 𝜎

𝑗

𝐴

)
+ 1

𝑁 · 𝑑

𝑑∑︁
𝑗=1

𝑁∑︁
𝑖=1

− log𝑝𝑔𝑎𝑢

(
𝐻
𝑖 𝑗

𝐵
|𝜇 𝑗
𝐵
, 𝜎

𝑗

𝐵

)
.

(6)

𝜅 · L𝑔𝑎𝑢 with a weighted coefficient 𝜅 can serve as a probabilistic

constraint loss, jointly supervising model training with LGMIM or

LGMIM-IC. Noting that subsequent empirical studies show that our

method can achieve highly competitive results even without relying

on L𝑔𝑎𝑢 . However, L𝑔𝑎𝑢 remains worthwhile, which can act as a

safeguard when our method fails in non-Gaussian scenarios.

4 BRIDGING CONTRASTIVE-BASED TO
DECORRELATION-BASED

Based on the symbols in this article, the decorrelation-based self-

supervised method (taking CCA-SSG [57] as an example) can be
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formularized as

LCCA-SSG =
1

𝑁
∥H𝐴 − H𝐵 ∥2𝐹︸              ︷︷              ︸

invariance term

+𝜆 ·
(
∥Σ𝐴 − I∥2𝐹 + ∥Σ𝐵 − I∥2𝐹

)
︸                           ︷︷                           ︸

decorrelation term

, (7)

where 𝜆 denotes a balancing factor and ∥ · ∥𝐹 indicates the Frobenius

norm of a matrix. Since the diagonal elements of Σ𝐴 are always 1,

the following equation holds:

∥Σ𝐴 − I∥2𝐹 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1, 𝑗≠𝑖

(Σ𝑖 𝑗
𝐴
)2, (8)

where Σ
𝑖 𝑗

𝐴
represents the element in the 𝑖-th row and the 𝑗-th col-

umn of Σ𝐴 . The conclusion of Eq. (8) still holds for 𝐵. Next, we will

establish connections between the decorrelation-based methods

and our objective LGMIM-IC from two perspectives.

4.1 Explaination 1: Approximate Form
Lemma 4.1. For a square matrix M, det(exp(M)) = exp(tr(M)).
Replace M with ln(I + 𝜂 · Σ∗) :

ln det(I + 𝜂 · Σ∗) = tr(ln(I + 𝜂 · Σ∗)), (9)

where ∗ ∈ {𝐴, 𝐵} 1. Applying Taylor expression to the logarithmic
function in tr(ln(I + 𝜂 · Σ∗)), it can be known that

ln det(I + 𝜂 · Σ∗) = 𝑡𝑟

(+∞∑︁
𝑘=1

(−1)𝑘+1
𝑘

(𝜂 · Σ∗)𝑘
)
. (10)

Based on Lemma 4.1, we can obtain a second-order Taylor ap-

proximation:

− ln det(I + 𝜂 · Σ𝐴) ≈
𝜂2

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1, 𝑗≠𝑖

(Σ𝑖 𝑗
𝐴
)2 + 𝜂2

2

· 𝑑 − 𝜂 · 𝑑. (11)

The proof of Lemma 4.1 and detailed derivations of Eq. (11) are

placed in Section 3 of supplementary materials.

Comparing Eq. (8) with Eq. (11), ∥Σ𝐴 − I∥2
𝐹
is equivalent to

the second-order Taylor expression of − ln det(I + 𝜂 · Σ𝐴) without
considering the constant term. Symmetrically, the finding can be

extended to view 𝐵. Besides, the invariance term in Eq. (7) has an

identical form with the identity constraint term in Eq. (5). Thus,

we can conclude that the objective of decorrelation-based methods

such as CCA-SSG has a approximate form with that of GMIM-IC.

4.2 Explaination 2: Consistent Solution
Certainly, the objective function in Eq. (7) is minimized when the

representations from the two views are perfectly matched and their

empirical covariance matrices tend towards the identity matrix.

Proposition 4.2. When ln det(I+𝜂 ·Σ∗) or ln det(Σ∗) is maximized,
the empirical covariance matrix Σ∗ will converge to an identity matrix.

Proof. Refer to Section 3.2 of supplementary materials. □

Obviously, the identity constraint term is minimized in Eq. (5)

when H𝐴 and H𝐵 is completely aligned. Combining this observation

with Proposition 4.2, it can be concluded that the decorrelation-

based objective in Eq. (7) has the same solution as the objective

based on GMIM-IC.

1
In the remaining sections of this article, ∗ is used to represent either𝐴 or 𝐵.

Explaination 1 and 2 demonstrate the relationship between two

objectives LCCA-SSG and LGMIM-IC from two aspects of approxima-

tion in form and consistency in final solutions. Consequently, the

following remark emerges naturally.

Remark 4.3. The decorrelation-based graph self-supervised meth-

ods, which expect to align multiple views and disentangle different

representation dimensions, can actually be viewed as a special

instance of mutual-information-maximization-based contrastive

learning under the Gaussian assumption and identity constraint.

5 THEORETICAL ANALYSIS
5.1 Preventing Dimensional Collapse
When dimensional collapse issue exists, various representation

channels are coupled to each other and present a certain correla-

tion. Another manifestation of dimensional collapse is that data

points exhibit differences in distributions along different principal

directions, where some directions exhibit loose distributions with

higher variance, while others present tight distributions with lower

variance.

Property 2. For empirical covariance matrix Σ = 1

𝑁
H⊤H ∈R𝑑×𝑑

with batch-normalized representations H = [h1, ..., h𝑁 ]⊤ ∈ R𝑁×𝑑
,

which has 𝑑 eigenvalues [𝜆1, 𝜆2, . . . , 𝜆𝑑 ] corresponding to 𝑑 eigen-

vectors [q1, q2, . . . , q𝑑 ], the variance of data H along the 𝑘-th prin-

cipal direction (that is, direction of q𝑘 ) is numerically equal to 𝜆𝑘 .

Proof. Refer to Section 3.3 of supplementary materials. □

Property 2 potentially suggests that the unevenness of the eigen-

values of the covariance matrix leads to the issue of dimensional

collapse. Combining with Proposition 4.2, it can be known that

maximizing the logarithm of determinant can ensure entropy max-

imization and realize isotropic covariance, which actually guaran-

tees the evenness of eigenvalues of the covariance matrix and thus

prevents dimensional collapse issue. From the perspective of repre-

sentation learning, this result will enhance the diversity, richness,

and discriminability of node representations, thereby conferring

advantages to downstream tasks.

5.2 Relation with InfoNCE
As the commonest indicator in contrastive learning, the InfoNCE [18]
loss guides the model to learn meaningful and diverse represen-

tations by pulling together embeddings from positive pairs and

pushing apart those from negative ones on the unit hypersphere.

A previous work [52] decomposes the classical InfoNCE objective
into two terms: alignment term and uniformity term. The alignment

term expects to match two views, which shares the same purpose as

our identity constraint. The uniformity term is utilized to distribute

representations uniformly on the unit hypersphere S𝑑−1
.

Proposition 5.1. When the representations scatter over the unit
hypersphere S𝑑−1 uniformly (that is, they obey a complete uniform
distribution), their entropy will reach the maximum value.

Proof. Refer to Section 3.4 of supplementary materials. □

Proposition 5.1 suggests that the uniformity term implicitly real-

ize the maximization of entropy by distributing the representations

uniformly over the hypersphere. Similar to the literature [52], some

previous works [11, 50] also utilize the same entropy maximization



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Node classification accuracy with standard deviation in percentage on six datasets. The “Input” column illustrates the
data used in the training stage, and Y denotes labels. The bold font highlights the best results. “OOM” means Out-Of-Memory.
For GII, the adjacency matrix is adopted as its structure view.

Algorithm Input Cora Citeseer Pubmed Computers Photo Coauthor-CS

MLP X, Y 57.8 ± 0.2 54.2 ± 0.1 72.8 ± 0.2 79.81 ± 0.06 86.36 ± 0.08 91.32 ± 0.11

GCN X, A, Y 81.5 70.3 79.0 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31

GAT X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24

U
ns

up
er
vi
se
d

DeepWalk A 68.5 ± 0.5 49.8 ± 0.2 66.2 ± 0.7 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22

GAE X, A 72.1 ± 0.5 66.5 ± 0.4 71.8 ± 0.6 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71

GMI X, A 83.0 ± 0.3 72.4 ± 0.1 79.9 ± 0.2 82.21 ± 0.31 90.68 ± 0.17 OOM

GRACE X, A 81.9 ± 0.4 71.3 ± 0.3 80.1 ± 0.2 86.53 ± 0.28 92.24 ± 0.17 92.98 ± 0.05

GCA X, A 81.7 ± 0.3 71.1 ± 0.4 79.5 ± 0.5 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01

GraphMAE X, A 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 88.12 ± 0.30 92.97 ± 0.21 93.03 ± 0.16

G-BT X, A 84.0 ± 0.4 73.0 ± 0.3 80.7 ± 0.4 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17

CCA-SSG X, A 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22

InfoGCL X, A 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 - - -

GII𝑙−𝑔 X, A 83.5 ± 0.6 73.2 ± 0.4 79.5 ± 0.3 - - -

CorInfoMax X, A 82.6 ± 0.4 72.2 ± 0.5 80.4 ± 0.4 87.98 ± 0.14 92.63 ± 0.10 92.88 ± 0.15

M-ILBO X, A 84.3 ± 0.5 73.2 ± 0.7 81.4 ± 0.5 88.76 ± 0.31 93.06 ± 0.31 93.14 ± 0.26

MVGRL X, A 83.7 ± 0.6 73.6 ± 0.3 79.9 ± 0.2 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12

DGI X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63

GMIM X, A 83.3 ± 0.5 72.6 ± 0.6 81.0 ± 0.7 88.71 ± 0.36 92.84 ± 0.16 92.67 ± 0.11

GMIM-IC X, A 84.5 ± 0.5 73.6 ± 0.4 81.8 ± 0.6 89.04 ± 0.35 93.17 ± 0.27 93.47 ± 0.23

criterion to promote uniformity and diversity of representations. In

contrast, our method explicitly maximizes the entropy of represen-

tations under the assumption of Gaussian distribution. In general,

the two approaches reach the similar goal by different routes.

6 EXPERIMENTS
6.1 Datasets and Experimental Setup

Datasets. To assess our approach, six widely used benchmark

datasets are adopted for experimental study, including three citation

networks Cora, Citeseer, and Pubmed [41], two co-purchase

networks Amazon-Computers and Amazon-Photo [42], and

one co-authorship network Coauthor-CS [42].

Experimental Setup. The representation encoder is implemented

by Graph Convolutional Network (GCN) [24]. The model param-

eters are initialized via Xavier initialization [15] and trained by

Adam optimizer [23]. All experiments are conducted on a NVIDIA

RTX 3090 GPU with 24 GB memory. The representations are first

learned through our method in an unsupervised way and then

evaluated by a simple linear classifier, which is the most common

manner in the current self-supervised learning literature.

6.2 Comparison Experiments
Here, we compare our method with state-of-the-art baselines in

terms of performance and efficiency.

Performance Comparison. To evaluate the effectiveness of our

approach, we compare our method with the state-of-the-art base-

lines on node classification task under the simple linear classifier.

The average classification accuracy with standard deviation of 20

results is reported for each dataset. We compare our approach

with unsupervised methods including DeepWalk [35], GAE [25],

DGI [49], GMI [34], GRACE [58], GCA [59], G-BT [6], CCA-SSG [57]

InfoGCL [54], GII [53], GraphMAE [22], CorInfoMax [32], M-

ILBO [30], and MVGRL [20]. Furthermore, some supervised models

including multi-layer perceptron (MLP), GCN [24], and GAT [48]

are also as baselines. We adopt the public splits on Cora, Citeseer

and Pubmed, and a 1:1:8 split for training/validation/testing on the

other three datasets. To make a fair comparison, for the methods

without adopting the same splits as ours, we conduct experiments

to get relevant results based on the officially released source code

with a hyper-parameter search. Table 1 reports the classification

results on six datasets. It can be observed that our method achieves

high performance on all datasets and outperforms the state-of-the-

art peers. In particular, our method significantly outperforms neu-

ral estimator-based methods such as GRACE, GCA, and InfoGCL.

These results clearly demonstrate the effectiveness of our approach.

After subjecting the node representations to a rigorous statistical

hypothesis testing, we discover that they do not actually conform to

a Gaussian distribution. In other words, our method remains highly

effective in non-Gaussian scenarios. Overall, GMIM-IC surpasses

GMIM. One reason is that the identity constraint imposes stricter

demands on cross-view consistency, which aligns with the practi-

cal design of the shared network architecture. Besides, GMIM-IC

demonstrates comparable performance with CCA-SSG, which can

serve as empirical support for our theoretical analysis.

Efficiency Comparison. To illustrate the simplicity and efficiency

of our model, we compare our method with other graph contrastive

methods based on mutual information estimators in terms of num-

bers of model parameters, time consumption of training stage, and



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Gaussian Mutual Information Maximization for Efficient Graph Self-Supervised Learning ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Comparison of numbers of model parameters, training time, and memory costs between various graph contrastive
methods. The term "Paras" denotes the number of model parameters. For MVGRL, the representation dimensions on Pubmed
and Amazon-Computers are set to 256 and 512, respectively. For DGI, the representation dimension on Amazon-Computers is
set to 512. For GMIM and GMIM-IC, the output dimensions are set to 512 across the four datasets.

Algorithm
Cora Citeseer Pubmed Computers

Paras Time Memory Paras Time Memory Paras Time Memory Paras Time Memory

DGI 996K 6.8s 3.8GB 2158K 9.4s 7.8GB 194K 44.9s 11.2GB 1,808K 71.2s 11.3GB

GRACE 433K 5.1s 1.2GB 2,159K 7.4s 1.5GB 519K 1,169s 12.2GB 263K 362.8s 7.4GB

MVGRL 1,731K 23.7s 3.8GB 4,055K 48.4s 7.9GB 322K 2,010s 9.1GB 1,049K 78.8s 16.6GB

GMIM 997K 2.8s 2.5GB 1,896K 2.5s 2.6GB 519K 9.5s 3.4GB 656K 7.5s 3.2GB

GMIM-IC 997K 3.1s 2.5GB 1,896K 2.9s 2.6GB 519K 7.2s 3.4GB 656K 8.7s 3.2GB

Algorithm 1 Hypothesis Testing based on scipy.

import numpy as np
from scipy import stats
# H: node representation matrix with the size of (N, d)
ret = stats.normaltest(H, axis=0)[1] # results the shape of (d,)
# The p-value of hypothesis testing on Four datasets are:
# Cora: [2.34e-46, 3.01e-84, ..., 1.01e-52, 1.63e-47, 3.18e-40]
# Citeseer: [1.29e-12, 1.46e-08, ..., 3.22e-05, 4.22e-03, 3.72e-07]
# Pubmed: [9.06e-34, 3.89e-118, ..., 5.18e-131, 3.09e-48, 8.23e-72]
# Computers: [1.07e-19, 1.97e-23, ..., 3.81e-07, 1.36e-08, 4.82e-36]

memory costs. Table 2 summarizes all indicators of various meth-

ods. Overall, compared to other methods, our method has fewer

model parameters, shorter training time, and smaller memory costs

in most cases. This is because our method doesn’t rely on additional

projection heads, parameterized mutual information estimator, and

negative samples, which add extra calculation, additional parame-

ters, and storage burden. Besides, the short training time potentially

indicates the fast convergence of our algorithm. The simplicity of

our model and the efficiency of the calculation of objective function

significantly reduce the time and space complexity of our method.

6.3 Gaussian Testing and Effect of Gaussian
Constraints

Histograms and Hypothesis Testing for Node Representations. The
histograms of node representations are illustrated in Figure 2. At

first glance, the distribution of representations exhibits a Gauss-

ian appearance. This observation served as the initial motivation

of our research and sparked our curiosity about the possibility of

directly performing graph self-supervised learning under Gauss-

ian mutual information maximization. In general circumstances,

mutual information cannot be directly computed and the current

contrastive learning methods rely on additional neural estimators

to approximate a lower bound. Without disappointment, empirical

results in Table 1 demonstrate the effectiveness of our approach.

Subsequently, we conduct a rigorous hypothesis testing on individ-

ual channels of representation matrices of multiple datasets based

on library scipy, as shown in Algorithm 1. The outcomes indicate

that node representations do not actually conform to a Gaussian

distribution. This result is, in fact, promising, which implies that

our approach will no longer be confined to Gaussian scenarios.

In summary, visualized histograms and the Gaussian assumption

provided the initial impetus for our research, while the fact that
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Figure 2: Histograms of individual representation channels
on four datasets. The curve in each subfigure represents a
Gaussian distribution with mean and variance from the cor-
responding histogram. The histograms appear to exhibit a
Gaussian appearance.
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Figure 3: Effect of Gaussian constraints under GMIM-IC.

our approach still remains its performance under the non-Gaussian

conditions extends the application scenarios of our method.

Effect of Gaussian Constraints. We test the effect of the Gauss-

ian constraints L𝑔𝑎𝑢 in Eq. (6) on four datasets: Cora, Citeseer,

Computers, and CS, which is attached to LGMIM-IC with a weighted

coefficient 𝜅. As shown in Figure 3, we can find that L𝑔𝑎𝑢 hardly

improves the performance of our method on these existing datasets.

This is because our method has already achieved highly competitive

results on these datasets, unaffected by non-normality.

6.4 Hyperparameter Sensitivity Analysis and
Exploratory Experiments

Effect of Representation Dimension. We conduct experiments by

varying the representation dimension to investigate its impacts on

performance. Figure 4 summarizes the results of the three variants
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Figure 4: Effect of representation dimension. “𝐼𝐺” denotes
the results based on Eq. (2).

based on Eq. (2), Eq. (3), and Eq. (5) on four datasets. It can be

observed that our method achieves optimal performance with an

appropriately large dimension, because the representations exhibit

better discriminability and linear separability in high-dimensional

space. However, as the dimension becomes excessively large such

as 1,024, there is a slight decrease in performance. This can be

blamed on the fact that an excessively high representation dimen-

sion hinders the model from learning compact and information-

dense representations. Another non-negligible underlying factor

for declining performance is that higher dimensions lead to poorer

estimation of the covariance matrix. Even in low-dimensional set-

tings, our method still delivers decent performance. This finding can

be attributed to the effective maximization of information entropy,

which prevents dimensional collapse, enhances the diversity of

representations, and ultimately improve model performance within

limited dimensions. Under the objective function based on Eq. (2),

the results in high-dimensional settings and on Computers are

unavailable. In such scenarios, the covariance matrix exhibits nu-

merous small eigenvalues, causing its determinant to approach zero.

This fact introduces numerical instability and eventually disrupts

training process.

Impact of Balancing Coefficient. We study the impacts of the

balancing coefficient 𝛽 in LGMIM−IC on performance. Figure 5 illus-

trates the variation of classification accuracy with varying values

of the coefficient. The performance exhibits a pattern of initially

increasing and later decreasing as 𝛽 goes up. When 𝛽 is small, the

entropy maximization term cannot fully exploit its role in promot-

ing diversity of representations. When 𝛽 is too large, too much

emphasis on maximizing information entropy leads to informative

yet meaningless representations.

Synergistic Changes Between Opposite of Entropy and Decorrela-
tion Loss. Taking LGMIM−IC as the optimization objective, we visu-

alize the joint changes of decorrelation loss in Eq. (7) and opposite

of entropy in Eq. (5). For each dataset in Figure 6, the decorrelation

loss (dashed line) exhibits a nearly identical trend to the opposite of

entropy (solid line). Experimental observations potentially indicate

a similar effect between them, which can serve as an empirical

support for Section 4.

More experimental results and visual analysis are provided
in the supplementary material.
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Figure 5: The classification accuracy of GMIM-IC under vary-
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Figure 6: Synergistic changes between opposite of entropy
(OE) and decorrelation loss (DEC).

7 LIMITATIONS, CONCLUSION, AND FUTURE
WORK

Limitations. Due to extreme limitations in computational re-

sources, we only conducted empirical studies on graphs. Extension

experiments on other types of data, such as images or multimodal

data, are left for future, which relies on many GPUs.

Conclusion. In this paper, we have presented a graph contrastive

learning method under the common Gaussian assumption for node

representations, which does not rely on any parametric mutual

information estimators and negative samples. Furthermore, we

provide two theoretical explanations regarding the relationship be-

tween decorrelation-based methods and contrastive-based methods.

Our analysis reveals that the decorrelation-based method can be

interpreted as a variant of contrastive methods when the Gaussian

assumption and identity constraint are considered. Extensive com-

parative experiments and visual analysis have demonstrated the

effectiveness, efficiency, and theoretical soundness of our method.

Overall, the Gaussian assumption motivates our research, but em-

pirical evidence demonstrates the continued effectiveness of our

method in non-Gaussian scenarios, which significantly extends the

practical application scope of our work.

Future Work. Our research paves a new path for graph self-

supervised learning. The prospect of extending the Gaussian as-

sumption to other distributions, such as the Cauchy distribution,

stands as a viable endeavor. Furthermore, the exploration of re-

lationships among distinct variants under different distributions

represents a valuable and exciting pursuit.
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